JPH05138193A - Mehtod for biologically removing nitrogen in waste water - Google Patents

Mehtod for biologically removing nitrogen in waste water

Info

Publication number
JPH05138193A
JPH05138193A JP3306466A JP30646691A JPH05138193A JP H05138193 A JPH05138193 A JP H05138193A JP 3306466 A JP3306466 A JP 3306466A JP 30646691 A JP30646691 A JP 30646691A JP H05138193 A JPH05138193 A JP H05138193A
Authority
JP
Japan
Prior art keywords
sulfur
water
added
denitrification
sulfur denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3306466A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3306466A priority Critical patent/JPH05138193A/en
Publication of JPH05138193A publication Critical patent/JPH05138193A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To prevent the outflow of sulfur denitrification bacteria and to promote denitrification velocity by introducing sulfur denitrification bacteria into water absorptive resin and inclusively immobilizing the same when the water absorptive resin absorbs water and is swelled. CONSTITUTION:Both incineration ash 2 of sewage sludge and suspension of incineration ash wherein a small amount of acid is added to incineration ash 2 are added to sludge 1 containing sulfur denitrification bacteria and this mixture is agitated and mixed. Water absorptive resin 4 is added and the mixture is agitated and mixed. Water absorptive resin 4 absorbs water and is swelled and simultaneously sulfur denitrification bacteria are introduced into the inside of water absorptive resin 4 and inclusively immobilized. The inclusively immobilized sulfur denitrification bacteria 5 are introduced into a biological nitrification sulfur denitrification treatment device 6 and treatment is performed. Furthermore an NaOH solution is added to incineration ash 2 and then exhaust gas high in the concentration of carbon dioxide is blown thereinto. Thereby bicarbonate liquid containing HCO3<->, at high concentration is prepared and used as a carbonate source in sulfur denitrification reaction. In such a way, necessary inorganic carbon is supplied by utilizing waste such as combustion exhaust gas and cost reduction is contrived.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は廃水の生物学的窒素除去
方法に関し、特に脱窒細菌を包括固定化して窒素の除去
効率を高めた脱窒方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological nitrogen removal method for wastewater, and more particularly to a denitrification method in which denitrifying bacteria are entrapped and immobilized to improve nitrogen removal efficiency.

【0002】[0002]

【従来の技術】廃水の生物学的窒素除去方法として、硝
化反応と脱窒反応とを組み合わせて実施する方法が一般
に採用されている。通常の脱窒細菌は他栄養性細菌であ
るため、脱窒反応を行わせる場合に外部から水素供与体
としてメタノール等の有機炭素源を供給した方が、流入
廃水中の有機物を水素供与体として用いる場合よりも脱
窒速度が高く、且つ全窒素除去率も高い。従って脱窒槽
の容量を縮小できる利点があるが、メタノール等の薬品
代によりランニングコストが高くなってしまうという難
点がある。
2. Description of the Related Art As a biological nitrogen removal method for wastewater, a method of combining a nitrification reaction and a denitrification reaction is generally adopted. Since ordinary denitrifying bacteria are polytrophic bacteria, it is better to supply an organic carbon source such as methanol as a hydrogen donor from the outside when carrying out the denitrification reaction by using the organic matter in the inflowing wastewater as a hydrogen donor. The denitrification rate is higher and the total nitrogen removal rate is higher than when used. Therefore, there is an advantage that the capacity of the denitrification tank can be reduced, but there is a drawback that the running cost becomes high due to the cost of chemicals such as methanol.

【0003】これに対して廃水中の窒素除去の他の例と
して、硫黄補填好気嫌気活性汚泥法が知られている。こ
の方法は脱窒細菌に対する水素供与体として、前記メタ
ノールに代えて粒状の硫黄を、更に炭素源としてNaH
CO3を供給することにより、処理コストの低廉化に成
功している。この方法における脱窒作用は、通常の脱窒
細菌とは異なり、自栄養性の硫黄脱窒細菌が主要な役割
を果たしている。硫黄脱窒反応において、単体の硫黄を
補填した場合の化学量論式は下記の(1)式で表わすこ
とができる。
On the other hand, as another example of nitrogen removal from wastewater, a sulfur-filled aerobic / anaerobic activated sludge method is known. This method uses granular sulfur instead of methanol as a hydrogen donor for denitrifying bacteria, and NaH as a carbon source.
By supplying CO 3 , the processing cost has been successfully reduced. The denitrifying action in this method is different from the normal denitrifying bacteria, and the autotrophic sulfur denitrifying bacteria play a major role. In the sulfur denitrification reaction, the stoichiometric formula when sulfur alone is supplemented can be represented by the following formula (1).

【0004】 1.114S+NO3 -+0.669H2O+0.337CO2+0.0842HC O3 -+0.0842NH4 +→0.0842C572N+0.5N2+1.114 SO4 2-+1.228H+・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1) 他方において、メタン菌を含む汚泥を対象として吸水性
樹脂を用いた包括固定化方法が知られている(例えば水
処理技術Vo1.27.No.9.1986)。この方法はメ
タン菌を含む汚泥に吸水性樹脂(アクリル系合成高分子
樹脂)および炭酸カルシウムを添加して樹脂を吸水膨潤
させると同時に嫌気性微生物菌体を樹脂内部に取り込ま
せ、その後、架橋剤である塩化カルシウム水溶液を加え
て樹脂分子中のカルボキシル基に架橋反応を行い、菌体
を固定させる方法である。この方法において、炭酸カル
シウムは酸に対する中和剤として働き、メタン菌の生育
に適するpH域に保つ効果がある。
1.114S + NO 3 + 0.669H 2 O + 0.337CO 2 + 0.0842HC O 3 + 0.0842NH 4 + → 0.0842C 5 H 7 O 2 N + 0.5N 2 +1.114 SO 4 2− + 1.228H +・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1) On the other hand, methane bacteria A comprehensive immobilization method using a water-absorbent resin for sludge containing water is known (for example, water treatment technology Vo1.27.No. 9.1986). This method involves adding water-absorbent resin (acrylic synthetic polymer resin) and calcium carbonate to sludge containing methane bacteria to absorb water and swell the resin, and at the same time to incorporate anaerobic microbial cells into the resin, and then to crosslink the agent. Is a method of immobilizing bacterial cells by adding a calcium chloride aqueous solution, which is a cross-linking agent, to cross-link the carboxyl groups in the resin molecule. In this method, calcium carbonate acts as a neutralizing agent for the acid and has the effect of maintaining a pH range suitable for the growth of methane bacteria.

【0005】[0005]

【発明が解決しようとする課題】前記硫黄補填好気嫌気
活性汚泥法が開発されてから約10年が経過しているに
も拘わらず、未だに実用化されるに至っていない現状に
ある。その理由として以下の3点が考えられる。
Despite the fact that about 10 years have passed since the development of the sulfur-filled aerobic / anaerobic activated sludge method, it has not yet been put to practical use. There are three possible reasons for this.

【0006】第1の理由として、水素供与体として硫黄
を補填しても期待した程には脱窒速度が大きくならない
ことが挙げられる。即ち、硫黄脱窒反応は硫黄の酸化数
が−2から+4までの還元硫黄であればどれでも水素供
与体として使用することができるが、脱窒速度が最も速
いのはS23 2-イオンである。しかしNa223は脱
窒速度が高い反面、価格的にかなり高価であるという難
点がある。これに対して単体の硫黄は安価であるが、脱
窒速度がS23 2-イオンに比して低いという短所があ
る。従って硫黄脱窒反応における水素供与体として適当
な還元硫黄薬剤がないという現状にある。
The first reason is that the denitrification rate does not increase as expected even if sulfur is supplemented as a hydrogen donor. That is, in the sulfur denitrification reaction, any reduced sulfur having a sulfur oxidation number of −2 to +4 can be used as a hydrogen donor, but the fastest denitrification rate is S 2 O 3 2−. Ion. However, although Na 2 S 2 O 3 has a high denitrification rate, it has a drawback that it is quite expensive in price. On the other hand, elemental sulfur is inexpensive, but has the disadvantage that the denitrification rate is lower than that of S 2 O 3 2− ions. Therefore, there is currently no suitable reduced sulfur chemical agent as a hydrogen donor in the sulfur denitrification reaction.

【0007】第2の理由は、硫黄脱窒細菌は普遍的に存
在する菌であるが、通常の脱窒細菌よりも成長速度がや
や低いことと、硫黄脱窒細菌が浮遊性を有しているた
め、処理効率を上げる際に菌の流出が発生し易く、菌体
の濃度を高めることが困難であるためと考えられる。
The second reason is that sulfur-denitrifying bacteria are ubiquitous bacteria, but they have a slightly lower growth rate than ordinary denitrifying bacteria and that sulfur-denitrifying bacteria have a floating property. Therefore, it is considered that the outflow of bacteria is likely to occur when the treatment efficiency is increased, and it is difficult to increase the concentration of the bacteria.

【0008】通常の脱窒反応は下記の(2)〜(4)式
で表わすことができる。
The usual denitrification reaction can be expressed by the following equations (2) to (4).

【0009】 2NO3 -+10H→N2+4H2O・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2) 2NO2+6H→N2+2H2O+2OH-・・・・・・・・・・・・・・・・・・・・・・(3) N2O+2H→N2+H2O・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(4) 硫黄脱窒細菌の反応速度が遅いことはやむをえないと考
えられるが、菌体の濃度を高めることは、固定化という
手段によって改善の余地がある。例えば前記したように
メタン菌を含む汚泥等の一般的な硝化菌の包括固定化は
標準活性汚泥法処理施設に適用されており、外にも包括
固定化方法には各種の手段が開発されている。しかしこ
れら固定化手段はいずれも大規模に操作することが困難
であったり、固定化材料のコストが高くなる問題を有し
ていて、実際に硫黄脱窒菌を固定化する方法は実用化さ
れていない。
2NO 3 + 10H → N 2 + 4H 2 O ... (2) 2NO 2 + 6H → N 2 + 2H 2 O + 2OH - ······················ (3) N 2 O + 2H → N 2 + H 2 O ············・ ・ ・ ・ ・ ・ ・ ・ ・ (4) It is considered unavoidable that the reaction rate of sulfur denitrifying bacteria is slow, but it is necessary to increase the concentration of cells. Can be improved by means of immobilization. For example, as described above, entrapping immobilization of general nitrifying bacteria such as sludge containing methane bacteria is applied to a standard activated sludge method treatment facility, and various means have been developed for entrapping immobilization methods. There is. However, all of these immobilization means have problems that they are difficult to operate on a large scale and the cost of the immobilization material becomes high.Therefore, a method for actually immobilizing sulfur denitrifying bacteria has been put to practical use. Absent.

【0010】更に第3の理由は、硫黄脱窒には無機炭素
を補給する必要がある点にある。この無機炭素は流入下
水中にアルカリ度として存在しており、従ってアルカリ
度が不足する場合には無機炭素を独自に補給しなければ
ならない。生物学的脱窒法では通常脱窒と組み合わせて
硝化を行うが、この硝化過程においてもアルカリ度が消
費される。つまり硫黄脱窒と硝化による窒素除去処理で
はアルカリ度が一方的に消費されることになり、そのた
め無機炭素を補給することが要求されることが多い。こ
の無機炭素としては、通常NaHCO3が使用される
が、該NaHCO3の使用による薬剤費のアップを無視
することが出来ない。
A third reason is that it is necessary to supplement inorganic carbon for sulfur denitrification. This inorganic carbon exists as an alkalinity in the inflowing sewage, and therefore, when the alkalinity is insufficient, the inorganic carbon must be replenished independently. In the biological denitrification method, nitrification is usually performed in combination with denitrification, but alkalinity is consumed also in this nitrification process. That is, alkalinity is unilaterally consumed in the nitrogen removal treatment by sulfur denitrification and nitrification, and therefore, it is often required to supplement inorganic carbon. As this inorganic carbon, NaHCO 3 is usually used, but the increase in drug cost due to the use of NaHCO 3 cannot be ignored.

【0011】通常の硝化反応は下記の(5)〜(6)式
で表わすことができる。
The usual nitrification reaction can be expressed by the following equations (5) to (6).

【0012】 2NH4 ++3O2→2NO2+2H2O+4H+・・・・・・・・・・・・・・・・(5) 2NO2 -+O2→2NO3 -・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(6) 上記(5)式のアンモニアが亜硝酸に酸化される過程に
おいて水素イオンを生じるので、流入水にアルカリ度が
存在する場合は硝化反応でアルカリ度が消費されるのに
対して、前記脱窒反応では逆にアルカリ度が生成するた
め、廃水のアルカリ度が著しく低い場合以外はアルカリ
剤を補給する必要がない。従って無機炭素の補給に関し
ては、硫黄脱窒反応は通常の脱窒反応に比して明らかに
不利である。
[0012] 2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H + ················ (5) 2NO 2 - + O 2 → 2NO 3 - ······· (6) Since hydrogen ions are generated in the process of the above formula (5) ammonia being oxidized to nitrous acid, When the inflow water has an alkalinity, the nitrification reaction consumes the alkalinity, whereas the denitrification reaction produces an alkalinity on the contrary. There is no need to replenish the drug. Therefore, with respect to the supplementation of inorganic carbon, the sulfur denitrification reaction is obviously disadvantageous as compared with the normal denitrification reaction.

【0013】本発明は上記の事情に鑑みてなされたもの
で、硫黄脱窒細菌の流出を防止することによって脱窒速
度を促進させることができる上、硫黄脱窒反応に必要な
無機炭素を燃焼排ガスのような廃棄物を利用して供給す
ることにより、コストを低廉化することができる廃水の
生物学的窒素除去方法を提供することを目的とするもの
である。
The present invention has been made in view of the above circumstances, and it is possible to accelerate the denitrification rate by preventing the outflow of sulfur denitrifying bacteria, and to burn the inorganic carbon required for the sulfur denitrification reaction. It is an object of the present invention to provide a biological nitrogen removal method for waste water, which can reduce the cost by supplying waste gas such as exhaust gas.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、先ず請求項1により、硫黄脱窒細菌を含
む汚泥に対して、下水汚泥の焼却灰及びこの焼却灰に少
量の酸を添加して一部溶解させた焼却灰懸濁液を添加し
て撹拌混合した後、この混合物に吸水性樹脂を添加して
撹拌混合し、吸水性樹脂を吸水膨潤させると同時に硫黄
脱窒細菌を吸水性樹脂内部に取り込んで包括固定化し、
このように包括固定化された硫黄脱窒細菌を生物学的硝
化硫黄脱窒処理装置に流入して処理する廃水の生物学的
窒素除去方法を提供する。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention firstly sets forth a claim 1 for sludge containing sulfur-denitrifying bacteria, incinerating ash of sewage sludge and a small amount of this incinerated ash. After adding an acid and partially dissolving the incineration ash suspension and stirring and mixing, add water-absorbent resin to this mixture and stir-mix it to absorb water and swell the water-absorbent resin, and at the same time perform sulfur denitrification. Incorporate bacteria into the water-absorbent resin and immobilize them comprehensively.
A method for biological nitrogen removal of wastewater is provided, wherein the entrapped and immobilized sulfur denitrifying bacteria flow into a biological nitrifying sulfur denitrification treatment apparatus for treatment.

【0015】更に請求項2により、前記焼却灰に少量の
NaOH溶液を加えてアルカリ性とし、燃焼排ガス供給
手段から二酸化炭素濃度の高いガスを吹き込むことによ
り、HCO3 -イオンを高濃度で含む重炭酸塩液を調製
し、この重炭酸塩液を硫黄脱窒反応における炭素源とし
て用いた廃水の生物学的窒素除去方法を提供する。
Further, according to claim 2, a small amount of a NaOH solution is added to the incinerated ash to make it alkaline, and a gas having a high carbon dioxide concentration is blown from the combustion exhaust gas supply means, whereby bicarbonate containing HCO 3 ions at a high concentration is added. Provided is a method for biological nitrogen removal of wastewater by preparing a salt solution and using the bicarbonate solution as a carbon source in a sulfur denitrification reaction.

【0016】[0016]

【作用】かかる請求項1の方法によれば、硫黄脱窒細菌
を含む汚泥に、下水汚泥の焼却灰或は焼却灰と酸の懸濁
液を添加混合した後、吸水性樹脂を混合撹拌させること
により、この吸水性樹脂が吸水膨潤するとともに硫黄脱
窒細菌が吸水性樹脂内に取り込まれて包括固定化される
ので、生物学的硝化硫黄脱窒処理装置における硫黄脱窒
細菌の流出が防止され、脱窒速度が促進される。
According to the method of the present invention, incineration ash of sewage sludge or a suspension of incineration ash and an acid is added to sludge containing sulfur denitrifying bacteria, and then the water-absorbent resin is mixed and stirred. As a result, this water absorbent resin absorbs water and swells, and the sulfur denitrifying bacteria are entrapped and immobilized in the water absorbent resin, preventing the outflow of the sulfur denitrifying bacteria in the biological nitrifying sulfur denitrifying treatment equipment. And the denitrification rate is accelerated.

【0017】更に請求項2の方法によれば、焼却灰に少
量のアルカリを加え、燃焼排ガス供給手段から二酸化炭
素濃度の高いガスを吹き込むことにより、HCO3 -イオ
ンを高濃度で含む重炭酸塩液が調製されるので、この重
炭酸塩液を硫黄脱窒反応における炭素源として用いるこ
とができる。
Further, according to the method of claim 2, a small amount of alkali is added to the incinerated ash, and a gas having a high carbon dioxide concentration is blown from the combustion exhaust gas supply means, whereby a bicarbonate containing a high concentration of HCO 3 ions. Since the liquid is prepared, the bicarbonate liquid can be used as a carbon source in the sulfur denitrification reaction.

【0018】[0018]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0019】図1において、1は硫黄脱窒細菌集積培養
汚泥であり、この硫黄脱窒細菌を含む汚泥1m3に対し
て下水汚泥の焼却灰2を1kg及びこの焼却灰に少量の
塩酸(HCl)を添加した焼却灰懸濁液3を添加して撹
拌混合する。次にこの混合物に吸水性樹脂,例えばアク
リル系合成高分子樹脂4(粘度10〜32Mesh)を1k
g添加して約30分撹拌混合することにより、吸水性樹
脂4が吸水膨潤すると同時に硫黄脱窒細菌が吸水性樹脂
4の内部に取り込まれ、該硫黄脱窒菌が包括固定化され
る。
In FIG. 1, 1 is a sulfur-denitrifying bacteria-enriched culture sludge. For 1 m 3 of sludge containing this sulfur-denitrifying bacterium, 1 kg of incinerated ash 2 of sewage sludge and a small amount of hydrochloric acid (HCl) is added to this incinerated ash. ) Is added to the incinerated ash suspension 3 and mixed by stirring. Next, a water absorbent resin, for example, acrylic synthetic polymer resin 4 (viscosity 10 to 32 mesh) is added to this mixture for 1 k.
By adding g and stirring and mixing for about 30 minutes, the water-absorbent resin 4 swells with water, and at the same time, the sulfur denitrifying bacteria are taken into the water-absorbent resin 4, and the sulfur denitrifying bacteria are entrapped and immobilized.

【0020】その後、得られた混合物に清水を流入させ
てこの混合物を洗浄する。このとき洗浄上澄水が清澄に
なり、pHが中性になったところで洗浄を中止すると、
硫黄脱窒細菌が直径が2〜3mmの小球状となって沈降
し、包括固定化される。
Then, fresh water is flowed into the obtained mixture to wash the mixture. At this time, when the washing clear water becomes clear and the washing is stopped when the pH becomes neutral,
Sulfur denitrifying bacteria are settled in the form of small spheres having a diameter of 2 to 3 mm and are entrapped and immobilized.

【0021】上記のようにして得た包括固定化硫黄脱窒
細菌5を、生物学的硝化硫黄脱窒処理装置6に流入して
脱窒処理を行う。この生物学的硝化硫黄脱窒処理装置6
とは、前記した硫黄補填好気嫌気活性汚泥法に基づく脱
窒槽に相当する。
The entrapped immobilized sulfur denitrifying bacterium 5 obtained as described above is introduced into a biological nitrifying sulfur denitrification treatment device 6 to be subjected to denitrification treatment. This biological nitrification and denitrification treatment device 6
Is equivalent to the denitrification tank based on the above-mentioned sulfur-filled aerobic-anaerobic activated sludge method.

【0022】本実施例によれば、吸水性樹脂4が吸水膨
潤した際に硫黄脱窒細菌が該吸水性樹脂4内に取り込ま
れて包括固定化されるので、生物学的硝化硫黄脱窒処理
装置6における硫黄脱窒細菌の流出が防止され、脱窒速
度が促進されるという作用が得られる。
According to this embodiment, when the water-absorbent resin 4 absorbs water and swells, the sulfur denitrifying bacteria are taken into the water-absorbent resin 4 and are entrapped and immobilized. The effect that the outflow of sulfur denitrifying bacteria in the device 6 is prevented and the denitrification rate is accelerated is obtained.

【0023】上記実施例中に示した包括固定化を行う材
料の中で、吸水性樹脂以外の材料コストはほとんど無視
できるので、本実施例は他の包括固定化法よりも低コス
トで達成可能であるという特徴を有している。
Among the materials for entrapping immobilization shown in the above examples, the cost of materials other than the water-absorbent resin can be neglected, so this example can be achieved at a lower cost than other entrapping immobilization methods. It has the feature of being

【0024】尚、焼却灰2としては塩化第二鉄および消
石灰を脱水助剤として添加したものを用いることが望ま
しい。焼却灰2の組成の一例を表1に示す。
As the incineration ash 2, it is preferable to use ferric chloride and slaked lime added as a dehydration aid. Table 1 shows an example of the composition of the incineration ash 2.

【0025】[0025]

【表1】 [Table 1]

【0026】上記のように組成された焼却灰に少量の酸
を添加すると、吸水性樹脂の架橋剤である塩化カルシウ
ムの代用が可能となる。また、焼却灰はカルシウム分が
多いことから包括固定化菌体に取り込まれることによ
り、酸に対する中和剤である炭酸カルシウムの代用にも
なる。
When a small amount of acid is added to the incineration ash having the above composition, it becomes possible to substitute calcium chloride, which is a cross-linking agent for the water absorbent resin. Further, since the incinerated ash has a high calcium content, it is taken in by the entrapping immobilization microbial cells, and thus it can be used as a substitute for calcium carbonate, which is a neutralizing agent for acids.

【0027】更に本発明では、硫黄脱窒反応を促進する
ために必要とする炭素源を得るため、以下に述べる方法
を実施した。即ち、硫黄脱窒反応には還元硫黄以外に無
機炭素を供給する必要があるが、この無機炭素の供給方
法として、前記焼却灰に少量のNaOH溶液を加えてア
ルカリ性とし、汚泥焼却炉廃ガス或は汚泥嫌気性硝化槽
から発生する硝化ガスの燃焼によって生じる廃ガス等の
二酸化炭素濃度の高いガスを吹き込むことにより、HC
3 -イオンを高濃度で含む重炭酸塩液を製造し、この重
炭酸塩液を硫黄脱窒反応における炭素源とする。
Further, in the present invention, the method described below was carried out in order to obtain the carbon source required for promoting the sulfur denitrification reaction. That is, in the sulfur denitrification reaction, it is necessary to supply inorganic carbon in addition to reduced sulfur. As a method of supplying this inorganic carbon, a small amount of NaOH solution is added to the incineration ash to make it alkaline, and sludge incinerator waste gas or Is blown with gas with high carbon dioxide concentration such as waste gas generated by combustion of nitrifying gas generated from sludge anaerobic nitrification tank,
A bicarbonate solution containing a high concentration of O 3 ions is produced, and this bicarbonate solution is used as a carbon source in the sulfur denitrification reaction.

【0028】図2は上記無機炭素を供給した硫黄脱窒方
法を示す概要図であり、11は重炭酸塩液調製槽、12
は撹拌機、13は焼却灰供給手段、14はNaOH供給
手段、15は燃焼排ガス供給手段、16は硫黄脱窒槽又
は最初沈澱池である。
FIG. 2 is a schematic view showing the sulfur denitrification method in which the above-mentioned inorganic carbon is supplied, 11 is a bicarbonate liquid preparation tank, and 12 is
Is a stirrer, 13 is an incineration ash supply means, 14 is a NaOH supply means, 15 is a combustion exhaust gas supply means, and 16 is a sulfur denitrification tank or a first settling tank.

【0029】かかる構成によれば、重炭酸塩液調製槽1
1内に焼却灰供給手段13から下水汚泥の焼却灰を加え
ると同時にNaOH供給手段14からNaOHを加え、
撹拌機12により撹拌しながら燃焼排ガス供給手段15
からCO2を高濃度に含むガスをバブリングすることに
より、HCO3 -イオンを高濃度に含有する液が生成され
る。この液が硫黄脱窒槽又は最初沈澱池16に供給され
て、硫黄脱窒反応を促進する無機炭素として用いられ
る。
According to this structure, the bicarbonate liquid preparation tank 1
In addition to the incineration ash of the sewage sludge from the incineration ash supply means 13 in 1 at the same time NaOH from the NaOH supply means 14
Combustion exhaust gas supply means 15 while stirring by the stirrer 12.
By bubbling a gas containing a high concentration of CO 2 from the above, a liquid containing a high concentration of HCO 3 ions is generated. This liquid is supplied to the sulfur denitrification tank or the first settling tank 16 and used as inorganic carbon for promoting the sulfur denitrification reaction.

【0030】又、焼却灰に豊富に含まれているカルシウ
ム分の化学変化は以下の反応式で表わされる。
Further, the chemical change of the calcium content abundantly contained in the incinerated ash is represented by the following reaction formula.

【0031】 CaO+2H2O→Ca(OH)2・・・・・・・・・・・・・・・・・・・・・・・・・・(7) Ca(OH)2+CO2→CaCO3+H2O・・・・・・・・・・・・・・・・・・(8) CaCO3+H2O+CO2→Ca(HCO32・・・・・・・・・・・・・・・(9) 上記のCaCO3は難溶性であるが、CO2を過剰に吹き
込むことにより、水に可溶性の炭酸水素カルシウムとな
り、硫黄脱窒反応に必要とされる無機炭素の供給手段と
して使用し得る程度のHCO3 -イオン濃度にすることが
できる。
CaO + 2H 2 O → Ca (OH) 2 (7) Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O ··· (8) CaCO 3 + H 2 O + CO 2 → Ca (HCO 3 ) 2 ···· (9) The CaCO 3 is sparingly soluble, but by blowing excessive CO 2 , it becomes water-soluble calcium hydrogen carbonate, which serves as a means for supplying inorganic carbon required for sulfur denitrification reaction. The HCO 3 ion concentration can be set to a level that can be used.

【0032】更に本実施例によれば、前記焼却灰に含ま
れているCaO,Ca(OH)2,CaCO3及びCa
(HCO32等による酸中和作用により、アルカリ度が
低い廃水についても硫黄脱窒細菌の最適成育pHが維持
され、硫黄脱窒反応と組み合わせた硝化過程においても
pHの低下が防止されて硝化率を高めるという効果が得
られ、それに伴って全窒素除去率を高めることができ
る。
Further, according to this embodiment, CaO, Ca (OH) 2 , CaCO 3 and Ca contained in the incineration ash are included.
Due to the acid neutralizing action of (HCO 3 ) 2 etc., the optimum growth pH of sulfur denitrifying bacteria is maintained even in wastewater with low alkalinity, and the pH is prevented from lowering even in the nitrification process combined with the sulfur denitrification reaction. The effect of increasing the nitrification rate is obtained, and the total nitrogen removal rate can be increased accordingly.

【0033】[0033]

【発明の効果】以上詳細に説明したように、本発明によ
れば、吸水性樹脂が吸水膨潤された際に硫黄脱窒細菌が
該吸水性樹脂内に取り込まれて包括固定化されるので、
生物学的硝化硫黄脱窒処理装置における硫黄脱窒細菌の
流出が防止され、脱窒速度を促進することができる。し
かも包括固定化菌体に取り囲まれた焼却灰の酸中和作用
によって、アルカリ度が低い廃水の場合でも硝化菌の最
適生育pHが維持できて、硝化率の向上をはかることが
できる。
As described in detail above, according to the present invention, when the water-absorbent resin is swollen by water absorption, sulfur denitrifying bacteria are incorporated into the water-absorbent resin and entrapped and immobilized.
The outflow of sulfur denitrifying bacteria in the biological nitrifying sulfur denitrification treatment device can be prevented, and the denitrification rate can be accelerated. Moreover, the acid neutralization effect of the incineration ash surrounded by the entrapping immobilization cells can maintain the optimum growth pH of the nitrifying bacteria even in the case of waste water having low alkalinity, and can improve the nitrification rate.

【0034】又、焼却灰に少量のアルカリを加え、燃焼
排ガス供給手段から二酸化炭素濃度の高いガスを吹き込
むことにより、HCO3 -イオンを高濃度で含む重炭酸塩
液が調製されるので、この重炭酸塩液を硫黄脱窒反応に
おける炭素源として用いることができる。従って硫黄脱
窒反応に必要な無機炭素を燃焼排ガスのような廃棄物を
利用して供給することが可能となり、高価な薬剤を用い
る必要がなく、コストの低廉化がはかれるという効果を
発揮する。
Since a small amount of alkali is added to the incinerated ash and a gas having a high carbon dioxide concentration is blown from the combustion exhaust gas supply means, a bicarbonate solution containing a high concentration of HCO 3 ions is prepared. The bicarbonate solution can be used as a carbon source in the sulfur denitrification reaction. Therefore, it becomes possible to supply the inorganic carbon necessary for the sulfur denitrification reaction by utilizing waste such as combustion exhaust gas, and it is not necessary to use an expensive chemical agent, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するチャート図。FIG. 1 is a chart illustrating an embodiment of the present invention.

【図2】本発明の他の実施例として無機炭素を供給した
脱窒方法を示す概要図。
FIG. 2 is a schematic diagram showing a denitrification method in which inorganic carbon is supplied as another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…硫黄脱窒細菌集積培養汚泥、2…焼却灰、3…焼却
灰懸濁液、4…吸水性樹脂、5…包括固定化硫黄脱窒細
菌、6…生物学的硝化硫黄脱窒処理装置、11…重炭酸
塩液調製槽、12…撹拌機、13…焼却灰供給手段、1
4…NaOH供給手段、15…燃焼排ガス供給手段、1
6…硫黄脱窒槽(又は最初沈澱池)。
DESCRIPTION OF SYMBOLS 1 ... Sulfur denitrifying bacteria accumulated culture sludge, 2 ... Incinerated ash, 3 ... Incinerated ash suspension, 4 ... Water absorbing resin, 5 ... Entrapping immobilization sulfur denitrifying bacteria, 6 ... Biological nitrification sulfur denitrification treatment equipment , 11 ... Bicarbonate solution preparation tank, 12 ... Stirrer, 13 ... Incineration ash supply means, 1
4 ... NaOH supply means, 15 ... combustion exhaust gas supply means, 1
6 ... Sulfur denitrification tank (or first settling tank).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硫黄脱窒細菌を含む汚泥に対して、下水
汚泥の焼却灰及びこの焼却灰に少量の酸を添加して一部
溶解させた焼却灰懸濁液を添加して撹拌混合した後、こ
の混合物に吸水性樹脂を添加して撹拌混合し、この吸水
性樹脂を吸水膨潤させると同時に硫黄脱窒細菌を吸水性
樹脂内部に取り込んで包括固定化し、このように包括固
定化された硫黄脱窒細菌を生物学的硝化硫黄脱窒処理装
置に流入して処理することを特徴とする廃水の生物学的
窒素除去方法。
1. An incinerator ash of sewage sludge and an incinerated ash suspension obtained by partially dissolving a small amount of acid in the incinerator ash are added to and mixed with sludge containing sulfur-denitrifying bacteria. After that, a water-absorbent resin was added to this mixture and mixed by stirring, and at the same time the water-absorbent resin was swollen by water absorption and at the same time, the sulfur denitrifying bacteria were incorporated into the water-absorbent resin to be entrapped and immobilized, and thus entrapped and immobilized. A biological nitrogen removal method for wastewater, which comprises treating sulfur denitrifying bacteria by flowing them into a biological nitrifying sulfur denitrification treatment device.
【請求項2】 前記焼却灰に少量のNaOH溶液を加え
てアルカリ性とし、更に燃焼排ガス供給手段から二酸化
炭素濃度の高いガスを吹き込むことにより、HCO3 -
オンを高濃度で含む重炭酸塩液を調製し、この重炭酸塩
液を硫黄脱窒反応における炭素源として用いたことを特
徴とする請求項1記載の廃水の生物学的窒素除去方法。
2. A bicarbonate solution containing a high concentration of HCO 3 ions is obtained by adding a small amount of a NaOH solution to the incinerated ash to make it alkaline and blowing a gas having a high carbon dioxide concentration from a combustion exhaust gas supply means. The biological nitrogen removing method according to claim 1, wherein the prepared bicarbonate solution is used as a carbon source in a sulfur denitrification reaction.
JP3306466A 1991-11-22 1991-11-22 Mehtod for biologically removing nitrogen in waste water Pending JPH05138193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306466A JPH05138193A (en) 1991-11-22 1991-11-22 Mehtod for biologically removing nitrogen in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306466A JPH05138193A (en) 1991-11-22 1991-11-22 Mehtod for biologically removing nitrogen in waste water

Publications (1)

Publication Number Publication Date
JPH05138193A true JPH05138193A (en) 1993-06-01

Family

ID=17957357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306466A Pending JPH05138193A (en) 1991-11-22 1991-11-22 Mehtod for biologically removing nitrogen in waste water

Country Status (1)

Country Link
JP (1) JPH05138193A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015311A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Denitrifying bacteria-containing nitrate nitrogen treatment material and production method therefor
JP2006320844A (en) * 2005-05-19 2006-11-30 Japan Organo Co Ltd Method and apparatus for treating waste water
JP4735256B2 (en) * 2003-02-21 2011-07-27 栗田工業株式会社 Ammonia nitrogen-containing water treatment method
CN105492394A (en) * 2013-07-08 2016-04-13 得利满公司 Method and equipment for the biological denitrification of waste water
JPWO2023068295A1 (en) * 2021-10-21 2023-04-27

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735256B2 (en) * 2003-02-21 2011-07-27 栗田工業株式会社 Ammonia nitrogen-containing water treatment method
JP2006015311A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Denitrifying bacteria-containing nitrate nitrogen treatment material and production method therefor
JP4593183B2 (en) * 2004-07-05 2010-12-08 新日鐵化学株式会社 Nitrate-containing nitrogen-treated material containing denitrifying bacteria and method for producing the same
JP2006320844A (en) * 2005-05-19 2006-11-30 Japan Organo Co Ltd Method and apparatus for treating waste water
CN105492394A (en) * 2013-07-08 2016-04-13 得利满公司 Method and equipment for the biological denitrification of waste water
JPWO2023068295A1 (en) * 2021-10-21 2023-04-27
WO2023068295A1 (en) * 2021-10-21 2023-04-27 伊藤忠商事株式会社 Bioprocess, method for cultivating microbes, method for producing target substance, and bioprocess device

Similar Documents

Publication Publication Date Title
TWI248918B (en) Method for treating water containing ammonium-nitrogen
CN110639358B (en) Resource process for synchronously removing VOCs, sulfides and ammonia sulfur in waste gas by chemical coupling and biology
JP2006122771A (en) Fluid treatment method and fluid treatment system
CN1354143A (en) Method for simultaneously removing nitrogen and phosphorus in wastewater
US5350516A (en) Control of odor and septicity and purification of sewage and wastewater
JP3732025B2 (en) Waste water treatment method and waste water treatment equipment
CN104801166A (en) Method and device for cooperative flue gas desulfurization and sewage organic matter degradation and denitrification
Dezham et al. Digester gas control using iron salts
JPS5998717A (en) Deodorizing method and apparatus utilizing bacteria
JPH06343994A (en) Treatment process for digested sludge dehydrated filtrate
JPH05138193A (en) Mehtod for biologically removing nitrogen in waste water
JPH09108690A (en) Treatment of phosphorus containing sewage
JP2001179295A (en) Method and apparatus for treating sewage
JP2000189995A (en) Method and device for removing nitrogen in waste water
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
JPH0929280A (en) Wastewater treatment method
JP3799557B2 (en) Wastewater treatment method
JPH0568849A (en) Method and device for desulfurizing digestion gas
JPH09187793A (en) Purifying method of waste water and the like
JP2007125484A (en) Nitrogen-containing wastewater treatment method
CN114620907A (en) Autotrophic deep denitrification method for producing hydrogen sulfide by using sludge
JPS6038095A (en) Treatment of organic sewage
JP2001252690A (en) Nitrite forming method
US8997694B2 (en) Microbial mediated chemical sequestering of phosphate in a closed-loop recirculating aquaculture system
JP2002079294A (en) Biological desulfurization method and apparatus