JPH05136530A - Semicoductor laser device - Google Patents

Semicoductor laser device

Info

Publication number
JPH05136530A
JPH05136530A JP4125451A JP12545192A JPH05136530A JP H05136530 A JPH05136530 A JP H05136530A JP 4125451 A JP4125451 A JP 4125451A JP 12545192 A JP12545192 A JP 12545192A JP H05136530 A JPH05136530 A JP H05136530A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
arsenic
gallium
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4125451A
Other languages
Japanese (ja)
Other versions
JP2981056B2 (en
Inventor
Ghulam Hasnain
ハスネン ガ−ラム
Kuochou Tai
テ− コウチユ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Publication of JPH05136530A publication Critical patent/JPH05136530A/en
Application granted granted Critical
Publication of JP2981056B2 publication Critical patent/JP2981056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To dispense with assembling individual parts later in a semiconductor device, by a method, wherein a quantum-well active region which is pinched between a pair of dispersion type plug reflection stacks is provided, a laser beam is emitted from the quantum-well active layer to the direction crossing a growth surface, an intrinsic semiconductor layer and a doped semiconductor layer are arranged on one side of the reflector stack, and an optical diode is formed. CONSTITUTION: A quantum-well active region 10 is arranged between a pair of dispersion type plug reflection stacks 11 and 12. An intrinsic semiconductor layer 13 and a doped semiconductor layer 14 are arranged on the dispersion-type plug reflection stack 11, and they form an optical diode on the path of a radiating light, together with an external layer. The intrinsic semiconductor layer 13 may be replaced with a plurality of quantum-well structures, in which a barrier layer and a quantum-well layer are arranged alternately. When the optical diode is biased, using annular ohmic contacts 16 and 17, either a laser output is monitored or a laser beam is modulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ装置に関
し、特に大きな平面アレーで形成するに適した自己監視
可能な垂直キャビティ面発光レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a self-monitorable vertical cavity surface emitting laser device suitable for forming a large planar array.

【0002】[0002]

【従来の技術】半導体レーザ装置は多くの応用分野、例
えば、集積回路の光相互接続、通信、コンピュータシス
テム、光記録システムにおいて有用である。半導体レー
ザ装置はコヒーレントで単色性のコンパクトな光源であ
り、この光は高ビットレートでもって変調されて、多く
の情報を伝送する。経年変化や温度変化がレーザの出力
レベルを変えるので、半導体レーザ装置はそのレーザ出
力のダイナミックな安定性のために、一般的には、監視
回路を必要とする。
Semiconductor laser devices are useful in many applications, such as optical interconnection of integrated circuits, communications, computer systems, and optical recording systems. A semiconductor laser device is a coherent, monochromatic, compact light source, which is modulated at a high bit rate to transmit much information. Since aging and temperature changes the output level of the laser, the semiconductor laser device generally requires a monitoring circuit because of the dynamic stability of its laser output.

【0003】不都合なことに、従来の端面発光レーザで
は、半導体レーザシステムで用いられる他の要素を組み
込むことが難しい。端面発光レーザはその基板表面に平
行な埋め込み平面の表面に沿ってコヒーレントな光を発
光する。このレーザ発光の方向は半導体プロセスにおけ
る成長面に平行である。従って、端面発光レーザは単一
の素子として製造され、テストされる。この端面発光レ
ーザを用いるに際しては、個別に製造された監視装置と
光ダイオードとを組み合わせて使用される。かくして、
半導体レーザシステムの製造は、一般的に、時間のかか
る組立作業及び複数の個別素子を整合する作業が要求さ
れる。
Unfortunately, conventional edge emitting lasers are difficult to incorporate with other elements used in semiconductor laser systems. An edge-emitting laser emits coherent light along the surface of a buried plane parallel to the surface of its substrate. The direction of this laser emission is parallel to the growth surface in the semiconductor process. Therefore, edge emitting lasers are manufactured and tested as a single device. When using this edge emitting laser, a monitoring device and a photodiode which are manufactured separately are used in combination. Thus,
The manufacture of semiconductor laser systems generally requires time-consuming assembly work and alignment of multiple discrete components.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、自己
監視が可能な面発光レーザ装置を提供することで、従来
の端面発光レーザ装置のような個別の部品を後で組み立
てることのない簡単な装置を提供しようとするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface emitting laser device capable of self-monitoring, which is simple and does not require subsequent assembly of individual components such as conventional edge emitting laser devices. To provide such a device.

【0005】[0005]

【課題を解決するための手段】本発明の面発光半導体レ
ーザ装置は、集積光ダイオード及び/または監視装置を
内蔵し、一対の分散型ブラグ反射スタックの間に挟まれ
た量子井戸活性領域を有し、ここから成長面を横切る方
向にレーザ光を発射する。真性半導体層とドープ半導体
層は反射スタックの一方に配置され、スタックの外部層
と組み合わせて放射された光のパスに光ダイオードを形
成する。この光ダイオードはレーザパワーを監視した
り、あるいは、レーザ出力を変調するために用いられ
る。本発明の半導体レーザ装置は大きなアレーとして形
成及び試験されるのに、特に適しており、光出力の環状
体分散、本質的にシングルモード動作で、高い二次元実
装密度を有するという利点がある。
SUMMARY OF THE INVENTION A surface emitting semiconductor laser device of the present invention includes an integrated photodiode and / or a monitoring device and has a quantum well active region sandwiched between a pair of distributed Bragg reflector stacks. Then, laser light is emitted from here in a direction crossing the growth surface. The intrinsic semiconductor layer and the doped semiconductor layer are disposed on one of the reflective stacks and in combination with the outer layers of the stack form a photodiode in the path of the emitted light. This photodiode is used to monitor the laser power or to modulate the laser output. The semiconductor laser device of the present invention is particularly suitable for being formed and tested as a large array, and has the advantages of toroidal dispersion of light output, essentially single mode operation, and high two-dimensional packing density.

【0006】[0006]

【実施例】図1において、量子井戸活性領域10は一対
の分散型ブラグ反射スタック11と12との間に配置さ
れている。分散型ブラグ反射スタック11の上には真性
半導体層13、ドープされた半導体層14が配置され、
これらはスタックの外部層と共に放射光の通路で光ダイ
オードを形成する。あるいは、真性半導体層13はバリ
ア層と量子井戸層とが交互に配置された複数の量子井戸
構造でおきかえてもよい。光ダイオードはレーザパワー
をモニターしたり、レーザビームを変調するために使用
される。
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1, a quantum well active region 10 is located between a pair of distributed Bragg reflector stacks 11 and 12. An intrinsic semiconductor layer 13 and a doped semiconductor layer 14 are disposed on the distributed Bragg reflector stack 11.
These together with the outer layers of the stack form the photodiode in the path of the emitted light. Alternatively, the intrinsic semiconductor layer 13 may be replaced with a plurality of quantum well structures in which barrier layers and quantum well layers are alternately arranged. Photodiodes are used to monitor laser power and to modulate the laser beam.

【0007】この実施例の本発明の装置は、第1の導電
型(例、n型)の不純物をドープした基板15の上に形
成される。量子井戸活性領域10はアルミーガリュウム
ーひ素のバリア層とガリュウムーひ素の量子井戸層とを
交互に有する。分散型ブラグ反射スタック11と12は
ドープされたアルミガリュウムーひ素の層とアルミーひ
素の層を周期的に含む。基板15に隣接する分散型ブラ
グ反射スタック12において、アルミーガリュウムーひ
素は基板と同一型の不純物(例、n型)でドープされて
いる。上の分散型ブラグ反射スタック11においては、
アルミーガリュウムーひ素は他の型の不純物(例、p
型)でドープされている。
The device of the present invention of this embodiment is formed on a substrate 15 doped with impurities of a first conductivity type (eg, n type). The quantum well active region 10 alternately has aluminum-gallium-arsenic barrier layers and gallium-arsenic quantum well layers. The distributed Bragg reflector stacks 11 and 12 periodically include a layer of doped aluminum gallium-arsenic and a layer of aluminum arsenic. In the distributed Bragg reflector stack 12 adjacent to the substrate 15, the aluminum gallium-arsenic is doped with the same type of impurities as the substrate (eg, n-type). In the distributed Bragg reflector stack 11 above,
Armygarium-arsenic is another type of impurity (eg p
Type) is doped.

【0008】真性半導体層13は、真性ガリュウムーひ
素で、ドープされた半導体層14はn型アルミガリュウ
ムーひ素であるのが望ましい。環状オーム性接点16と
17は、それぞれドープされた半導体層14と分散型ブ
ラグ反射スタック11の外部層の上に形成される。この
環状オーム性接点16と17は、基板へのオーム性接点
18と共に、いずれかのダイオード、あるいは、両方の
ダイオードに適切な電気的バイアスをかけることができ
る。このレーザダイオードが環状オーム性接点17、オ
ーム性接点18を用いて、順方向にバイアスされた場合
は、活性領域19は分散型ブラグ反射スタック11と真
性半導体層13、ドープされた半導体層14を通して光
20を放射する。この構造においては、真性半導体層1
3とドープされた半導体層14は分散型ブラグ反射スタ
ック11の外部層と共に放射光のパス内に形成された光
ダイオードとして動作する。この光ダイオードは環状オ
ーム性接点16と17を用いてバイアスがかけられた時
は、レーザ出力をモニターするか、レーザビームを変調
するかのいずれかとして用いられる。
The intrinsic semiconductor layer 13 is preferably intrinsic gallium-arsenic and the doped semiconductor layer 14 is preferably n-type aluminum gallium-arsenic. Annular ohmic contacts 16 and 17 are formed on the doped semiconductor layer 14 and the outer layer of the distributed Bragg reflector stack 11, respectively. The annular ohmic contacts 16 and 17, together with the ohmic contact 18 to the substrate, can provide suitable electrical biasing of either diode, or both diodes. When this laser diode is forward biased using an annular ohmic contact 17 and an ohmic contact 18, the active region 19 passes through the distributed Bragg reflector stack 11 and the intrinsic semiconductor layer 13 and the doped semiconductor layer 14. Emits light 20. In this structure, the intrinsic semiconductor layer 1
3 and the doped semiconductor layer 14 together with the outer layers of the distributed Bragg reflector stack 11 act as a photodiode formed in the path of the emitted light. The photodiode, when biased with annular ohmic contacts 16 and 17, is used to either monitor the laser power or modulate the laser beam.

【0009】図2は、図1の光ダイオード/レーザダイ
オードの等価回路である。光ダイオードはPD、レーザ
ダイオードはLDとして示されている。大地に対し、レ
ーザダイオードの電圧VPD、電流はIP として示され
る。また、レーザダイオード電圧はVLDで、レーザ電流
はIL である。P−DBRとN−DBRは分散型ブラグ
反射器として表される抵抗を表す。
FIG. 2 is an equivalent circuit of the photo diode / laser diode of FIG. The photodiode is shown as PD and the laser diode is shown as LD. With respect to ground, the laser diode voltage VPD and current are shown as IP. The laser diode voltage is VLD and the laser current is IL. P-DBR and N-DBR represent resistors represented as distributed Bragg reflectors.

【0010】光ダイオード電流IP はフェードバック回
路に印加されてレーザ電流IL を制御する場合、この集
積回路は自己監視レーザとして動作する。一方、変調バ
イアス電圧がVPDと大地の間に印加されると、バイアス
の変化は光ダイオードの吸収係数と屈折率を変化させ
る。これにより、レーザ出力の増幅および/または位相
を変調する。このモードにおいて、本発明の装置は集積
回路レーザと変調器として動作する。
When the photodiode current IP is applied to the fadeback circuit to control the laser current IL, this integrated circuit operates as a self-monitoring laser. On the other hand, when a modulation bias voltage is applied between VPD and ground, the change in bias changes the absorption coefficient and refractive index of the photodiode. This modulates the amplification and / or the phase of the laser output. In this mode, the device of the present invention operates as an integrated circuit laser and modulator.

【0011】この実施例の装置は、分子線ビームエピタ
キシー(MBE)によって製造される。まず、第1ステ
ップはn型ドープのガリュウムーひ素の基板15を提供
し、MBEにより図1の装置を有する後続の層が成長す
る。この図1の装置には、分散型ブラグ反射スタック1
2と量子井戸活性領域10と分散型ブラグ反射スタック
11と真性半導体層13とドープされた半導体層14と
が含まれる。
The device of this embodiment is manufactured by molecular beam epitaxy (MBE). First, the first step provides an n-doped gallium-arsenide substrate 15 and MBE grows subsequent layers with the device of FIG. The apparatus of FIG. 1 includes a distributed Bragg reflector stack 1
2, a quantum well active region 10, a distributed Bragg reflector stack 11, an intrinsic semiconductor layer 13 and a doped semiconductor layer 14.

【0012】分散型ブラグ反射スタック12は、層を3
0周期を有する階段状に分布したブラグ反射器を成長さ
せれることにより形成される。各周期は、385オング
ストロム厚のAl0.15Ga0.85Asと、125オングス
トロム厚のAl0.4Ga0.6Asと、125オングストロ
ム厚のAl0.7Ga0.3Asと、450オングストロム厚
のAlAsと、125オングストロム厚のAl0.7Ga
0.3Asと、125オングストロム厚のAl0.4Ga0.6
Asとからなる。このAlGaAs層はn型の不純物
で、例えば、シリコンで1018cm-3の濃度でドープさ
れる。
The distributed Bragg reflector stack 12 comprises three layers.
It is formed by growing a stepwise distributed Bragg reflector having zero period. Each cycle consists of 385 Å thick Al0.15Ga0.85As, 125 Å thick Al0.4Ga0.6As, 125 Å thick Al0.7Ga0.3As, 450 Å thick AlAs, and 125 Å thick. Strom thickness Al0.7Ga
0.3As and 125 Å thick Al0.4Ga0.6
It consists of As. This AlGaAs layer is doped with an n-type impurity, for example, silicon at a concentration of 10 18 cm -3 .

【0013】量子井戸活性領域10はMBEで、分散型
ブラグ反射スタック12の上に成長する。予備段階とし
てAlxGa1-xAsの傾斜スペーサ層が分散型ブラグ反
射スタック12の上に成長する。このスペーサ層の厚さ
は定在波の中央波腹(antinode)が量子井戸と
オーバーラップするように選択されるのが好ましい。こ
の実施例において、その厚さは約2200オングストロ
ムで、xは0.6から0.3の範囲である。スペーサ層
の上に成長した量子井戸領域は4個の量子井戸を有し、
これらは100オングストロム厚さのGaAs井戸層と
80オングストロムのAl0.2Ga0.8Asのバリア層か
らなる。第2の2200オングストロム厚の傾斜Alx
Ga1-xAsのスペーサ層が量子井戸層の上に成長す
る。この二つの傾斜スペーサ層が量子井戸活性領域を挟
み、閉じ込めヘテロ構造を形成し、効率的なキャリアト
ラプができる。
Quantum well active region 10 is MBE and is grown on distributed Bragg reflector stack 12. As a preliminary step, a graded AlxGa1-xAs spacer layer is grown on the distributed Bragg reflector stack 12. The thickness of this spacer layer is preferably chosen such that the central antinode of the standing wave overlaps the quantum well. In this example, the thickness is about 2200 angstroms and x ranges from 0.6 to 0.3. The quantum well region grown on the spacer layer has four quantum wells,
These consist of a 100 Å thick GaAs well layer and a 80 Å Al0.2Ga0.8As barrier layer. Second 2200 Å thick graded Alx
A Ga1-xAs spacer layer grows on the quantum well layer. The two inclined spacer layers sandwich the quantum well active region to form a confinement hetero structure, and efficient carrier trap can be performed.

【0014】分散型ブラグ反射スタック11は量子井戸
活性領域10の上に成長し、特に量子井戸活性領域10
の上部傾斜スペーサ層の上に成長する。分散型ブラグ反
射スタック11とスタック12はほぼ同一で、ただし、
分散型ブラグ反射スタック11はn型ではなく、p型に
ドープされ、分散型ブラグ反射スタック11はスタック
12よりも、その繰り返し周期は少なく、そのため、光
20が発光する。特に分散型ブラグ反射スタック11は
Beを3×1018cm-3でドープされ、繰り返し周期は
20である。
A distributed Bragg reflector stack 11 is grown on the quantum well active region 10, and in particular the quantum well active region 10.
On top of the upper graded spacer layer. The distributed Bragg reflector stacks 11 and 12 are almost identical, except that
The distributed Bragg reflector stack 11 is p-type doped rather than n-type, and the distributed Bragg reflector stack 11 has a smaller repetition period than the stack 12 and therefore emits light 20. In particular, the distributed Bragg reflector stack 11 is doped with Be at 3 × 10 18 cm −3 and has a repetition period of 20.

【0015】真性半導体層13は、非ドープガリュウム
ーひ素の層を分散型ブラグ反射スタック11のp型ドー
プ外部層の上に成長することにより形成される。好まし
くは真性半導体層13の厚さは、放射光の波長の半分の
厚さで、真性半導体層13内に波腹の中心を置いて、効
率的な吸収を目的にしている。ドープされた半導体層1
4の上部層は真性半導体層13の上のn型ドープのAl
GaAsとして成長する。ドープされた半導体層14の
厚さは波長の4分の3、例えば、1820オングストロ
ムである。
The intrinsic semiconductor layer 13 is formed by growing a layer of undoped gallium-arsenic on the p-doped outer layer of the distributed Bragg reflector stack 11. The thickness of the intrinsic semiconductor layer 13 is preferably half the wavelength of the emitted light, and the antinode is centered in the intrinsic semiconductor layer 13 for the purpose of efficient absorption. Doped semiconductor layer 1
4 is an n-type doped Al on the intrinsic semiconductor layer 13.
It grows as GaAs. The thickness of the doped semiconductor layer 14 is three quarter wavelengths, for example 1820 angstroms.

【0016】構成層が成長した後、次のステップはオー
ム性接点を形成し、電流を横方向に閉じ込めることであ
る。環状オーム性接点16はドープされた半導体層14
に接触するようそれぞれの厚さは120/270/50
0/1000オングストロムのAu/Ge/Ag/Au
の混合層を堆積することにより形成される。この混合金
属層はリソグラフィーでパターン化されて、外径が約2
0マイクロメーター、内径が約10マイクロメーターの
環状オーム性接点16を形成する。
After the constituent layers have been grown, the next step is to form ohmic contacts and confine the current laterally. The annular ohmic contact 16 is a doped semiconductor layer 14
Each thickness is 120/270/50
0/1000 angstrom Au / Ge / Ag / Au
It is formed by depositing a mixed layer of. The mixed metal layer is lithographically patterned to have an outer diameter of about 2
An annular ohmic contact 16 having 0 micrometer and an inner diameter of about 10 micrometers is formed.

【0017】好ましくは環状オーム性接点16の形成後
に、分散型ブラグ反射スタック11に光子注入(PRO
TON IMPLANTATION)をして、電流をリ
ングの下の領域に閉じ込める。この光子注入は、6ミク
ロンの厚さのフォトレジスト同心円でもって、15マイ
クロメーターの直径でリングの内側の円を保護し、そし
て、この保護されてない部分を1015cm-2の線量でも
って、300keVで光子注入に晒すことによって行わ
れる。このエネルギーにおける光子注入は2.5マイク
ロメーターの深さでピークを有するイオン転位プロフィ
ルを生成する。その後、この装置は450℃で30秒間
アニールされる。その結果、注入ダメージにより形成さ
れた高抵抗埋め込め層はマスクされた15マイクロメー
ターの直径の活性領域を通して電流を漏流する。
Photon injection (PRO) is preferably applied to the distributed Bragg reflector stack 11 after the formation of the annular ohmic contact 16.
TON IMPLANTION) to confine the current in the area under the ring. This photon injection protects the inner circle of the ring with a diameter of 15 micrometers, with a 6 micron thick photoresist concentric circle, and with a dose of 10 15 cm -2 on this unprotected part. , 300 keV by exposure to photon injection. Photon injection at this energy produces an ionic dislocation profile that peaks at a depth of 2.5 micrometers. The device is then annealed at 450 ° C. for 30 seconds. As a result, the high resistance buried layer formed by the implant damage leaks current through the masked 15 micrometer diameter active region.

【0018】環状オーム性接点16とエッチングマスク
として、15マイクロメーターのフォトレジストサーク
ルを用いて、0.5マイクロメーター深さのメサが環状
オーム性接点16の周囲にエッチングされ、分散型ブラ
グ反射スタック11のAlGaAs表面上で終端する。
好ましくは反応性イオンエッチングを用いて、環状オー
ム性接点16の周辺における垂直側面壁を有するメサを
得るのがよい。
Using a 15 micrometer photoresist circle as an annular ohmic contact 16 and an etching mask, a 0.5 micrometer deep mesa was etched around the annular ohmic contact 16 to provide a distributed Bragg reflector stack. 11 on the AlGaAs surface.
Reactive ion etching is preferably used to obtain mesas with vertical side walls around the annular ohmic contact 16.

【0019】環状オーム性接点17は露出したp型ドー
プAl0.15Ga0.85As層でもって形成され、これは、
それぞれが800/200/1500オングストロム厚
を有するAuBe/Ti/Auの混合層を堆積し、光リ
ソグラフィ的にメサの周囲に内径30マイクロメータ
ー、外径50マイクロメーターの環状接点を形成するの
と同じように行われる。
The annular ohmic contact 17 is formed with an exposed p-type doped Al0.15Ga0.85As layer, which is
Depositing a mixed layer of AuBe / Ti / Au each having a thickness of 800/200/1500 angstroms to form photolithographically an annular contact with an inner diameter of 30 micrometers and an outer diameter of 50 micrometers around the mesa. The same is done.

【0020】最終ステップは、n型ドープガリュウムー
ひ素基板15にオーム性接点18を形成することであ
る。これはインジュウムドープ基板を銅ヒートシング
(図示せず)にまで合金化することと同様である。かく
して、本発明の装置はテスト動作が次に行われる。本発
明の装置の特性が図3−5に図示されている。図3のカ
ーブ1は環状オーム性接点16、17間の光ダイオード
の闇I−V特性を示し、カーブ2は環状オーム性接点1
7、オーム性接点18間のレーザダイオードの闇I−V
特性を示す。この二つのダイオードの順方向特性2重ヘ
テロ構造光放射ダイオードの特性の理想的には2倍であ
る。
The final step is to form ohmic contacts 18 on the n-type doped gallium-arsenic substrate 15. This is similar to alloying the indium-doped substrate to copper heatsing (not shown). Thus, the device of the present invention is then tested. The characteristics of the device of the present invention are illustrated in Figures 3-5. Curve 1 in FIG. 3 shows the dark IV characteristics of the photodiode between the annular ohmic contacts 16 and 17, and curve 2 shows the annular ohmic contact 1.
7. Laser diode darkness IV between ohmic contacts 18
Show the characteristics. The forward characteristic of these two diodes is ideally twice the characteristic of the double heterostructure light emitting diode.

【0021】図4は面発光レーザの光出力対電流の特性
を表す。実線のカーブは、外部校正広領域シリコンデテ
クタにより測定された光出力パワーを表す。点線のカー
ブは、自然放射に起因する電流と逆漏えいが差し引かれ
た時に、集積光検知器/レーザの補正光電流を表す。レ
ーザが環状オーム性接点17とオーム性接点18の間で
順方向にバイアスされた場合は、3.2mAのしきい値
電流では、室温における本発明の素子は単一の軸方向モ
ードと横方向モードにおいて、850ナノメーターの連
続波でレーザ発信する。
FIG. 4 shows the characteristics of the light output vs. current of the surface emitting laser. The solid curve represents the optical output power measured by an externally calibrated wide area silicon detector. The dotted curve represents the corrected photocurrent of the integrated photodetector / laser when the current due to spontaneous emission and the reverse leakage are subtracted. When the laser is forward biased between the annular ohmic contacts 17 and 18, at 3.2 mA threshold current, the device of the invention at room temperature exhibits a single axial mode and lateral direction. In mode, it lases with a continuous wave of 850 nanometers.

【0022】図5はレーザへの順方向注入電流が増加す
るにつれて、異なる逆方向バイアス電圧における光ダイ
オード電流を表す。各ケースにおいて、光ダイオード電
流はレーザ作用の開始点で急速に増加する。面発光レー
ザの出力は0.24mWで、0.25A/Wの効率応答
では、補正ピーク光電流(図3)は60マイクロアンペ
アである。かくして、集積光ダイオードは出力レーザパ
ワーが100マイクロワットに対して、25マイクロア
ンペアの光電流を生成し、この光電流はレーザ出力を安
定化させるのに十分である。
FIG. 5 represents the photodiode current at different reverse bias voltages as the forward injection current into the laser increases. In each case, the photodiode current increases rapidly at the onset of laser action. The output of the surface emitting laser is 0.24 mW, and with an efficiency response of 0.25 A / W, the corrected peak photocurrent (FIG. 3) is 60 microamps. Thus, for an output laser power of 100 microwatts, the integrated photodiode produces a photocurrent of 25 microamps, which is sufficient to stabilize the laser output.

【0023】光ダイオードと変調器はレーザに組み込む
ことができる。例えば、反対面にレーザとモニターリン
グと光ダイオードと変調器を有する集積構造を形成する
ことができる。さらに、ガリュウムひ素材料系は好まし
いが、他の材料系、例えば、インジュウムひ素も使用さ
れる。
The photodiode and modulator can be incorporated into a laser. For example, an integrated structure can be formed with the laser, the monitoring, the photodiode and the modulator on the opposite side. Further, while the gallium arsenide material system is preferred, other material systems such as indium arsenic are also used.

【0024】[0024]

【発明の効果】本発明の半導体レーザ装置は大きなアレ
ーとして形成及び試験されるのに、特に適しており、光
出力の環状体分散、本質的にシングルモード動作で、高
い二次元実装密度を有するという利点がある。
The semiconductor laser device of the present invention is particularly well suited to be formed and tested as a large array, having an annular dispersion of light output, essentially single mode operation, and high two-dimensional packing density. There is an advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】図1の装置のダイオードとレーザの間の相互接
続を表す回路図である。
2 is a circuit diagram representing the interconnection between the diode and the laser of the device of FIG.

【図3】図1の装置のダイオードの闇電流−電圧特性を
表す図である。
3 is a diagram showing a dark current-voltage characteristic of a diode of the device of FIG.

【図4】図1の装置のレーザダイオードの光出力対電流
特性を表す図である。
FIG. 4 is a diagram showing a light output-current characteristic of a laser diode of the apparatus of FIG.

【図5】異なる逆方向バイアス電圧において光ダイオー
ド電流とレーザ順方向注入電流との関係を表す図であ
る。
FIG. 5 is a diagram showing a relationship between a photodiode current and a laser forward injection current at different reverse bias voltages.

【符号の説明】[Explanation of symbols]

10 量子井戸活性領域 11 分散型ブラグ反射スタック 12 分散型ブラグ反射スタック 13 真性半導体層 14 ドープされた半導体層 15 基板 16 環状オーム性接点 17 環状オーム性接点 18 オーム性接点 19 活性領域 20 光 10 Quantum Well Active Region 11 Dispersive Bragg Reflecting Stack 12 Dispersive Bragg Reflecting Stack 13 Intrinsic Semiconductor Layer 14 Doped Semiconductor Layer 15 Substrate 16 Annular Ohmic Contact 17 Annular Ohmic Contact 18 Ohmic Contact 19 Active Region 20 Optical

フロントページの続き (72)発明者 コウチユ− テ− アメリカ合衆国 07060 ニユ−ジヤ−ジ − ノ−ス プレインフイ−ルド、ウイロ − アヴエニユ− 38Continuation of the front page (72) Inventor Kouchi-te-U.S.A. 07060 Newge-Nose Plainfield, Willo-Avuenyu-38

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一対の反射スタック(11、12)の間
に配置された量子井戸領域(10)を有する面発光レー
ザ手段と、 前記量子井戸の活性領域からの光通路に配置されて、前
記反射スタックの一つに隣接するよう形成された光ダイ
オード手段(13、14)と、 前記面発光レーザ手段と、前記光ダイオード手段とにオ
ーム接触と形成する接点手段(16、17、18)とか
らなることを特徴とする半導体レーザ装置。
1. A surface emitting laser means having a quantum well region (10) arranged between a pair of reflective stacks (11, 12), and arranged in an optical path from an active region of the quantum well, Photodiode means (13,14) formed adjacent to one of the reflective stacks, said surface emitting laser means, and contact means (16,17,18) forming ohmic contact with said photodiode means. A semiconductor laser device comprising:
【請求項2】 前記一対の反射スタックの一つ(12)
はn型の不純物をドープされた層を有し、 他の一つ(12)はp型の不純物をドープされた層を有
し、 前記光ダイオード手段は、前記反射スタックの一つのド
ープされた層の上に配置された真性半導体層(13)
と、この真性半導体層の上に前記ドープされた層とは異
なる型の不純物をドープされた半導体層(14)を含む
ことを特徴とする請求項1の装置。
2. One of said pair of reflective stacks (12).
Has an n-type impurity-doped layer, the other (12) has a p-type impurity-doped layer, the photodiode means being one doped layer of the reflective stack. An intrinsic semiconductor layer disposed on the layer (13)
And the semiconductor layer (14) doped on the intrinsic semiconductor layer with an impurity of a different type than the doped layer.
【請求項3】 前記光ダイオード手段は、前記反射スタ
ックのp型層の上に配置された真性半導体層と、前記真
性半導体層の上にn型の半導体層とを有することを特徴
とする請求項2の装置。
3. The photodiode means comprises an intrinsic semiconductor layer disposed on the p-type layer of the reflective stack and an n-type semiconductor layer on the intrinsic semiconductor layer. The apparatus of item 2.
【請求項4】 前記量子井戸領域は、アルミーガリュウ
ムーひ素バリア層とガリュウムーひ素量子井戸層とを含
むことを特徴とする請求項1の装置。
4. The device of claim 1, wherein the quantum well region comprises an aluminum-gallium-arsenic barrier layer and a gallium-arsenic quantum well layer.
【請求項5】 前記反射スタックは、アルミーガリュウ
ムーひ素の層とアルミーひ素の層とを周期的に有するこ
とを特徴とする請求項4の装置。
5. The apparatus of claim 4, wherein the reflective stack comprises periodically layers of aluminum gallium-arsenic and layers of aluminum arsenic.
【請求項6】 前記真性半導体層は、ガリュウムーひ素
からなることを特徴とする請求項4の装置。
6. The device of claim 4, wherein the intrinsic semiconductor layer comprises gallium-arsenic.
【請求項7】 n型ガリュウムひ素基板と、 前記基板上に成長した第1反射スタックと、ここで、こ
の反射スタックはアルミーガリュウムーひ素層とアルミ
ーひ素層とを周期的に含み、 前記第1反射スタック上に成長した量子井戸領域と前記
量子井戸領域は、アルミーガリュウムーひ素バリア層と
ガリュウムーひ素量子井戸層とを含み、 前記量子井戸領域上に成長した第2反射スタックとこの
第2反射スタックは、アルミーガリュウムーひ素の層と
アルミーひ素の層とを周期的に含み、 前記第2反射スタック上に成長したガリュウムひ素の真
性半導体層と、前記真性半導体層の上に成長したn型の
アルミガリュウムひ素の層とを有することを特徴とする
請求項1の装置。
7. An n-type gallium arsenide substrate, a first reflective stack grown on the substrate, wherein the reflective stack periodically includes an aluminum gallium-arsenic layer and an aluminum arsenic layer. A quantum well region grown on one reflection stack and the quantum well region include an aluminum-gallium-arsenic barrier layer and a gallium-arsenic quantum well layer, and the second reflection stack grown on the quantum well region and the second reflection stack. The reflective stack periodically includes a layer of aluminum gallium-arsenic and a layer of aluminum arsenic, and an intrinsic semiconductor layer of gallium arsenide grown on the second reflective stack and n grown on the intrinsic semiconductor layer. 2. The device of claim 1 having a layer of aluminum gallium arsenide of the type.
JP4125451A 1991-04-29 1992-04-20 Semiconductor laser device Expired - Lifetime JP2981056B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US692746 1991-04-29
US07/692,746 US5136603A (en) 1991-04-29 1991-04-29 Self-monitoring semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH05136530A true JPH05136530A (en) 1993-06-01
JP2981056B2 JP2981056B2 (en) 1999-11-22

Family

ID=24781838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125451A Expired - Lifetime JP2981056B2 (en) 1991-04-29 1992-04-20 Semiconductor laser device

Country Status (4)

Country Link
US (1) US5136603A (en)
EP (1) EP0511787B1 (en)
JP (1) JP2981056B2 (en)
DE (1) DE69208137T2 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625636A (en) * 1991-10-11 1997-04-29 Bryan; Robert P. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
US5212702A (en) * 1992-03-25 1993-05-18 At&T Bell Laboratories Semiconductor surface emitting laser having reduced threshold voltage and enhanced optical output
US5285466A (en) * 1992-05-20 1994-02-08 Wisconsin Alumni Research Foundation Feedback mechanism for vertical cavity surface emitting lasers
SE501635C2 (en) * 1993-08-20 1995-04-03 Asea Brown Boveri Method and apparatus for transmitting light with integrated excitation source
US5420880A (en) * 1993-10-12 1995-05-30 Wisconsin Alumni Research Foundation Low threshold vertical cavity surface emitting laser
US5475701A (en) * 1993-12-29 1995-12-12 Honeywell Inc. Integrated laser power monitor
US5606572A (en) * 1994-03-24 1997-02-25 Vixel Corporation Integration of laser with photodiode for feedback control
US5491712A (en) * 1994-10-31 1996-02-13 Lin; Hong Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
DE4444470A1 (en) * 1994-11-29 1996-05-30 Hertz Inst Heinrich Transmitter / receiver arrangement for an optical duplex system
JPH08318640A (en) * 1994-12-19 1996-12-03 Xerox Corp Lensless printing machine equipped with optical bar print head
US6220878B1 (en) 1995-10-04 2001-04-24 Methode Electronics, Inc. Optoelectronic module with grounding means
US5717533A (en) 1995-01-13 1998-02-10 Methode Electronics Inc. Removable optoelectronic module
US5546281A (en) 1995-01-13 1996-08-13 Methode Electronics, Inc. Removable optoelectronic transceiver module with potting box
KR100259490B1 (en) * 1995-04-28 2000-06-15 윤종용 Vertical cavity surface emitting laser
US5812582A (en) * 1995-10-03 1998-09-22 Methode Electronics, Inc. Vertical cavity surface emitting laser feedback system and method
US5663944A (en) * 1995-12-29 1997-09-02 Samsung Electronics Co., Ltd. Vertical cavity laser light beam monitored by reflection of a half mirror, with application in optical pick-up
US6392256B1 (en) * 1996-02-01 2002-05-21 Cielo Communications, Inc. Closely-spaced VCSEL and photodetector for applications requiring their independent operation
US6001664A (en) * 1996-02-01 1999-12-14 Cielo Communications, Inc. Method for making closely-spaced VCSEL and photodetector on a substrate
US5757829A (en) * 1996-04-29 1998-05-26 Motorola, Inc. Flip chip power monitoring system for vertical cavity surface emitting lasers
US5742630A (en) * 1996-07-01 1998-04-21 Motorola, Inc. VCSEL with integrated pin diode
US5838703A (en) * 1996-09-30 1998-11-17 Motorola, Inc. Semiconductor laser package with power monitoring system and optical element
US5757837A (en) * 1996-10-16 1998-05-26 The Regents Of The University Of California Intracavity quantum well photodetector integrated within a vertical-cavity surface-emitting laser and method of operating same
KR100234340B1 (en) * 1996-10-29 1999-12-15 윤종용 Surface emitting laser with integrated photodetector for power stabilization
US5914976A (en) * 1997-01-08 1999-06-22 W. L. Gore & Associates, Inc. VCSEL-based multi-wavelength transmitter and receiver modules for serial and parallel optical links
US5892786A (en) * 1997-03-26 1999-04-06 The United States Of America As Represented By The Secretary Of The Air Force Output control of vertical microcavity light emitting device
EP0899836A1 (en) * 1997-08-27 1999-03-03 Xerox Corporation Semiconductor laser device
CN1089292C (en) * 1998-03-13 2002-08-21 明石被服兴业株式会社 Cloth product folding-line reinforced band
US5960024A (en) 1998-03-30 1999-09-28 Bandwidth Unlimited, Inc. Vertical optical cavities produced with selective area epitaxy
US6493373B1 (en) 1998-04-14 2002-12-10 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6487230B1 (en) 1998-04-14 2002-11-26 Bandwidth 9, Inc Vertical cavity apparatus with tunnel junction
US6535541B1 (en) 1998-04-14 2003-03-18 Bandwidth 9, Inc Vertical cavity apparatus with tunnel junction
US6493372B1 (en) 1998-04-14 2002-12-10 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6493371B1 (en) 1998-04-14 2002-12-10 Bandwidth9, Inc. Vertical cavity apparatus with tunnel junction
US5991326A (en) 1998-04-14 1999-11-23 Bandwidth9, Inc. Lattice-relaxed verticle optical cavities
US6760357B1 (en) 1998-04-14 2004-07-06 Bandwidth9 Vertical cavity apparatus with tunnel junction
US6487231B1 (en) 1998-04-14 2002-11-26 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6203333B1 (en) 1998-04-22 2001-03-20 Stratos Lightwave, Inc. High speed interface converter module
US6179627B1 (en) 1998-04-22 2001-01-30 Stratos Lightwave, Inc. High speed interface converter module
US6222202B1 (en) 1998-10-06 2001-04-24 Agilent Technologies, Inc. System and method for the monolithic integration of a light emitting device and a photodetector for low bias voltage operation
GB2346258A (en) * 1999-01-30 2000-08-02 Mitel Semiconductor Ab Monitoring the light output of surface emitting lasers
US6226425B1 (en) 1999-02-24 2001-05-01 Bandwidth9 Flexible optical multiplexer
JP3928295B2 (en) 1999-03-16 2007-06-13 富士ゼロックス株式会社 Surface emitting semiconductor laser
US6233263B1 (en) 1999-06-04 2001-05-15 Bandwidth9 Monitoring and control assembly for wavelength stabilized optical system
US6275513B1 (en) 1999-06-04 2001-08-14 Bandwidth 9 Hermetically sealed semiconductor laser device
US6220873B1 (en) 1999-08-10 2001-04-24 Stratos Lightwave, Inc. Modified contact traces for interface converter
US6577658B1 (en) 1999-09-20 2003-06-10 E20 Corporation, Inc. Method and apparatus for planar index guided vertical cavity surface emitting lasers
KR100317576B1 (en) * 1999-11-08 2001-12-24 윤덕용 Surface emitting laser with a monolithically integrated monitor photdetector
DE10004398A1 (en) * 2000-02-02 2001-08-16 Infineon Technologies Ag VCSEL with monolithically integrated photodetector
GB0021075D0 (en) * 2000-08-25 2000-10-11 Univ Brunel Optically powered acutuator system
US20030021327A1 (en) * 2001-07-25 2003-01-30 Murry Stefan J. Semiconductor surface-emitting laser with integrated photodetector
US6838728B2 (en) * 2001-08-09 2005-01-04 Amberwave Systems Corporation Buried-channel devices and substrates for fabrication of semiconductor-based devices
US6782019B2 (en) * 2001-08-16 2004-08-24 Applied Optoelectronics, Inc. VCSEL with heat-spreading layer
US6569593B2 (en) * 2001-08-16 2003-05-27 Eastman Kodak Company Oriented polyester imaging element with nacreous pigment
KR20040013569A (en) * 2002-08-07 2004-02-14 삼성전자주식회사 Wavelength tunable VCSEL
JP2004306506A (en) * 2003-04-09 2004-11-04 Canon Inc Method for joining components, method for joining closure member to container, and ultrasonic welding device
TW201017863A (en) * 2008-10-03 2010-05-01 Versitech Ltd Semiconductor color-tunable broadband light sources and full-color microdisplays
US11025033B2 (en) 2019-05-21 2021-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Bump bonding structure to mitigate space contamination for III-V dies and CMOS dies
WO2020244862A1 (en) * 2019-06-03 2020-12-10 Trumpf Photonic Components Gmbh Vertical cavity surface emitting laser device with monolithically integrated photodiode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936988A (en) * 1982-08-26 1984-02-29 Agency Of Ind Science & Technol Vertical oscillation type semiconductor laser
JPS62143486A (en) * 1985-12-18 1987-06-26 Toshiba Corp Surface light emitting type luminous element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750807B2 (en) * 1984-03-28 1995-05-31 東北大学長 Junction type semiconductor light emitting device
JP2597975B2 (en) * 1985-03-26 1997-04-09 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
GB2197122B (en) * 1986-11-03 1990-01-24 Stc Plc Injection laser and monitor photosensor combination
DE3732626A1 (en) * 1987-09-28 1989-04-06 Siemens Ag PHOTO LASER TRANSISTOR
JP2863773B2 (en) * 1988-12-28 1999-03-03 科学技術振興事業団 Surface-emitting type semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936988A (en) * 1982-08-26 1984-02-29 Agency Of Ind Science & Technol Vertical oscillation type semiconductor laser
JPS62143486A (en) * 1985-12-18 1987-06-26 Toshiba Corp Surface light emitting type luminous element

Also Published As

Publication number Publication date
DE69208137T2 (en) 1996-09-19
US5136603A (en) 1992-08-04
JP2981056B2 (en) 1999-11-22
DE69208137D1 (en) 1996-03-21
EP0511787B1 (en) 1996-02-07
EP0511787A1 (en) 1992-11-04

Similar Documents

Publication Publication Date Title
JP2981056B2 (en) Semiconductor laser device
US5606572A (en) Integration of laser with photodiode for feedback control
EP0737376B1 (en) Integrated laser power monitor
US5978401A (en) Monolithic vertical cavity surface emitting laser and resonant cavity photodetector transceiver
US5757837A (en) Intracavity quantum well photodetector integrated within a vertical-cavity surface-emitting laser and method of operating same
US5491712A (en) Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
US5943357A (en) Long wavelength vertical cavity surface emitting laser with photodetector for automatic power control and method of fabrication
US6687281B2 (en) Double intracavity contacted long-wavelength VCSELs
US5724376A (en) Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
Boucart et al. 1-mW CW-RT monolithic VCSEL at 1.55 μm
JP3539977B2 (en) Photoelectric semiconductor component
US6021147A (en) Vertical cavity surface emitting laser for high power single mode operation and method of fabrication
EP0623243A1 (en) Integration of transistors with vertical cavity surface emitting lasers
JP2003522421A (en) VCSEL with monolithically integrated photodetector
JPS61127192A (en) Surface radiation light emitter
Hasnain et al. Monolithic integration of photodetector with vertical cavity surface emitting laser
Reiner et al. Optimization of planar Be-doped InGaAs VCSEL's with two-sided output
US6021146A (en) Vertical cavity surface emitting laser for high power single mode operation and method of fabrication
US6810065B1 (en) Low electrical resistance n-type mirror for optoelectronic devices
US6191431B1 (en) Device for emitting electromagnetic radiation at a predetermined wavelength
WO2004064211A1 (en) Laser array
Larson et al. Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers
EP0877428A2 (en) A device for emitting electromagnetic radiation at a predetermined wavelength and a method of producing said device
JP2657288B2 (en) Optical gate array
JP2692013B2 (en) Optical gate array

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13