JPH0513717A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JPH0513717A
JPH0513717A JP3185291A JP18529191A JPH0513717A JP H0513717 A JPH0513717 A JP H0513717A JP 3185291 A JP3185291 A JP 3185291A JP 18529191 A JP18529191 A JP 18529191A JP H0513717 A JPH0513717 A JP H0513717A
Authority
JP
Japan
Prior art keywords
type
well
semiconductor substrate
conductive layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3185291A
Other languages
Japanese (ja)
Inventor
Masahiro Hatanaka
正宏 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3185291A priority Critical patent/JPH0513717A/en
Publication of JPH0513717A publication Critical patent/JPH0513717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a manufacture of a semiconductor integrated circuit device which has memory cell structure within, being excellent in the resistance to the soft error due to an alpha ray and is stable in operation, while maintaining the pattern layout of a conventional logic circuit part and the performance. CONSTITUTION:P-type impurities are introduced from the openings, which are provided in one part each inside the region of the region of the first n-well 5 formed on a p-type semiconductor substrate 1 and outside the region of the first n-well 5, so as to form a p-type conductive layer 10, and the p-type semiconductor substrate 1 is oxidized to form a thick oxide film 12 in the opening, and then n-type impurities are introduced from the part other than the thick oxide film 12 to form an n-type conductive layer 13, and the entire p-type semiconductor substrate 1 is heat-treated to diffuse them inward, whereby those are made a p-well 16 and the second n-well 15, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体集積回路装置及
びその製造方法に関し、特にα線によるソフトエラー耐
性に優れたメモリセル構造を有する抵抗素子を負荷とし
たフリップフロップ回路によるメモリセルを内蔵したマ
イクロプロセッサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device and a method of manufacturing the same, and in particular, it has a built-in memory cell formed by a flip-flop circuit having a resistance element having a memory cell structure excellent in soft error resistance due to α rays as a load. It concerns a microprocessor.

【0002】[0002]

【従来の技術】図6は従来の半導体集積回路装置を示す
断面図で、図において、101はP型半導体基板、11
4はPウエル、115はNウエル、116は素子分離用
の厚い酸化膜、117はp型導電層、119はゲート電
極、120は多結晶シリコン、121はNMOSのソー
ス・ドレイン領域、122はPMOSのソース・ドレイ
ン領域である。
2. Description of the Related Art FIG. 6 is a sectional view showing a conventional semiconductor integrated circuit device, in which 101 is a P-type semiconductor substrate and 11 is a semiconductor device.
4 is a P well, 115 is an N well, 116 is a thick oxide film for element isolation, 117 is a p-type conductive layer, 119 is a gate electrode, 120 is polycrystalline silicon, 121 is an NMOS source / drain region, and 122 is PMOS. Source / drain regions.

【0003】従来の抵抗素子を負荷としたフリップフロ
ップ回路によるメモリセルを内蔵したマイクロプロセッ
サでは、P型半導体基板101上にNウエル115とP
ウエル114を形成した後、素子分離のための厚い酸化
膜116を選択的に形成し、MOSトランジスタのゲー
ト電極119,NMOSのソース・ドレイン領域121
及びPMOSのソース・ドレイン領域122を形成し
て、その後、抵抗素子となる例えば多結晶シリコン層1
20を形成していた。つまり、フリップフロップ型メモ
リセルはPウエル114内に存在し、そのPウエル11
4はP型半導体基板101上に存在するため、結果とし
てフリップフロップ型メモリセルがP型半導体基板10
1上に存在することと電気的には等価な構造であった。
In a conventional microprocessor having a built-in memory cell formed of a flip-flop circuit using a resistance element as a load, an N well 115 and a P well 115 are formed on a P type semiconductor substrate 101.
After forming the well 114, a thick oxide film 116 for element isolation is selectively formed, and the gate electrode 119 of the MOS transistor and the source / drain region 121 of the NMOS 121 are formed.
And the source / drain regions 122 of the PMOS are formed, and then, for example, the polycrystalline silicon layer 1 which becomes a resistance element is formed.
Had formed 20. That is, the flip-flop type memory cell exists in the P well 114, and the P well 11
Since 4 exists on the P-type semiconductor substrate 101, as a result, the flip-flop type memory cell becomes the P-type semiconductor substrate 10.
1 had a structure electrically equivalent to that existing on the upper part.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体集積回路
装置は以上のように構成されているので、半導体基板1
内で発生するα線(アルファ線)によって、内蔵された
メモリセルが誤動作を起こしやすいという問題点があっ
た。このα線による誤動作はソフトエラー(Soft-Erro
r) と呼ばれ、次のような機構で起こることが知られて
いる。図7には従来の半導体集積回路装置、即ちP型半
導体基板127上に形成したPウエル126内にメモリ
セル部を配置したものにα線124照射が発生した場合
を示す。α線124がこのメモリセル部に照射される
と、基板内部でその飛程に沿って電子・正孔対125が
発生し、その時、拡散層であるn+ 層123が高電位側
になっていると、発生した電子がn+ 層123側へ集ま
るため、本来高電位であるはずのn+ 層が低電位とな
り、結果としてメモリセルの誤動作をもたらす。つま
り、α線124によって電気的な雑音が誘起されること
になる。
Since the conventional semiconductor integrated circuit device is configured as described above, the semiconductor substrate 1
There is a problem that the built-in memory cell is likely to malfunction due to α rays (alpha rays) generated inside. Malfunction due to this α-ray is a soft error (Soft-Erro
It is known to occur by the following mechanism. FIG. 7 shows a conventional semiconductor integrated circuit device, that is, one in which a memory cell portion is arranged in a P well 126 formed on a P-type semiconductor substrate 127, when .alpha. When the α-rays 124 are irradiated to this memory cell portion, electron-hole pairs 125 are generated along the range inside the substrate, and at that time, the n + layer 123 which is a diffusion layer becomes the high potential side. If so, the generated electrons gather on the n + layer 123 side, and the n + layer, which should have been at a high potential, becomes a low potential, resulting in malfunction of the memory cell. That is, the α ray 124 induces electrical noise.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、従来の論理回路部のパターンレ
イアウトや性能は維持しながら、α線によるソフトエラ
ー耐性に優れたメモリセル構造を内蔵した半導体集積回
路装置及びその製造方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a memory cell structure excellent in soft error resistance due to α rays while maintaining the pattern layout and performance of a conventional logic circuit section. An object of the present invention is to provide a built-in semiconductor integrated circuit device and its manufacturing method.

【0006】[0006]

【課題を解決するための手段】この発明に係る半導体集
積回路装置は、P型の半導体基板上に、2つの抵抗素子
及び2つのMISFETからなり一対の入出力端子を有
するフリップフロップ回路と該フリップフロップ回路の
上記入出力端子のそれぞれに接続されるスイッチ用MI
SFETとで構成されたメモリセル部と、論理回路部と
を有し、上記メモリセル部は、上記半導体基板内に形成
されたN型領域内に基板との間にN型領域を残して形成
された、P型領域内に形成されるものである。
SUMMARY OF THE INVENTION A semiconductor integrated circuit device according to the present invention is a flip-flop circuit having a pair of input / output terminals, which is composed of two resistance elements and two MISFETs, and a flip-flop circuit on a P-type semiconductor substrate. Switch MI connected to each of the input / output terminals of the switch circuit
A memory cell portion including an SFET and a logic circuit portion are formed, and the memory cell portion is formed in an N-type region formed in the semiconductor substrate, leaving an N-type region between the substrate and the substrate. Formed in the P-type region.

【0007】またこの発明に係る半導体集積回路装置
は、上記N型領域は電源電圧と同電位、上記P型領域を
接地電位として動作するものである。
In the semiconductor integrated circuit device according to the present invention, the N-type region operates at the same potential as the power supply voltage and the P-type region operates at the ground potential.

【0008】またこの発明に係る半導体集積回路装置の
製造方法は、P型の半導体基板上に成長させた酸化膜の
一部を除去して露出した部分から、n型の不純物を導入
して第1のn型導電層を形成する工程と、上記半導体基
板を熱処理して上記第1のn型導電層を上記半導体基板
内部に拡散させ、第1のNウエルを形成する工程と、上
記半導体基板全面に酸化膜及び窒化膜を形成後、該窒化
膜上に塗布してパターニングしたフォトレジストをマス
クとして、上記窒化膜の上記第1のNウエルの領域の内
部と上記第1のNウエルの領域の外部の一部分とを開孔
し、該開孔部からp型の不純物を導入してp型導電層を
形成する工程と、上記フォトレジストを除去後上記半導
体基板を酸化させて、上記開孔部に厚い酸化膜を形成す
る工程と、上記窒化膜を除去後、上記厚い酸化膜以外の
部分からn型の不純物を導入して第2のn型導電層を形
成する工程と、上記半導体基板を熱処理することによっ
て、上記p型導電層と上記第2のn型導電層とを上記半
導体基板内に拡散させ、Pウエル及び第2のNウエルを
形成する工程とを含むものである。
In the method of manufacturing a semiconductor integrated circuit device according to the present invention, a part of the oxide film grown on the p-type semiconductor substrate is removed and an n-type impurity is introduced from the exposed part. Forming an n-type conductive layer, forming a first n-well by heat treating the semiconductor substrate to diffuse the first n-type conductive layer into the semiconductor substrate, and the semiconductor substrate. After forming an oxide film and a nitride film on the entire surface, using the photoresist patterned and coated on the nitride film as a mask, the inside of the region of the first N well and the region of the first N well of the nitride film are used. A part of the outside of the hole is opened, and a p-type impurity is introduced from the hole to form a p-type conductive layer; and after the photoresist is removed, the semiconductor substrate is oxidized to form the hole. The step of forming a thick oxide film on the After removing the film, a step of introducing an n-type impurity from a portion other than the thick oxide film to form a second n-type conductive layer, and a step of heat-treating the semiconductor substrate to remove the p-type conductive layer and the Diffusing the second n-type conductive layer into the semiconductor substrate to form a P well and a second N well.

【0009】[0009]

【作用】この発明においては、メモリセル部のPウエル
が、半導体基板内に形成されたNウエルで取り囲まれた
領域内に形成されるので、その結果図5に示すように、
α線が照射され、そのα線24が透過して誘起された電
子のうちNウエル28内およびP型基板27内で発生し
た電子は、メモリセルが存在するPウエル26とNウエ
ル28間のポテンシャル障壁によってPウエル内に入り
込めないため、従来構造に比べて、電気的な雑音を生じ
る電荷量は著しく少なくなり、α線によるソフトエラー
耐性に優れたメモリセル構造を有する半導体集積回路装
置を得ることができる。
According to the present invention, the P well of the memory cell portion is formed in the region surrounded by the N well formed in the semiconductor substrate. As a result, as shown in FIG.
Among the electrons induced by the α-ray irradiation and transmitted by the α-ray 24, the electrons generated in the N well 28 and the P-type substrate 27 are between the P well 26 and the N well 28 in which the memory cell exists. Since the P well cannot enter the P well due to the potential barrier, the amount of electric charge that causes electrical noise is significantly reduced as compared with the conventional structure, and a semiconductor integrated circuit device having a memory cell structure excellent in soft error resistance due to α rays is provided. Obtainable.

【0010】この発明においては、上記N型領域が電源
電圧と同電位、上記P型領域は接地電位として動作する
ので、α線によるソフトエラー耐性に優れたメモリセル
構造を有する半導体集積回路装置を得ることができる。
According to the present invention, since the N-type region operates at the same potential as the power supply voltage and the P-type region operates at the ground potential, a semiconductor integrated circuit device having a memory cell structure excellent in soft error resistance due to α rays is provided. Obtainable.

【0011】またこの発明における半導体集積回路装置
の製造方法は上記構成としたので、従来の論理回路部の
パターンレイアウトや性能は維持しながら、α線による
ソフトエラー耐性に優れたメモリセル構造を有する半導
体集積回路装置を得ることができる。
Since the method of manufacturing a semiconductor integrated circuit device according to the present invention has the above-mentioned structure, it has a memory cell structure excellent in soft error resistance due to α rays while maintaining the pattern layout and performance of the conventional logic circuit section. A semiconductor integrated circuit device can be obtained.

【0012】[0012]

【実施例】以下、この発明の実施例を図について説明す
る。図1乃至図3は本発明の一実施例による半導体集積
回路装置の製造工程を示す断面図であり、図において、
1はP型シリコン単結晶基板(以下、P型基板と称す
る)、2はシリコン酸化膜、3はn型導電層、4はn型
不純物、5は第1のNウエル、6はシリコン酸化膜、7
はシリコン酸化膜、8はシリコン窒化膜、9はフォトレ
ジスト、10はp型導電層、11はp型不純物、12は
素子分離用の厚い酸化膜、13はn型導電層、14はn
型不純物、15は第2のNウエル、16はPウエル、1
7は厚い酸化膜、18はp+ 型導電層、19はゲート電
極、20は抵抗素子となる多結晶シリコンである。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are sectional views showing a manufacturing process of a semiconductor integrated circuit device according to an embodiment of the present invention.
1 is a P-type silicon single crystal substrate (hereinafter referred to as P-type substrate), 2 is a silicon oxide film, 3 is an n-type conductive layer, 4 is an n-type impurity, 5 is a first N well, and 6 is a silicon oxide film. , 7
Is a silicon oxide film, 8 is a silicon nitride film, 9 is a photoresist, 10 is a p-type conductive layer, 11 is a p-type impurity, 12 is a thick oxide film for element isolation, 13 is an n-type conductive layer, and 14 is n.
Type impurity, 15 is a second N well, 16 is a P well, 1
Reference numeral 7 is a thick oxide film, 18 is a p + -type conductive layer, 19 is a gate electrode, and 20 is polycrystalline silicon which serves as a resistance element.

【0013】まず、図1(a) に示すP型基板1上に、図
1(b) のように約3000〜5000オングストローム
の厚さにシリコン酸化膜2を成長させ、既存の写真製
版,エッチング工程を行って、メモリセル部が形成され
るべき領域を含んだ領域にわたってシリコン酸化膜2を
除去し、P型基板1の表面を露出させる。
First, as shown in FIG. 1 (b), a silicon oxide film 2 is grown to a thickness of about 3000 to 5000 angstroms on a P-type substrate 1 shown in FIG. 1 (a). By performing the process, the silicon oxide film 2 is removed over the region including the region where the memory cell portion is to be formed, and the surface of the P-type substrate 1 is exposed.

【0014】その後、このP型基板1の露出部から通常
のイオン注入法、或いは熱拡散法でn型導電性を示す不
純物であるリンもしくは砒素4をドープし、n型導電層
3を形成する。
After that, phosphorus or arsenic 4 which is an impurity exhibiting n-type conductivity is doped from the exposed portion of the P-type substrate 1 by a normal ion implantation method or a thermal diffusion method to form an n-type conductive layer 3. .

【0015】そして、図1(c) のように、1000℃以
上の高温で基板1全体を加熱することで、n型導電層3
をP型基板1の内部へ拡散させ、第1のNウエル5を形
成する。この際、P型基板1が露出した部分にはシリコ
ン酸化膜6を新たに成長させ、n型不純物4が上述の高
温の熱処理途中で気相中へ蒸発しないようにするのが普
通である。
Then, as shown in FIG. 1C, the n-type conductive layer 3 is formed by heating the entire substrate 1 at a high temperature of 1000 ° C. or higher.
Are diffused into the P-type substrate 1 to form a first N well 5. At this time, it is usual that a silicon oxide film 6 is newly grown on the exposed portion of the P-type substrate 1 so that the n-type impurities 4 do not evaporate into the vapor phase during the above-mentioned high temperature heat treatment.

【0016】次に図2(a) から図3(c) までの方法で第
2のNウエル及びPウエルを形成するが、まず図2(a)
に示すように、基板1表面にシリコン酸化膜7とシリコ
ン窒化膜8とを形成し、通常の写真製版に従って第1の
Nウエル5の領域の内部と、第1のNウエル5の領域の
外部の一部分が開くように、フォトレジスト9をパター
ニングする。
Next, the second N well and P well are formed by the method shown in FIGS. 2 (a) to 3 (c).
As shown in FIG. 3, a silicon oxide film 7 and a silicon nitride film 8 are formed on the surface of the substrate 1, and the inside of the region of the first N well 5 and the outside of the region of the first N well 5 are formed according to ordinary photolithography. The photoresist 9 is patterned so that a part of it is opened.

【0017】続いて図2(b) に示すように、シリコン窒
化膜8をフォトレジスト9をマスクとしてエッチング除
去し、その後、例えばボロンのようなp型不純物11を
イオン注入し、フォトレジスト9で覆われていない部分
の基板1表面にp型導電層10を形成する。
Subsequently, as shown in FIG. 2B, the silicon nitride film 8 is removed by etching using the photoresist 9 as a mask, and then a p-type impurity 11 such as boron is ion-implanted. A p-type conductive layer 10 is formed on the surface of the substrate 1 which is not covered.

【0018】続いて図2(c) に示すように、フォトレジ
スト9を除去した後、基板1全体を酸化雰囲気中で酸化
すると、シリコン窒化膜8が除去された部分、即ち基板
1表面にp型導電層10が形成された部分の表面にの
み、厚い酸化膜12が成長する。
Then, as shown in FIG. 2C, after the photoresist 9 is removed, the entire substrate 1 is oxidized in an oxidizing atmosphere. The thick oxide film 12 grows only on the surface of the portion where the type conductive layer 10 is formed.

【0019】その後図3(a) に示すように、シリコン窒
化膜8を除去してからn型導電性を示す不純物14をイ
オン注入して、今度は厚い酸化膜12以外の部分の基板
1表面にn型導電層13を形成する。
After that, as shown in FIG. 3 (a), the silicon nitride film 8 is removed, and then an impurity 14 having n-type conductivity is ion-implanted, and this time the surface of the substrate 1 other than the thick oxide film 12 is ion-implanted. Then, the n-type conductive layer 13 is formed.

【0020】その後、図3(b) のように、基板1全体を
熱処理することで、p型導電層10及びn型導電層13
を基板1内部へ拡散させてそれぞれPウエル16及び第
2のNウエル15とする。そして、図3(c) のように、
基板1全体のシリコン酸化膜7及び厚い酸化膜12を除
去すれば、それぞれ第2のNウエル15,Pウエル16
及び第1のNウエル5の内部に形成されたPウエル16
を持った基板1が完成される。後は、図4のように通常
の方法でフリップフロップ型メモリセルとNチャネルM
OSトランジスタ及びPチャネルMOSトランジスタと
を形成すれば良い。
After that, as shown in FIG. 3B, the entire substrate 1 is heat-treated, so that the p-type conductive layer 10 and the n-type conductive layer 13 are formed.
Are diffused into the substrate 1 to form a P well 16 and a second N well 15, respectively. Then, as shown in FIG. 3 (c),
If the silicon oxide film 7 and the thick oxide film 12 on the entire substrate 1 are removed, the second N well 15 and the P well 16 are respectively formed.
And the P well 16 formed inside the first N well 5
Substrate 1 having is completed. Then, as shown in FIG. 4, a flip-flop type memory cell and an N channel M are formed by a normal method.
The OS transistor and the P-channel MOS transistor may be formed.

【0021】本実施例においては上述のように、フリッ
プフロップ型メモリセルが形成されるPウエル16をN
ウエル5内に形成し、メモリとしての動作時には、その
Nウエル5が電源電圧と同電位、Pウエル16は接地電
位として動作するようにしたので、メモリセル部のn+
拡散層23周辺の基板構造は図2に示すようになる。即
ち、α線24によって誘起された電子のうち、Nウエル
28内及びP型基板27内で発生した電子は、メモリセ
ルが存在するPウエル26とNウエル28間のポテンシ
ャル障壁によってPウエル26内へは入り込めないた
め、従来の半導体集積回路装置の構造に比べてn+ 拡散
層23に集まる電荷量は非常に少なくなり、α線24に
よる誘起雑音に対する余裕度を向上させることができ
る。
In this embodiment, as described above, the P well 16 in which the flip-flop type memory cell is formed is formed into the N well.
Since it is formed in the well 5 and the N well 5 operates at the same potential as the power supply voltage and the P well 16 operates at the ground potential during operation as a memory, n + of the memory cell portion is operated.
The substrate structure around the diffusion layer 23 is as shown in FIG. That is, among the electrons induced by the α rays 24, the electrons generated in the N well 28 and the P type substrate 27 are in the P well 26 due to the potential barrier between the P well 26 in which the memory cell exists and the N well 28. Therefore, the amount of electric charge collected in the n + diffusion layer 23 is much smaller than that in the structure of the conventional semiconductor integrated circuit device, and the margin against the noise induced by the α ray 24 can be improved.

【0022】また本実施例においては、P型基板1に形
成された第1のNウエル5の領域の内部と第1のNウエ
ル5の領域の外部の一部分に設けた開孔部からp型の不
純物を導入してそれぞれp型導電層10とし、P型基板
1を酸化させてその開孔部に厚い酸化膜12を形成して
から、厚い酸化膜12以外の部分よりn型の不純物を導
入してn型導電層13を形成し、その後P型基板1を全
体を熱処理することによってp型導電層10及びn型導
電層13を内部へ拡散させてそれぞれPウエル16及び
第2のNウエル15としたので、論理回路部を構成する
NチャネルMOSトランジスタ及びPチャネルMOSト
ランジスタを、そのパターンレイアウトや性能を従来と
変えることなく、メモリセル部の形成と並行して形成す
ることができる。
Further, in the present embodiment, the p-type is formed from the holes formed in the region of the first N well 5 formed in the P-type substrate 1 and in the portion outside the region of the first N well 5. To form the p-type conductive layer 10 and oxidize the P-type substrate 1 to form a thick oxide film 12 in the opening, and then to remove the n-type impurities from the portion other than the thick oxide film 12. Then, the n-type conductive layer 13 is formed and then the whole of the p-type substrate 1 is heat-treated to diffuse the p-type conductive layer 10 and the n-type conductive layer 13 into the p-well 16 and the second n-type conductive layer 13, respectively. Since the well 15 is used, the N-channel MOS transistor and the P-channel MOS transistor forming the logic circuit section can be formed in parallel with the formation of the memory cell section without changing the pattern layout or performance thereof from the conventional one.

【0023】なお上記実施例では、メモリセルが形成さ
れるPウエルとそれ以外の部分のPウエル16とを同時
に形成するものを示したが、メモリセル部のPウエル1
6は別途形成してもよい。いずれにしても、メモリセル
部のPウエルはNウエルで囲まれた領域内にあるように
設けることが必要である。
In the above embodiment, the P well in which the memory cell is formed and the P well 16 in the other portion are formed at the same time.
6 may be formed separately. In any case, it is necessary to provide the P well of the memory cell portion so as to be in the region surrounded by the N well.

【0024】[0024]

【発明の効果】以上のようにこの発明によれば、メモリ
セル部のPウエルをNウエルで取り囲む構造であるた
め、α線が照射され、そのα線が透過して誘起された電
子のうちNウエル内およびP型基板内で発生した電子
は、メモリセルが存在するPウエルとNウエル間のポテ
ンシャル障壁によってPウエル内に入り込めないため、
従来構造に比べて、電気的な雑音を生じる電荷量は著し
く少なくなり、α線による誤次に動作(ソフトエラー)
耐性に優れたメモリセル構造を有する半導体集積回路装
置を得ることができる。また、その製造工程では、論理
回路部は従来通りP型基板上に形成されるため、パター
ンレイアウトを変更することなく、しかも動作が安定な
メモリセルを有する半導体集積回路を製造することがで
きる。
As described above, according to the present invention, since the P well of the memory cell portion is surrounded by the N well, of the electrons which are irradiated with α rays and are transmitted through the α rays and are induced. Electrons generated in the N well and in the P type substrate cannot enter the P well due to the potential barrier between the P well in which the memory cell exists and the N well.
Compared to the conventional structure, the amount of electric charge that causes electrical noise is significantly reduced, and the α-ray causes erroneous operation (soft error).
A semiconductor integrated circuit device having a memory cell structure with excellent durability can be obtained. Further, in the manufacturing process, since the logic circuit portion is formed on the P-type substrate as in the conventional case, it is possible to manufacture a semiconductor integrated circuit having stable memory cells without changing the pattern layout.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による半導体集積回路装置
の製造工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図2】この発明の一実施例による半導体集積回路装置
の製造工程を示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図3】この発明の一実施例による半導体集積回路装置
の製造工程を示す断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図4】この発明の一実施例による半導体集積回路装置
の断面図である。
FIG. 4 is a sectional view of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図5】本発明がα線による誘起雑音に対して動作余裕
があることを示すための要因図である。
FIG. 5 is a factor diagram showing that the present invention has an operating margin with respect to induced noise due to α rays.

【図6】従来の半導体集積回路装置の断面図である。FIG. 6 is a cross-sectional view of a conventional semiconductor integrated circuit device.

【図7】従来構造ではα線による誘起雑音に対して動作
余裕がないことを説明するための要因図である。
FIG. 7 is a factor diagram for explaining that in the conventional structure, there is no operating margin for induced noise due to α rays.

【符号の説明】[Explanation of symbols]

1 P型半導体基板 2 シリコン酸化膜 3 n型導電層 4 n型不純物 5 第1のNウエル 6 シリコン酸化膜 7 シリコン酸化膜 8 シリコン窒化膜 9 フォトレジスト 10 p型導電層 11 p型不純物 12 厚い酸化膜 13 n型導電層 14 n型不純物 15 第2のNウエル 16 Pウエル 17 厚い酸化膜 18 p+ 型導電層 19 ゲート電極 20 多結晶シリコン 21 NMOSのソース・ドレイン領域 22 PMOSのソース・ドレイン領域 23 n+ 層 24 α線 25 電子・正孔対 26 Pウエル 27 P型半導体基板 28 Nウエル1 P-type semiconductor substrate 2 Silicon oxide film 3 n-type conductive layer 4 n-type impurity 5 First N-well 6 Silicon oxide film 7 Silicon oxide film 8 Silicon nitride film 9 Photoresist 10 p-type conductive layer 11 p-type impurity 12 Thick Oxide film 13 n-type conductive layer 14 n-type impurity 15 second N well 16 P well 17 thick oxide film 18 p + type conductive layer 19 gate electrode 20 polycrystalline silicon 21 NMOS source / drain region 22 PMOS source / drain Region 23 n + layer 24 α ray 25 electron / hole pair 26 P well 27 P type semiconductor substrate 28 N well

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 P型の半導体基板上に、2つの抵抗素子
及び2つのMISFETからなり一対の入出力端子を有
するフリップフロップ回路と該フリップフロップ回路の
上記入出力端子のそれぞれに接続されるスイッチ用MI
SFETとで構成されたメモリセル部と、論理回路部と
を同時に有する半導体集積回路装置において、 上記メモリセル部は、 上記半導体基板内に形成されたN型領域内に基板との間
にN型領域を残して形成された、P型領域内に形成され
ていることを特徴とする半導体集積回路装置。
1. A flip-flop circuit having a pair of input / output terminals, which is composed of two resistance elements and two MISFETs, and a switch connected to each of the input / output terminals of the flip-flop circuit on a P-type semiconductor substrate. For MI
In a semiconductor integrated circuit device having a memory cell section composed of an SFET and a logic circuit section at the same time, the memory cell section has an N type region between the substrate and an N type region formed in the semiconductor substrate. A semiconductor integrated circuit device, wherein the semiconductor integrated circuit device is formed in a P-type region formed by leaving the region.
【請求項2】 上記N型領域は電源電圧と同電位、上記
P型領域は接地電位として動作することを特徴とする請
求項1記載の半導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein the N-type region operates at the same potential as a power supply voltage and the P-type region operates at a ground potential.
【請求項3】 P型の半導体基板上に成長させた酸化膜
の一部を除去して露出した部分からn型の不純物を導入
して第1のn型導電層を形成する工程と、 上記半導体基板を熱処理して上記第1のn型導電層を上
記半導体基板内部に拡散させ、第1のNウエルを形成す
る工程と、 上記半導体基板全面に酸化膜及び窒化膜を形成後、該窒
化膜上に塗布してパターニングしたフォトレジストをマ
スクとして、上記窒化膜の、上記第1のNウエルの領域
の内部の部分と上記第1のNウエルの領域の外部の一部
分とを開孔し、該開孔部からp型の不純物を導入してp
型導電層を形成する工程と、 上記フォトレジストを除去後上記半導体基板を酸化させ
て、上記開孔部に厚い酸化膜を形成する工程と、 上記窒化膜を除去後、上記厚い酸化膜以外の部分からn
型の不純物を導入して第2のn型導電層を形成する工程
と、 上記半導体基板を熱処理することによって、上記p型導
電層と上記第2のn型導電層とを上記半導体基板内に拡
散させ、Pウエル及び第2のNウエルを形成する工程と
を含むことを特徴とする半導体集積回路装置の製造方
法。
3. A step of removing a part of an oxide film grown on a P-type semiconductor substrate and introducing an n-type impurity from the exposed part to form a first n-type conductive layer, A step of heat-treating the semiconductor substrate to diffuse the first n-type conductive layer into the inside of the semiconductor substrate to form a first N well; and a step of forming an oxide film and a nitride film on the entire surface of the semiconductor substrate. Using the photoresist coated and patterned on the film as a mask, a portion of the nitride film inside the region of the first N well and a portion outside the region of the first N well are opened. By introducing a p-type impurity from the opening,
A step of forming a mold conductive layer, a step of oxidizing the semiconductor substrate after removing the photoresist to form a thick oxide film in the opening, and a step of removing the nitride film and removing a layer other than the thick oxide film. Part to n
A p-type conductive layer and the second n-type conductive layer are formed in the semiconductor substrate by heat-treating the semiconductor substrate by introducing a p-type impurity into the semiconductor substrate. A step of diffusing to form a P well and a second N well.
JP3185291A 1991-06-28 1991-06-28 Semiconductor integrated circuit device and its manufacture Pending JPH0513717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185291A JPH0513717A (en) 1991-06-28 1991-06-28 Semiconductor integrated circuit device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185291A JPH0513717A (en) 1991-06-28 1991-06-28 Semiconductor integrated circuit device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0513717A true JPH0513717A (en) 1993-01-22

Family

ID=16168289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185291A Pending JPH0513717A (en) 1991-06-28 1991-06-28 Semiconductor integrated circuit device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0513717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066523A (en) * 1997-06-30 2000-05-23 Hyundai Electronics Industries Co., Ltd. Method for fabricating a semiconductor device having triple wells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066523A (en) * 1997-06-30 2000-05-23 Hyundai Electronics Industries Co., Ltd. Method for fabricating a semiconductor device having triple wells

Similar Documents

Publication Publication Date Title
US6362038B1 (en) Low and high voltage CMOS devices and process for fabricating same
EP0166167B1 (en) A process for manufacturing a semiconductor device comprising p-channel and n-channel misfets
US6274914B1 (en) CMOS integrated circuits including source/drain plug
JPH0348457A (en) Semiconductor device and manufacture thereof
US6647542B2 (en) Efficient fabrication process for dual well type structures
JPH05291514A (en) Semiconductor integrated circuit device and its manufacture
KR920005511B1 (en) Semiconductor device and its manufacturing method
JPH05102475A (en) Semiconductor device and manufacture thereof
JPH0513717A (en) Semiconductor integrated circuit device and its manufacture
JP2993784B2 (en) Semiconductor device and manufacturing method thereof
JPH1055976A (en) Manufacture of semiconductor device having various buried regions
JP2550691B2 (en) Method for manufacturing semiconductor device
JP2000164727A (en) Manufacture of semiconductor device
JP2006191104A (en) Manufacturing method for high-voltage transistor
JP3064003B2 (en) Method for manufacturing semiconductor device
KR100265351B1 (en) Cmos transistor and method for fabricating the same
JPH104182A (en) Semiconductor device and manufacture thereof
JPH098047A (en) Semiconductor device
JPH0864820A (en) Semiconductor device and method of fabrication thereof
JPS6281051A (en) Semiconductor device and manufacture thereof
JPH0734453B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH11238806A (en) Semiconductor device and its manufacture
JPH0750352A (en) Semiconductor device and its manufacture
JPH0248142B2 (en)
JPH09237766A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees