JPH05137725A - Ultrasonic doppler blood flow quantity monitor - Google Patents

Ultrasonic doppler blood flow quantity monitor

Info

Publication number
JPH05137725A
JPH05137725A JP30196391A JP30196391A JPH05137725A JP H05137725 A JPH05137725 A JP H05137725A JP 30196391 A JP30196391 A JP 30196391A JP 30196391 A JP30196391 A JP 30196391A JP H05137725 A JPH05137725 A JP H05137725A
Authority
JP
Japan
Prior art keywords
blood flow
flow quantity
ultrasonic
blood
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30196391A
Other languages
Japanese (ja)
Other versions
JPH0716490B2 (en
Inventor
Shigeru Akamatsu
繁 赤松
Yuji Kondo
祐司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP30196391A priority Critical patent/JPH0716490B2/en
Priority to US07/964,549 priority patent/US5339816A/en
Priority to EP92118201A priority patent/EP0538885B1/en
Priority to DE69229802T priority patent/DE69229802T2/en
Priority to DE69228974T priority patent/DE69228974T2/en
Priority to EP95107631A priority patent/EP0670146B1/en
Publication of JPH05137725A publication Critical patent/JPH05137725A/en
Publication of JPH0716490B2 publication Critical patent/JPH0716490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the blood flow quantity monitor which can measure continuously the blood flow quantity, based on the blood flow quantity by a heat dilution method as a reference. CONSTITUTION:In a catheter 1 inserted into a blood vessel, plural ultrasonic vibrators are provided, and based on ultrasonic signals transmitted and received by these vibrators, the blood flow quantity is calculated continuously in an ultrasonic Doppler blood flow quantity measuring part 3, and also, in addition thereto, the blood flow quantity is calculated by a heat dilution method blood flow quantity measuring part 2. By the blood flow quantity derived by this heat dilution method, the blood flow quantity derived by the ultrasonic signal is calibrated. In such a way, by calculating continuously the blood flow quantity, based on the ultrasonic signal, a heart function is monitored with the same effect as the blood flow quantity is measured continuously by the heat dilution method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波振動子を備えた
カテーテルを血管内に挿入し、血流に対し超音波を送受
信し、得られた超音波ドプラ信号に基づき血流量を算出
する血流量監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention inserts a catheter equipped with an ultrasonic transducer into a blood vessel, transmits and receives ultrasonic waves to and from a blood flow, and calculates the blood flow based on the obtained ultrasonic Doppler signal. The present invention relates to a blood flow monitoring device.

【0002】[0002]

【従来の技術】近年、医療技術の発達により、従来外科
的治療が困難であった疾病などに対しても手術が可能と
なり、治療ができるようになってきている。そして、こ
のような複雑な手術は、その所要時間が長くなる傾向が
あり、この長い手術中適確な心機能のモニタを行い、患
者の容体を随時把握することは手術者にとって非常に重
要なことである。
2. Description of the Related Art In recent years, due to the development of medical technology, it has become possible to perform surgery and to treat diseases and the like which were conventionally difficult to treat surgically. Moreover, such complicated surgery tends to take a long time, and it is very important for the surgeon to monitor the cardiac function appropriately during the long operation and grasp the patient's condition at any time. That is.

【0003】現在、手術中及び手術後の心機能のモニタ
としては、熱希釈法により心拍出量を求めるのが一般的
となっている。熱希釈法は頸静脈や大腿静脈よりカテー
テルを挿入し、カテーテル先端部を大静脈、右心房、右
心室を通し、肺動脈まで到達させる。そして、このカテ
ーテルより右心房内に冷水を注入し、肺動脈内の血液の
温度をカテーテルに備えられた温度センサによって検出
し、この温度の経時変化から心拍出量を算出する方法で
ある。このように熱希釈法は血液に冷水を注入する方法
であるため、冷水注入時、瞬時の心拍出量を計測するこ
ととなり、心拍出量を連続的に計測することはできな
い。
At present, as a monitor of cardiac function during and after surgery, it is general to determine the cardiac output by the thermodilution method. In the thermodilution method, a catheter is inserted through the jugular vein or femoral vein, and the catheter tip is passed through the vena cava, right atrium, and right ventricle to reach the pulmonary artery. Then, cold water is injected into the right atrium through this catheter, the temperature of blood in the pulmonary artery is detected by a temperature sensor provided in the catheter, and the cardiac output is calculated from the change over time of this temperature. As described above, since the thermodilution method is a method of injecting cold water into blood, it means that the instantaneous cardiac output is measured during the injection of cold water, and the cardiac output cannot be continuously measured.

【0004】しかし、患者管理において実際欲しい情報
は随時の心機能データであり、連続的にこれをモニタで
きれば更に良い。この点において、冷水注入時の心拍出
量しか測定できない熱希釈法は、満足できる方法ではな
い。つまり、熱希釈法においては手術中の患者の容体の
急変を即座に検知することができず、対応が遅れてしま
う場合があった。
However, the information actually desired in patient management is the cardiac function data at any time, and it is more preferable if this can be continuously monitored. In this respect, the thermodilution method, which can measure only cardiac output during cold water injection, is not a satisfactory method. In other words, in the thermodilution method, a sudden change in the patient's condition during surgery cannot be detected immediately, and the response may be delayed.

【0005】このような熱希釈法の問題点を改善し、連
続的に心機能をモニタする装置を、CARDIOMET
ORICS社は開発している。この装置は DOPCO
M/FLOWCATHと呼ばれ、肺動脈に、超音波ドプ
ラ振動子を備えたカテーテルを挿入し、受信された超音
波ドプラ信号に基づき、血管内径及び血流速度を測定す
ることにより血流量すなわち心拍出量を求め、これによ
って心機能のモニタを行うものである。図7(A)、
(B)にこの装置のカテーテル50の要部を示す。第1
超音波振動子51は血流方向に対し所定の角度をもって
超音波を送受信するよう配置され、第2超音波振動子5
2及び第3超音波振動子53はカテーテル50に対し直
角方向で互いに反対の向きに超音波を送受信するように
配置されている。この装置においては、一方向のみの超
音波ドプラ信号に基づき血流速度を求めている。すなわ
ち、第1超音波振動子51より送受信された超音波のド
プラ周波数偏移よりこの超音波送受方向の速度成分(v
α)を算出し、更に超音波の血流方向に対する入射角
(α)により補正を行い血流速度の絶対値(v)を算出
している。ただし、ここでカテーテルは血流方向に平行
に配置され、超音波の入射角(α)は第1振動子51の
カテーテルに対する設置角に等しいとしている。式で示
すと次式となる。
A device for improving the above problems of the thermodilution method and continuously monitoring the heart function is provided by CARDIOMET.
ORICS is developing it. This device is DOPCO
It is called M / FLOWCATH, and a catheter equipped with an ultrasonic Doppler transducer is inserted into the pulmonary artery, and based on the received ultrasonic Doppler signal, the blood vessel volume or cardiac output is measured by measuring the blood vessel inner diameter and the blood flow velocity. The amount is obtained, and thereby the cardiac function is monitored. FIG. 7 (A),
The main part of the catheter 50 of this device is shown in FIG. First
The ultrasonic transducer 51 is arranged so as to transmit and receive ultrasonic waves at a predetermined angle with respect to the blood flow direction.
The second and third ultrasonic transducers 53 are arranged so as to transmit and receive ultrasonic waves in directions perpendicular to the catheter 50 and opposite to each other. In this device, the blood flow velocity is calculated based on the ultrasonic Doppler signal in only one direction. That is, from the Doppler frequency shift of the ultrasonic waves transmitted and received by the first ultrasonic transducer 51, the velocity component (v
α 2 ) is calculated and further corrected by the incident angle (α) of the ultrasonic wave with respect to the blood flow direction to calculate the absolute value (v) of the blood flow velocity. However, here, the catheter is arranged parallel to the blood flow direction, and the incident angle (α) of the ultrasonic waves is equal to the installation angle of the first transducer 51 with respect to the catheter. The following equation is given by the equation.

【0006】v=vα× cosα また、第2振動子52と第3振動子53によって超音波
を送受信し、血管内壁91までの距離d1 ,d2 を測定
する。血管内径(D)は前記d1 ,d2 及び第2振動子
52と第3振動子53の間隔d0 の和である。
V = v α × cos α Also, ultrasonic waves are transmitted and received by the second oscillator 52 and the third oscillator 53, and the distances d 1 and d 2 to the inner wall 91 of the blood vessel are measured. The blood vessel inner diameter (D) is the sum of the above d 1 and d 2 and the distance d 0 between the second oscillator 52 and the third oscillator 53.

【0007】D=d1 +d2 +d0 これより血管断面積(A)を算出する。以上、求められ
た断面積(A)と血流速度(v)との積として血流量
(Q)を算出し、これをもって心機能のモニタを行う。
D = d 1 + d 2 + d 0 From this, the blood vessel cross-sectional area (A) is calculated. As described above, the blood flow rate (Q) is calculated as the product of the obtained cross-sectional area (A) and the blood flow velocity (v), and the heart function is monitored using this.

【0008】A=πD2 /4 Q=v×A[0008] A = πD 2/4 Q = v × A

【0009】[0009]

【発明が解決しようとする課題】前述のようにDOPC
OM/FLOWCATH装置においては、カテーテル5
0の向きは血流方向(v)と平行に配置されていると仮
定して血流速度を算出し、そして測定された血管壁間の
距離が血管直径であるとして血流量の算出を行う。しか
しながら、血管の屈曲部の影響を受ける場合など、血流
方向(v)とカテーテル50の方向が必ずしも平行とな
るとは限らない。この場合の状態を図8に示す。また、
血管壁間の距離もカテーテル50が血管の中央部になく
偏っていた場合など、血管直径を測定できるとは限ら
ず、更に血管の断面形状が円であるとも限らない。カテ
ーテル50が血管の中央部になく、偏っている状態を図
9に示す。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the OM / FLOWCATH device, the catheter 5
The blood flow velocity is calculated assuming that the direction of 0 is arranged parallel to the blood flow direction (v), and the blood flow rate is calculated assuming that the measured distance between blood vessel walls is the blood vessel diameter. However, the blood flow direction (v) and the direction of the catheter 50 are not always parallel, such as when affected by the bent portion of the blood vessel. The state in this case is shown in FIG. Also,
The distance between the blood vessel walls is not always able to measure the blood vessel diameter when the catheter 50 is not located in the center of the blood vessel, and the blood vessel cross-sectional shape is not necessarily circular. FIG. 9 shows a state in which the catheter 50 is not located in the center of the blood vessel and is biased.

【0010】このように、血流方向(v)とカテーテル
50の方向が一定でないと、超音波の入射角(α)も一
定とはならず、これに基づき算出された血流速度(v)
は誤差を含むことになる。また、カテーテル50が偏っ
た場合、血管内径も実際の内径(D)より小さな値(D
1 )を測定してしまい、これより算出される断面積
(A)も誤差を含んでしまう。従って、血流速度(v)
と血管断面積(A)の積として求めている血流量(Q)
も誤差を含む。
As described above, if the direction of blood flow (v) and the direction of the catheter 50 are not constant, the incident angle (α) of ultrasonic waves will not be constant, and the blood flow velocity (v) calculated based on this will not be constant.
Will include an error. When the catheter 50 is biased, the inner diameter of the blood vessel is smaller than the actual inner diameter (D) (D
1 ) is measured, and the cross-sectional area (A) calculated from this also contains an error. Therefore, blood flow velocity (v)
Blood flow (Q) calculated as the product of blood vessel cross-sectional area (A)
Also includes an error.

【0011】更に、現在得られている臨床データは熱希
釈法により得られたデータが大部分であり、DOPCO
M/FLOWCATH装置による臨床データはまだ少な
く、実際に手術の際に用いるには信頼性が十分ではな
い。
Further, most of the clinical data obtained at present are those obtained by the thermodilution method, and DOPCO
The clinical data from the M / FLOWCATH device are still small and not reliable enough for practical use during surgery.

【0012】以上のように、DOPCOM/FLOWC
ATH装置による血流量測定において、 (イ)算出される血流速度、血管断面積が誤差を含み、
これより算出される血流量の精度は十分ではない。 (ロ)この装置における血流量測定の臨床データはまだ
少なく、手術中の心機能のモニタとして十分なデータの
蓄積量を得るには至っていない。 という問題がある。
As described above, DOPCOM / FLOWC
In blood flow measurement with an ATH device, (a) the calculated blood flow velocity and blood vessel cross-sectional area include errors,
The accuracy of the blood flow calculated from this is not sufficient. (B) The clinical data for blood flow measurement with this device are still small, and it has not been possible to obtain a sufficient amount of accumulated data as a monitor of cardiac function during surgery. There is a problem.

【0013】本発明は、前記問題点を解決するためにな
されたものであり、熱希釈法による血流量を基準として
連続的に血流量を測定できる血流量監視装置を供給する
ことを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a blood flow monitoring device capable of continuously measuring the blood flow based on the blood flow by the thermodilution method. ..

【0014】[0014]

【課題を解決するための手段】本発明に係る装置は、所
定の時間間隔をもって熱希釈法により血流量を測定する
血流量測定部と、超音波ドプラ信号に基づき連続的に血
流量を測定する超音波ドプラ血流量測定部と、前記熱希
釈法により測定された血流量により前記ドプラ信号より
測定された血流量を較正しこの較正された基準血流量と
前記連続的に測定された超音波ドプラ信号に基づく血流
量とを比較することにより、連続的に熱希釈法により測
定したと等価の血流量を算出する血流量補正部とを有す
ることを特徴とする。
An apparatus according to the present invention is a blood flow measuring unit for measuring a blood flow by a thermodilution method at a predetermined time interval, and a blood flow is continuously measured based on an ultrasonic Doppler signal. An ultrasonic Doppler blood flow measuring unit, calibrates the blood flow measured from the Doppler signal by the blood flow measured by the thermodilution method, and calibrates the calibrated reference blood flow and the continuously measured ultrasonic Doppler. A blood flow correction unit for calculating a blood flow equivalent to that continuously measured by the thermodilution method by comparing the blood flow based on the signal.

【0015】また、本発明に係る装置は、所定の時間間
隔をもって熱希釈法により血流量を測定する血流量測定
部と、超音波ドプラ信号に基づき連続的に血流速度を測
定する超音波ドプラ血流速度測定部と、前記熱希釈法に
より測定された血流量と前記超音波ドプラ信号より測定
された血流速度とからこれらの関係を示す係数を算出
し、この係数と前記超音波ドプラ信号により連続的に測
定された血流速度とから、連続的に血流量を算出する熱
希釈法により測定したと等価の血流量算出部とを有する
ことを特徴とする。
Further, the apparatus according to the present invention comprises a blood flow measuring unit for measuring a blood flow by a thermodilution method at a predetermined time interval, and an ultrasonic Doppler for continuously measuring a blood flow velocity based on an ultrasonic Doppler signal. A blood flow velocity measurement unit, a coefficient indicating these relationships is calculated from the blood flow rate measured by the thermodilution method and the blood flow velocity measured by the ultrasonic Doppler signal, and the coefficient and the ultrasonic Doppler signal are calculated. And a blood flow rate calculating section equivalent to a blood flow rate continuously measured by the thermodilution method for continuously calculating the blood flow rate.

【0016】[0016]

【作用】超音波ドプラ信号に基づき算出された血流量を
熱希釈法により求められた血流量によって較正すること
により、熱希釈法を基準とした血流量の測定を連続的に
行う。これによって、手術中及び手術後の心機能の監視
を連続的に行うことが可能となる。
The blood flow rate calculated based on the ultrasonic Doppler signal is calibrated by the blood flow rate obtained by the thermodilution method, so that the blood flow rate is continuously measured based on the thermodilution method. This allows continuous monitoring of cardiac function during and after surgery.

【0017】また、超音波ドプラ信号に基づき算出され
た血流速度と熱希釈法により求められた血流速度とを比
較し、これらの関係を示す係数を求める。そして、連続
的に血流速度を測定することにより、熱希釈法をによる
血流量の測定を連続的に行ったと同様の測定結果を得
る。これによって、手術中及び手術後の心機能の監視を
連続的に行うことが可能となる。
Further, the blood flow velocity calculated based on the ultrasonic Doppler signal is compared with the blood flow velocity obtained by the thermodilution method, and the coefficient showing the relationship between them is obtained. Then, by continuously measuring the blood flow velocity, the same measurement result as that obtained by continuously measuring the blood flow volume by the thermodilution method is obtained. This allows continuous monitoring of cardiac function during and after surgery.

【0018】[0018]

【実施例】以下、本発明の好適な実施例を図面を用いて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0019】図1は第1の実施例の全体構成を示す図で
ある。1は血管内に挿入するカテーテルである。装置本
体には前記カテーテル1から送出される信号を基に血流
量を算出する熱希釈法血流量測定部2、超音波ドプラ血
流量測定部3が備えられ、更にこれらの両血流量測定部
2,3により算出された血流量を比較し補正を行う血流
量補正部8、補正された血流量が所定値以下となった場
合警報を発するように警報器11に指示する判定部1
0、血流量を表示する表示部9を備えている。前記超音
波ドプラ血流量測定部3は、血管断面積測定部4と血流
速度測定部5と超音波ドプラ血流量算出部6とを含んで
いる。心拍数検出部7は、患者に取り付けられた心電電
極により心拍を検知し、この心拍信号を血流速度測定部
5及び熱希釈法血流量測定部2に送出する。
FIG. 1 is a diagram showing the overall construction of the first embodiment. Reference numeral 1 is a catheter to be inserted into a blood vessel. The apparatus main body is provided with a thermodilution method blood flow measuring unit 2 and an ultrasonic Doppler blood flow measuring unit 3 for calculating the blood flow based on the signal sent from the catheter 1, and both blood flow measuring units 2 , 3 for comparing and correcting the blood flow rates calculated by 3 and 3, the determination section 1 for instructing the alarm device 11 to issue an alarm when the corrected blood flow rate is below a predetermined value.
0 is provided with a display unit 9 for displaying the blood flow rate. The ultrasonic Doppler blood flow measuring unit 3 includes a blood vessel cross-sectional area measuring unit 4, a blood flow velocity measuring unit 5, and an ultrasonic Doppler blood flow calculating unit 6. The heart rate detecting unit 7 detects a heartbeat by an electrocardiographic electrode attached to the patient, and sends this heartbeat signal to the blood flow velocity measuring unit 5 and the thermodilution blood flow measuring unit 2.

【0020】図2は、カテーテル1の先端部の詳細を示
した図である。21,22は血流速度を測定するための
超音波振動子であり、血流に対し各々異なった入射角を
有するようにカテーテル1上に配置されている。23,
24は血管内壁の間隔を測定するための超音波振動子で
あり、カテーテル1の軸に直交する方向で、かつ互いに
反対方向に超音波を送信するように配置されている。2
5は熱希釈法により血流量を測定するとき右心房内に冷
水を注入する注水孔であり、26は肺動脈内の血液の温
度をサーミスタにより検出する温度検出部である。27
はカテーテル1を血流に乗せて右心房を通り肺動脈まで
送るバルーンである。
FIG. 2 is a view showing the details of the distal end portion of the catheter 1. Reference numerals 21 and 22 denote ultrasonic transducers for measuring the blood flow velocity, which are arranged on the catheter 1 so as to have different incident angles with respect to the blood flow. 23,
Reference numeral 24 is an ultrasonic transducer for measuring the distance between the inner walls of blood vessels, and is arranged so as to transmit ultrasonic waves in directions orthogonal to the axis of the catheter 1 and in directions opposite to each other. Two
Reference numeral 5 is a water injection hole for injecting cold water into the right atrium when measuring the blood flow by the thermodilution method, and 26 is a temperature detection unit for detecting the temperature of blood in the pulmonary artery with a thermistor. 27
Is a balloon that carries the catheter 1 on the bloodstream and sends it through the right atrium to the pulmonary artery.

【0021】このバルーン27はゴムなどの伸縮性のあ
る材料から成り、通常はカテーテル1と密着している
が、他端より管を通して液体(例えば生理食塩水)を注
入すると膨らみ図に示すようにカテーテル1先端の一部
にカテーテル1の径より太い部分を形成する。カテーテ
ル1の先端部を静脈内に挿入し、前述のようにバルーン
を膨らませると、カテーテル1が大静脈92の血流に乗
って心臓に送られ右心房93、右心室94を通り肺動脈
95まで達する。そして、バルーン内の液体を抜きカテ
ーテルの位置を固定する。カテーテルが所定の位置に達
した状態を図3に示す。
The balloon 27 is made of a stretchable material such as rubber and is usually in close contact with the catheter 1. However, when a liquid (eg, physiological saline) is injected through the tube from the other end, the balloon 27 is inflated as shown in the figure. A part thicker than the diameter of the catheter 1 is formed at a part of the tip of the catheter 1. When the distal end of the catheter 1 is inserted into a vein and the balloon is inflated as described above, the catheter 1 rides on the blood flow of the vena cava 92 and is sent to the heart, passing through the right atrium 93 and the right ventricle 94 to the pulmonary artery 95. Reach Then, the liquid in the balloon is drained to fix the position of the catheter. FIG. 3 shows a state where the catheter has reached a predetermined position.

【0022】この状態で、前記超音波振動子21,2
2,23,24と温度検出部26は肺動脈95内に位置
するようにカテーテル1に配置され、前記注水孔25は
右心房93内に位置するようにカテーテル1に配置され
ている。
In this state, the ultrasonic transducers 21 and 2 are
2, 23, 24 and the temperature detection unit 26 are arranged in the catheter 1 so as to be located in the pulmonary artery 95, and the water injection hole 25 is arranged in the catheter 1 so as to be located in the right atrium 93.

【0023】熱希釈法による血流量の測定 カテーテル1に設けられた注水孔25より右心房93内
に所定量、所定温度の冷水を注入すると、右心房93内
の血液の温度が低下する。この低い温度の血液は、心臓
の拍動に伴って右心室94、肺動脈95に送られる。心
拍出量が大きい場合、右心房95内の温度の低い血液は
速やかに肺動脈95へと送られ、肺動脈95内の血液の
温度も低下するが、通常の温度に復帰するのも早い。こ
れとは逆に心拍出量が小さい場合は、一旦低下した血液
温度が通常の温度に復帰するのに時間がかかる。このよ
うな温度履歴を基に心拍出量、つまり血流量(Qn )を
測定するのが熱希釈法である。
Measurement of blood flow by thermodilution method When a predetermined amount of cold water is injected into the right atrium 93 through the water injection hole 25 provided in the catheter 1, the temperature of the blood in the right atrium 93 decreases. This low-temperature blood is sent to the right ventricle 94 and the pulmonary artery 95 as the heart beats. When the cardiac output is large, the low temperature blood in the right atrium 95 is promptly sent to the pulmonary artery 95, and the temperature of the blood in the pulmonary artery 95 also decreases, but the temperature returns to the normal temperature quickly. On the contrary, when the cardiac output is small, it takes time for the once lowered blood temperature to return to the normal temperature. The thermodilution method measures cardiac output, that is, blood flow (Qn) based on such a temperature history.

【0024】超音波による血流量の測定 前述の2個の超音波振動子21,22より血流に対し超
音波を送信し、反射波を受信する。このときの血流方向
に対する各々の超音波の入射角(α,α+θ)が異なる
ようにカテーテル上に配置されている。その詳細を図4
に示す。この各々の振動子により受信された反射波の受
信信号は血流速度測定部5に送られる。この反射波の周
波数はドプラ効果のため血流速度に応じて周波数が偏移
している。この両振動子より得られたドプラ偏移周波数
(Δf1 ,Δf2 )と血流速度vとの関係は次式のよう
に表される。
Measurement of Blood Flow by Ultrasonic Wave Ultrasonic waves are transmitted to the bloodstream and reflected waves are received from the above-mentioned two ultrasonic transducers 21 and 22. At this time, the ultrasonic waves are arranged on the catheter so that the incident angles (α, α + θ) of the ultrasonic waves with respect to the blood flow direction are different. The details are shown in Fig. 4.
Shown in. The received signal of the reflected wave received by each of the transducers is sent to the blood flow velocity measuring unit 5. Due to the Doppler effect, the frequency of this reflected wave deviates in accordance with the blood flow velocity. The relationship between the Doppler shift frequency (Δf 1 , Δf 2 ) obtained from both of these oscillators and the blood flow velocity v is expressed by the following equation.

【0025】 Δf1 = (2*fc )*v* cosα (1) Δf2 = (2*fc )*v*cos(α +θ) (2) fc 送信超音波(参照波)の周波数 c 生体内の音速 v 血流速度 α 血流方向に対する送信超音波の入射角 θ 2つの超音波の送受信方向のなす角度 血流速度測定部5は両振動子より送られてきた受信信号
に基づき各々独立して前記ドプラ偏移周波数(Δf1
Δf2 )を算出する。
Δf 1 = (2 * f c ) * v * cos α (1) Δf 2 = (2 * f c ) * v * cos (α + θ) (2) f c Transmit ultrasonic wave (reference wave) Frequency c Sound velocity in living body v Blood flow velocity α Incident angle of transmitted ultrasonic wave with respect to blood flow direction θ Angle between two ultrasonic wave transmission / reception directions Blood flow velocity measuring unit 5 receives signals transmitted from both transducers. Based on the Doppler shift frequency (Δf 1 ,
Calculate Δf 2 ).

【0026】前2式よりαを消去すると次式が得られ
る。
By eliminating α from the above two equations, the following equation is obtained.

【0027】 v={c/(2*fc *sinθ)} *{(Δf1 ) 2 −2*Δf1 *Δf2 *cosθ+(Δf2 ) 2 } 1/2 (3) この式に基づき血流速度測定部5は超音波入射角(α)
に影響されない血流速度(v)を算出する。このように
2方向より超音波を送受信することにより、カテーテル
1が血管の屈曲部などの影響を受け血流の方向との方向
が平行でない場合においても血流速度(v)が算出可能
となる。
V = {c / (2 * f c * sin θ)} * {(Δf 1 ) 2 −2 * Δf 1 * Δf 2 * cos θ + (Δf 2 ) 2 } 1/2 (3) Based on the blood flow velocity measuring unit 5, the ultrasonic wave incident angle (α)
Blood flow velocity (v) that is not affected by By transmitting and receiving ultrasonic waves from two directions in this manner, the blood flow velocity (v) can be calculated even when the catheter 1 is affected by the bent portion of the blood vessel and the direction is not parallel to the blood flow direction. ..

【0028】このように、超音波の入射角によらず血流
速度の絶対値を測定するためには、少なくとも2方向か
らドプラ計測を行えばよく、図4(A)に示した振動子
の配置で十分である。しかし、製造上の容易さと精度管
理の容易さとから、2個の振動子の配置方向は互いに直
交されれば更に望ましい。図4(B),(C)にこの場
合、つまりθ=90°の振動子の配置の例を示す。この
とき式(3)は次式のように簡略化される。
As described above, in order to measure the absolute value of the blood flow velocity irrespective of the incident angle of the ultrasonic wave, Doppler measurement may be performed from at least two directions, and the transducer shown in FIG. Arrangement is sufficient. However, it is more desirable that the arrangement directions of the two vibrators are orthogonal to each other in terms of manufacturing ease and accuracy control. 4B and 4C show an example of the arrangement of the transducers in this case, that is, θ = 90 °. At this time, the equation (3) is simplified as the following equation.

【0029】 v={c/(2*fc )}*{(Δf1 ) 2 +(Δf2 ) 2 } 1/2 (4) これらの振動子の配置では、振動子21,22の各々の
サンプル点を同一点とすることができないが、血管内の
血流速度を測定することを考えれば、サンプル点の深さ
は1cm程度であり、1mm四方の振動子を用いれば、この
場合各々のサンプル点の間隔は2cm以内に抑えることが
可能である。この程度であれば血流の方向はほぼ一定と
してよく、血流速度の算出に当たっての問題はない。
V = {c / (2 * f c )} * {(Δf 1 ) 2 + (Δf 2 ) 2 } 1/2 (4) In these oscillator arrangements, each of the oscillators 21 and 22 is Although the sample points cannot be the same point, the depth of the sample points is about 1 cm, considering the measurement of blood flow velocity in the blood vessel. It is possible to keep the distance between sample points within 2 cm. Within this range, the direction of blood flow may be almost constant, and there is no problem in calculating the blood flow velocity.

【0030】更に、図4(B)に示す振動子の配置で
は、2個の振動子からの超音波が交差するので送受信は
2個の振動子で交互に行う必要があり、図4(C)に示
す振動子の配置では、図4(B)に比してサンプル点の
間隔が更に広がるが、振動子からの超音波が交差しない
ので送受信を同時に行っても何ら問題なく、従ってより
速い流速まで計測可能となる。
Further, in the arrangement of the transducers shown in FIG. 4B, since ultrasonic waves from the two transducers intersect, it is necessary to alternately transmit and receive with the two transducers. In the arrangement of the transducers shown in FIG. 4), the interval between the sampling points is further widened as compared with FIG. It is possible to measure up to the flow velocity.

【0031】超音波振動子23,24は、従来例と同様
に超音波を血管内壁に対し照射し、反射波を受波する。
血管断面積測定部4は超音波が送信されてから受信され
るまでの時間を基に血管内壁までの距離を算出し、血管
の断面積(A)を算出する。以上、算出された血流速度
(v)と血管断面積(A)より、血流量(Qd )の算出
を行う。
The ultrasonic transducers 23 and 24 irradiate ultrasonic waves to the inner wall of the blood vessel and receive reflected waves, as in the conventional example.
The blood vessel cross-sectional area measurement unit 4 calculates the distance to the inner wall of the blood vessel based on the time from the transmission of the ultrasonic wave to the reception thereof, and calculates the cross-sectional area (A) of the blood vessel. As described above, the blood flow rate (Qd) is calculated from the calculated blood flow velocity (v) and blood vessel cross-sectional area (A).

【0032】血流量の補正 以上2通りの方法によって血流量(Qn ,Qd )を算出
することができるが、前述のように熱希釈法による血流
量の測定は連続的に行なうことができない。そこで、ま
ず熱希釈法と超音波ドプラによる血流量の測定を同時に
行い、血流量補正部8にて熱希釈法による血流量(Qn
)により超音波ドプラによる血流量(Qd )を較正
し、この血流量を基準血流量(Qd0)とする。以後、超
音波ドプラによる血流量(Qd1)のみを計測し、次式に
基づき連続的に血流量が算出される。 Q=(Qd1/Qd )・d0 (5) このようにして、肺動脈内の血流量すなわち心拍出量の
測定を行い、このようにして、熱希釈法により測定した
心拍出量と同等の測定を連続的に行うことができる。ま
た、熱希釈法による補正は、必要があれば所定の時間間
隔をもって行っても良い。
Correction of blood flow rate Although the blood flow rate (Qn, Qd) can be calculated by the above two methods, the blood flow rate cannot be continuously measured by the thermodilution method as described above. Therefore, first, the blood flow rate is measured at the same time by the thermodilution method and ultrasonic Doppler, and the blood flow rate correction unit 8 measures the blood flow rate (Qn
), The blood flow volume (Qd) by ultrasonic Doppler is calibrated, and this blood flow volume is used as the reference blood flow volume (Qd0). After that, only the blood flow rate (Qd1) by ultrasonic Doppler is measured, and the blood flow rate is continuously calculated based on the following equation. Q = (Qd1 / Qd) · d0 (5) In this way, the blood flow rate in the pulmonary artery, that is, the cardiac output is measured, and in this manner, the cardiac output equivalent to that measured by the thermodilution method is obtained. The measurement can be performed continuously. Further, the correction by the thermodilution method may be performed at predetermined time intervals if necessary.

【0033】以上のように、算出された心拍出量を表示
部9に表示し、手術中及び手術後もリアルタイムで監視
することが可能となる。また、患者の容体が変化し心拍
出量が低下した場合これを直ちに手術者に報知するため
に、判定部10ではに心拍出量が所定の値より下がった
とき、警報器11に警報を発するように指示する。
As described above, the calculated cardiac output can be displayed on the display unit 9 and monitored in real time during and after the operation. When the patient's condition changes and the cardiac output decreases, in order to immediately notify the operator of this, the determination unit 10 alerts the alarm device 11 when the cardiac output falls below a predetermined value. Instruct to emit.

【0034】図5,6に本発明に係る血流量監視装置の
第2の実施例を示す。図5は第2実施例の全体の構成を
示す図であり、第1実施例との相違は血管断面積測定部
4及び超音波ドプラ血流量算出部6がなくなり、血流量
補正部8が血流量算出部12となっている点である。ま
た、図6はカテーテルの先端部を示しており、第1実施
例のカテーテルとの相違は血管内径測定用の超音波振動
子23,24が備えられていないことである。その他の
構成は、第1実施例の構成と同じであり、これらには第
1実施例と同じ符号を付し説明は省略する。
5 and 6 show a second embodiment of the blood flow monitoring device according to the present invention. FIG. 5 is a diagram showing the entire configuration of the second embodiment. The difference from the first embodiment is that the blood vessel cross-sectional area measurement unit 4 and the ultrasonic Doppler blood flow calculation unit 6 are eliminated, and the blood flow correction unit 8 is This is the point of the flow rate calculation unit 12. Further, FIG. 6 shows the distal end portion of the catheter, and the difference from the catheter of the first embodiment is that the ultrasonic transducers 23 and 24 for measuring the inner diameter of the blood vessel are not provided. Other configurations are the same as those of the first embodiment, and these are denoted by the same reference numerals as those of the first embodiment, and description thereof will be omitted.

【0035】本実施例が第1実施例と相違する点は、超
音波ドプラ信号から血流量を算出せず、血流速度を直接
熱希釈法による血流量と比較する点である。
The difference of this embodiment from the first embodiment is that the blood flow rate is not calculated from the ultrasonic Doppler signal, but the blood flow velocity is directly compared with the blood flow rate obtained by the thermodilution method.

【0036】血流量算出部12は、熱希釈法により算出
された血流量(Qn )とこれと同時に計測された血流速
度測定部5により算出された血流速度(v)とから式
(6)に基づき流量係数(k)を求め、その後は血流速
度(v)と流量係数(k)より連続的に血流量(Q)を
式(7)に従い算出する。
The blood flow rate calculation unit 12 calculates the equation (6) from the blood flow rate (Qn) calculated by the thermodilution method and the blood flow rate (v) calculated by the blood flow rate measurement unit 5 which is measured at the same time. ), The flow rate coefficient (k) is obtained, and thereafter the blood flow rate (Q) is continuously calculated from the blood flow velocity (v) and the flow rate coefficient (k) according to the equation (7).

【0037】 k=Qn /v (6) Q=k×v (7)K = Qn / v (6) Q = k × v (7)

【0038】[0038]

【発明の効果】以上のように、本発明によれば、心拍出
量を持続的に測定することができ、連続的に心機能を監
視することが可能となる。これにより、患者の容体の急
変を即座に検知することができ、速やかにこれに対応す
ることが可能となる。また、熱希釈法による測定のため
に血管内に冷水を注入し、血液濃度を薄めてしまうこと
を最小限に抑えることができる。
As described above, according to the present invention, the cardiac output can be continuously measured, and the cardiac function can be continuously monitored. As a result, it is possible to immediately detect a sudden change in the patient's condition and quickly respond to this. In addition, it is possible to minimize dilution of blood concentration by injecting cold water into the blood vessel for measurement by the thermodilution method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る血流量監視装置の第1実施例の構
成図である。
FIG. 1 is a configuration diagram of a first embodiment of a blood flow monitoring device according to the present invention.

【図2】第1実施例のカテーテル先端部の詳細図であ
る。
FIG. 2 is a detailed view of the catheter tip end portion of the first embodiment.

【図3】肺動脈にカテーテル先端が達した状態を示す図
である。
FIG. 3 is a diagram showing a state in which a tip of a catheter reaches a pulmonary artery.

【図4】超音波振動子の配置例を示した図である。FIG. 4 is a diagram showing an arrangement example of ultrasonic transducers.

【図5】本発明に係る血流量監視装置の第2実施例の構
成図である。
FIG. 5 is a configuration diagram of a second embodiment of the blood flow monitoring device according to the present invention.

【図6】第2実施例のカテーテル先端部の詳細図であ
る。
FIG. 6 is a detailed view of the catheter tip end portion of the second embodiment.

【図7】従来の血流量測定装置の説明図である。FIG. 7 is an explanatory view of a conventional blood flow measuring device.

【図8】従来の血流量測定装置の説明図である。FIG. 8 is an explanatory diagram of a conventional blood flow measuring device.

【図9】従来の血流量測定装置の説明図である。FIG. 9 is an explanatory diagram of a conventional blood flow measuring device.

【符号の説明】[Explanation of symbols]

1 カテーテル 2 熱希釈法血流量測定部 3 超音波ドプラ血流量測定部 8 血流量補正部 9 表示部 10 判定部 11 警報器 12 血流量算出部 21,22 血流速度測定用超音波振動子 23,24 血管内壁間隔測定用超音波振動子 DESCRIPTION OF SYMBOLS 1 Catheter 2 Thermodilution method blood flow measurement unit 3 Ultrasonic Doppler blood flow measurement unit 8 Blood flow correction unit 9 Display unit 10 Judgment unit 11 Alarm device 12 Blood flow calculation unit 21, 22 Ultrasonic transducer for blood flow measurement 23 , 24 Ultrasonic transducer for measuring the inner wall spacing of blood vessels

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】所定の時間間隔をもって熱希釈法により血
流量を測定する血流量測定部と、 超音波ドプラ信号に基づき連続的に血流量を測定する超
音波ドプラ血流量測定部と、 前記熱希釈法により測定された血流量により前記ドプラ
信号より測定された血流量を較正し、この較正された基
準血流量と前記連続的に測定された超音波ドプラ信号に
基づく血流量とを比較することにより、連続的に熱希釈
法により測定したと等価の血流量を算出する血流量補正
部と、を有する血流量監視装置。
1. A blood flow measuring unit for measuring a blood flow by a thermodilution method at a predetermined time interval, an ultrasonic Doppler blood flow measuring unit for continuously measuring a blood flow based on an ultrasonic Doppler signal, Calibrating the blood flow measured from the Doppler signal with the blood flow measured by the dilution method, and comparing the calibrated reference blood flow with the blood flow based on the continuously measured ultrasonic Doppler signal. And a blood flow correction unit that continuously calculates a blood flow equivalent to that measured by the thermodilution method.
【請求項2】所定の時間間隔をもって熱希釈法により血
流量を測定する血流量測定部と、 超音波ドプラ信号に基づき連続的に血流速度を測定する
超音波ドプラ血流速度測定部と、 前記熱希釈法により測定された血流量と前記超音波ドプ
ラ信号より測定された血流速度とから、これらの関係を
示す係数を算出し、この係数と前記超音波ドプラ信号に
より連続的に測定された血流速度とから、連続的に熱希
釈法により測定したと等価の血流量を算出する血流量算
出部と、を有する血流量監視装置。
2. A blood flow measuring unit for measuring a blood flow at a predetermined time interval by a thermodilution method, and an ultrasonic Doppler blood flow measuring unit for continuously measuring a blood flow based on an ultrasonic Doppler signal. From the blood flow rate measured by the thermodilution method and the blood flow velocity measured from the ultrasonic Doppler signal, a coefficient indicating these relationships is calculated, and the coefficient and the ultrasonic Doppler signal are continuously measured. And a blood flow rate calculating unit that calculates a blood flow rate equivalent to that continuously measured by the thermodilution method from the blood flow rate.
JP30196391A 1991-10-23 1991-11-18 Ultrasonic Doppler blood flow monitor Expired - Lifetime JPH0716490B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP30196391A JPH0716490B2 (en) 1991-11-18 1991-11-18 Ultrasonic Doppler blood flow monitor
US07/964,549 US5339816A (en) 1991-10-23 1992-10-21 Ultrasonic doppler blood flow monitoring system
EP92118201A EP0538885B1 (en) 1991-10-23 1992-10-23 Ultrasonic Doppler blood flow monitoring system
DE69229802T DE69229802T2 (en) 1991-10-23 1992-10-23 Ultrasound Doppler arrangement for monitoring blood flow
DE69228974T DE69228974T2 (en) 1991-10-23 1992-10-23 Ultrasonic Doppler arrangement for measuring blood flow
EP95107631A EP0670146B1 (en) 1991-10-23 1992-10-23 Ultrasonic doppler blood flow monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30196391A JPH0716490B2 (en) 1991-11-18 1991-11-18 Ultrasonic Doppler blood flow monitor

Publications (2)

Publication Number Publication Date
JPH05137725A true JPH05137725A (en) 1993-06-01
JPH0716490B2 JPH0716490B2 (en) 1995-03-01

Family

ID=17903235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30196391A Expired - Lifetime JPH0716490B2 (en) 1991-10-23 1991-11-18 Ultrasonic Doppler blood flow monitor

Country Status (1)

Country Link
JP (1) JPH0716490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049266A (en) * 2016-10-26 2017-03-09 パイオニア株式会社 Fluid evaluation device and method
KR20170116143A (en) * 2015-02-12 2017-10-18 파운드리 이노베이션 앤드 리서치 1 리미티드 Portable devices and related methods for heart failure monitoring
JP2018105879A (en) * 2018-02-09 2018-07-05 パイオニア株式会社 Fluid evaluation device and method
JP2019168465A (en) * 2019-05-28 2019-10-03 パイオニア株式会社 Fluid evaluation device and method
JP2021067696A (en) * 2020-12-28 2021-04-30 パイオニア株式会社 Fluid evaluation device and method
US11813438B2 (en) 2012-08-31 2023-11-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153664A1 (en) 2012-04-13 2013-10-17 パイオニア株式会社 Fluid assessment device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813438B2 (en) 2012-08-31 2023-11-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device
KR20170116143A (en) * 2015-02-12 2017-10-18 파운드리 이노베이션 앤드 리서치 1 리미티드 Portable devices and related methods for heart failure monitoring
JP2018506408A (en) * 2015-02-12 2018-03-08 ファウンドリー イノベーション アンド リサーチ 1,リミテッドFoundry Innovation & Research 1,Ltd. Implantable devices and related methods for monitoring heart failure
JP2017049266A (en) * 2016-10-26 2017-03-09 パイオニア株式会社 Fluid evaluation device and method
JP2018105879A (en) * 2018-02-09 2018-07-05 パイオニア株式会社 Fluid evaluation device and method
JP2019168465A (en) * 2019-05-28 2019-10-03 パイオニア株式会社 Fluid evaluation device and method
JP2021067696A (en) * 2020-12-28 2021-04-30 パイオニア株式会社 Fluid evaluation device and method

Also Published As

Publication number Publication date
JPH0716490B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
EP0670146B1 (en) Ultrasonic doppler blood flow monitoring system
US20180064411A1 (en) Method and system for measuring pulmonary artery circulation information
US6673020B2 (en) Ultrasonic diagnostic apparatus
EP0270733B1 (en) Apparatus for measuring arterial blood flow
Cariou et al. Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system
EP2506760B1 (en) Method and apparatus for hemodynamic monitoring using combined blood flow and blood pressure measurement
Bouchard et al. Measurement of left ventricular stroke volume using continuous wave Doppler echocardiography of the ascending aorta and M-mode echocardiography of the aortic valve
EP1223864B1 (en) A method and apparatus for improving the accuracy with which the speed of a fluid is measured
Bernardin et al. Continuous noninvasive measurement of aortic blood flow in critically ill patients with a new esophageal echo-Doppler system
Boulnois et al. Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo 3000
JPS62500703A (en) Volumetric flow measurement in conduits that are not directly accessible
US20160000403A1 (en) Method and Apparatus for Monitoring Cardiac Output
JP2001218768A (en) Ultrasonograph
JP5552982B2 (en) Pulse pressure measuring device and pulse pressure measuring method
JPH05137725A (en) Ultrasonic doppler blood flow quantity monitor
US20110288420A1 (en) Blood pressure measuring device and blood pressure measuring method
CA2407579C (en) Calibration of a doppler velocimeter for stroke volume determination
WO2021110560A1 (en) An apparatus for determining a physiological parameter relating to a vessel
JP3694357B2 (en) Ultrasonic diagnostic equipment
WO1986004225A1 (en) Method and apparatus for measuring arterial blood flow
Tibballs et al. A comparative study of cardiac output measurement by dye dilution and pulsed Doppler ultrasound
JPH05111485A (en) Ultrasonic doppler blood flow velocity measuring instrument
JP3470764B2 (en) How to use an in-vivo probe to accurately measure fluid velocity, especially aortic flow
JP2001506517A (en) Measurement of stenosis in coronary arteries
Tibballs Doppler measurement of cardiac output—a critique

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20120301