JPH05134441A - Method for formation of light receiving member for electrophotograph - Google Patents

Method for formation of light receiving member for electrophotograph

Info

Publication number
JPH05134441A
JPH05134441A JP29338891A JP29338891A JPH05134441A JP H05134441 A JPH05134441 A JP H05134441A JP 29338891 A JP29338891 A JP 29338891A JP 29338891 A JP29338891 A JP 29338891A JP H05134441 A JPH05134441 A JP H05134441A
Authority
JP
Japan
Prior art keywords
photoconductive layer
layer
receiving member
atoms
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29338891A
Other languages
Japanese (ja)
Other versions
JP2902509B2 (en
Inventor
Masateru Yamamura
昌照 山村
Junichiro Hashizume
淳一郎 橋爪
Kazuyoshi Akiyama
和敬 秋山
Toshiyasu Shirasago
寿康 白砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29338891A priority Critical patent/JP2902509B2/en
Publication of JPH05134441A publication Critical patent/JPH05134441A/en
Application granted granted Critical
Publication of JP2902509B2 publication Critical patent/JP2902509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for the formation of electrophotographic light receiving member excellent in electric characteristics, picture image characteristics, and durability. CONSTITUTION:An electrophotographic light receiving member 10 consists of a conductive base body 11 and a photoconductive layer 12 comprising noncrystalline material made of silicon atom as a mother material and a surface layer 13 successively formed on the supporting body. The photoconductive layer 12 contains hydrogen atom and carbon atom which is distributed in a manner that the amt. of carbon atom is larger in the supporting body 11 side and smaller in the surface layer 13 side. Further, the photoconductive layer 12 is formed by varying the forming rate of the deposition film in a manner that the rate is fast in the supporting body 11 side and late in the surface layer 13 side. The surface layer 13 contains silicon, carbon, hydrogen, halogen, oxygen and nitrogen atoms at one time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性基体上にシリコ
ン原子を母体とする光受容部層を形成した電子写真用光
受容部材の形成方法に関する。本発明により形成される
電子写真用光受容部材は電子写真複写機、レーザービー
ムプリンター、LEDプリンター、液晶プリンター、レ
ーザー製版機等、電子写真技術応用分野に広く用いるこ
とができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a photoreceptive member for electrophotography in which a photoreceptive layer having a silicon atom as a matrix is formed on a conductive substrate. The electrophotographic light-receiving member formed by the present invention can be widely used in electrophotographic technology application fields such as electrophotographic copying machines, laser beam printers, LED printers, liquid crystal printers, and laser plate making machines.

【0002】[0002]

【従来の技術】像形成分野において、光受容部材におけ
る光受容層を形成する光導電材料としては、高感度で、
SN比〔光電流(Ip)/暗電流(Id)〕が高く、照射
する電磁波のスペクトル特性に適合した吸収スペクトル
を有すること、光応答性が早く、所望の暗抵抗値を有す
ること、使用時において人体に対して無害であること、
等の特性が要求される。特に、事務機としてオフィスで
使用される電子写真装置内に組み込まれる電子写真用光
受容部材の場合には、上記の使用時における無公害性は
重要な点である。
2. Description of the Related Art In the field of image formation, a photoconductive material for forming a light receiving layer in a light receiving member has high sensitivity and
High SN ratio [photocurrent (Ip) / dark current (Id)], having an absorption spectrum suitable for the spectral characteristics of the electromagnetic wave irradiated, having fast photoresponsiveness and having a desired dark resistance value, during use Be harmless to the human body at
And other characteristics are required. Particularly, in the case of an electrophotographic light receiving member incorporated in an electrophotographic apparatus used as an office machine in an office, the pollution-free property at the time of use is an important point.

【0003】このような観点に立脚して、最近注目され
ている光導電材料にアモルファスシリコン(以下、「A
−Si」と表記する)があり、例えばドイツ公開特許第
2746967号公報、同第2855718号公報等には電子写真用光
受容部材としての応用が記載されている。
Based on this point of view, amorphous silicon (hereinafter referred to as “A
-Si "), for example, German published patent No.
No. 2746967, No. 2855718 and the like describe application as a light receiving member for electrophotography.

【0004】図3は従来の電子写真用光受容部材20の
層構成を模式的に示す断面図であって、21は導電性支
持体、22はA−Siからなる光受容層である。こうし
た電子写真用光受容部材は、一般的には、導電性支持体
21を50〜400℃に加熱し、該支持体上に真空蒸着法、
スパッタリング法、イオンプレーティング法、熱CVD
法、光CVD法、プラズマCVD法等の成膜法によりA
−Siからなる光受容層22を作製する。なかでもプラ
ズマCVD法、すなわち、原料ガスを直流または高周波
あるいはマイクロ波グロー放電によって分解し、支持体
上にA−Si堆積膜を形成する方法が好適なものとして
実用に付されている。
FIG. 3 is a sectional view schematically showing the layer structure of a conventional electrophotographic light-receiving member 20, wherein 21 is a conductive support and 22 is a light-receiving layer made of A-Si. Such a light-receiving member for electrophotography is generally a method in which the conductive support 21 is heated to 50 to 400 ° C., a vacuum deposition method is performed on the support,
Sputtering method, ion plating method, thermal CVD
A by a film forming method such as
The light-receiving layer 22 made of -Si is produced. Among them, the plasma CVD method, that is, the method of decomposing the source gas by direct current or high frequency or microwave glow discharge to form the A-Si deposited film on the support is put to practical use as a suitable one.

【0005】特開昭56-83746号公報においては、導電性
支持体と、ハロゲン原子を構成要素として含むA−Si
光導電層からなる電子写真用光受容部材が提案されてい
る。該公報においては、A−Siにハロゲン原子を1〜4
0原子%含有させることにより、ダングリングボンドを
補償してエネルギーギャップ内の局在準位密度を低減
し、電子写真用光受容部材の光受容層として好適な電気
的、光学的特性を得ることができるとしている。
In Japanese Patent Laid-Open No. 56-83746, a conductive support and A-Si containing a halogen atom as a constituent element are disclosed.
An electrophotographic light-receiving member comprising a photoconductive layer has been proposed. In this publication, a halogen atom is added to A-Si in an amount of 1 to 4
By containing 0 atomic%, it is possible to compensate for dangling bonds, reduce the localized level density in the energy gap, and obtain electrical and optical characteristics suitable as a light receiving layer of a light receiving member for electrophotography. It is supposed to be possible.

【0006】一方、アモルファス炭化シリコン(以下、
「A−SiC」と表記する)について、耐熱性や表面硬
度が高いこと、A−Siと比較して高い暗抵抗率を有す
ること、炭素の含有量により光学的バンドギャップが1.
6〜2.8 eVの範囲にわたって変えられること等が知られ
ている。このようなA−SiCによって光導電層を構成
する電子写真用光受容部材が、特開昭54-145540号公報
において提案されている。当該公報においては、炭素を
化学修飾物質として0.1〜30原子%含むA−Siを電子
写真用光受容部材の光導電層として使用することによ
り、暗抵抗が高く、光感度の良好な優れた電子写真特性
を示すことが開示されている。
On the other hand, amorphous silicon carbide (hereinafter,
"A-SiC") has high heat resistance and surface hardness, has a high dark resistivity as compared with A-Si, and has an optical band gap of 1. depending on the carbon content.
It is known that it can be changed over the range of 6 to 2.8 eV. An electrophotographic light-receiving member having a photoconductive layer made of such A-SiC is proposed in JP-A-54-145540. In this publication, by using A-Si containing 0.1 to 30 atomic% of carbon as a chemical modifier as a photoconductive layer of a photoreceptive member for electrophotography, a high dark resistance and excellent photosensitivity are obtained. It is disclosed to exhibit photographic properties.

【0007】さらに、特公昭63-35026号公報において
は、導電性支持体上に炭素原子と水素原子及び/または
弗素原子を構成要素として含むA−Si(以下、A−S
iC(H,F)と表記する)中間層と、A−Si光導電
層とを形成した電子写真感光体が提案されており、少な
くとも水素原子及び/または弗素原子を含むA−SiC
(H,F)中間層によって、光導電特性を損なうことな
く、A−Si光導電層のクラックや剥離の低減が図られ
るとされている。
Further, in Japanese Patent Publication No. 63-35026, A-Si (hereinafter referred to as A-S) containing carbon atoms, hydrogen atoms and / or fluorine atoms as constituent elements on a conductive support.
An electrophotographic photoreceptor having an intermediate layer (denoted as iC (H, F)) and an A-Si photoconductive layer has been proposed, and A-SiC containing at least a hydrogen atom and / or a fluorine atom.
It is said that the (H, F) intermediate layer can reduce cracks and peeling of the A-Si photoconductive layer without impairing the photoconductive property.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
A−Si材料で構成された光導電層を有する電子写真用
光受容部材は、暗抵抗値、光感度、光応答性等の電気的
特性、光学的特性、光導電特性、及び使用環境特性の
点、さらには経時安定性及び耐久性の点において、各々
個々には特性の向上が図られているが、総合的な特性向
上を図る上でさらに改良される余地が存在するのが実情
である。
However, a conventional electrophotographic light-receiving member having a photoconductive layer formed of an A-Si material has a low electrical resistance such as dark resistance, photosensitivity, and photoresponsiveness. In terms of optical characteristics, photoconductive characteristics, and use environment characteristics, as well as stability over time and durability, individual characteristics have been improved, but in order to improve overall characteristics, The reality is that there is room for further improvement.

【0009】近年、特に、電子写真装置はさらに高画
質、高速、高耐久性が望まれている。その結果、電子写
真用光受容部材においては電気的特性や光導電特性の更
なる向上とともに、高帯電能、高感度を維持しつつあら
ゆる環境下で大幅に耐久性能を延ばすことが求められて
いる。
In recent years, in particular, electrophotographic apparatuses are desired to have higher image quality, higher speed and higher durability. As a result, in the electrophotographic light-receiving member, it is required to further improve the electrical characteristics and the photoconductive characteristics, and at the same time, to significantly extend the durability performance in all environments while maintaining high charging ability and high sensitivity. ..

【0010】例えば、A−Si材料を電子写真用光受容
部材に適用した場合に、高感度化、高暗抵抗化を同時に
図ろうとすると、従来においては、その使用時において
電位が残留する場合が度々観測され、この種の光受容部
材は長期間使用し続けると、繰り返し使用による疲労の
蓄積が起こって、残像が生ずる、いわゆる「ゴースト」
現象を引き起こすようになる等の不都合な点が少なくな
かった。また、従来は、高帯電能と画像流れの防止とを
高いレベルで両立させることが難しかった。
For example, when an A-Si material is applied to a light-receiving member for electrophotography, if it is attempted to achieve high sensitivity and high dark resistance at the same time, in the conventional case, the potential may remain during use. It is often observed. When this type of light receiving member is used for a long period of time, fatigue builds up due to repeated use, resulting in an afterimage, a so-called "ghost".
There were many inconveniences such as the occurrence of a phenomenon. Further, conventionally, it has been difficult to achieve both high chargeability and prevention of image deletion at a high level.

【0011】さらに、A−Si材料を電子写真用光受容
部材に適用した場合に、室温の変化や、あるいは静電潜
像の安定化を図るよう光受容部材を加熱するための装置
の立ち上がりや温度制御のバラツキによって、光受容部
材の温度が変化するために暗抵抗が変化し、その結果、
連続してコピー画像を得る場合に画像間で画像濃度にむ
らが生じるという不都合な点があった。さらに従来は長
期間使用し続けると、繰り返し使用による疲労のため
に、前述の画像間の画像濃度のむらがより顕著になる場
合が度々観測された。
Further, when the A-Si material is applied to a light receiving member for electrophotography, a change in room temperature or a rise of a device for heating the light receiving member so as to stabilize the electrostatic latent image, or the like. Due to the variation in temperature control, the dark resistance changes because the temperature of the light receiving member changes, and as a result,
When copying images are obtained continuously, there is an inconvenience that unevenness in image density occurs between the images. Further, in the past, it was often observed that, when used for a long period of time, the above-mentioned unevenness in image density between images became more remarkable due to fatigue due to repeated use.

【0012】また、A−Si材料で光受容層を構成する
場合には、その電気的、光導電的特性の改良を図るため
に、水素原子(H)、あるいは弗素原子(F)や塩素原
子(Cl)等のハロゲン原子(X)、及び電気的伝導型
の制御のためにほう素原子(B)や燐原子(P)など
が、あるいはその他の特性改良のために他の原子が各々
構成原子として光導電層中に含有されるが、これらの構
成原子の含有のさせ方如何によっては、形成した層の電
気的あるいは光導電的特性やその均一性に問題が生じる
場合があった。すなわち、光導電層の電荷輸送能力に不
均一な部分があると、画像濃度にむらが生じ、特にハー
フトーン画像においてそれが顕著に現われるため、組織
構造的、電気的、光学的な膜質の高度な均一性が求めら
れている。また、近年の電子写真複写機には、より高画
質、高機能が望まれていることから、写真などのハーフ
トーンを含む原稿を忠実に再現できることも必要不可欠
になっている。そのため、電子写真感光体には、特にハ
ーフトーンのむらの低減が切望されている。特に近年普
及してきたフルカラー複写機においては、このむらは色
の微妙なむらとなり、視覚的に明らかなものとなるた
め、大きな問題となっている。
When the light-receiving layer is made of an A-Si material, a hydrogen atom (H), a fluorine atom (F) or a chlorine atom is used in order to improve its electrical and photoconductive properties. (Cl) and other halogen atoms (X), boron atoms (B) and phosphorus atoms (P) for controlling the electric conductivity type, or other atoms for improving other characteristics. It is contained as atoms in the photoconductive layer, but depending on how these constituent atoms are contained, problems may occur in the electrical or photoconductive properties of the formed layer or in its uniformity. That is, if there is a non-uniform portion in the charge transport ability of the photoconductive layer, uneven image density occurs, which is particularly noticeable in a halftone image, so that there is a high degree of structural, electrical, and optical film quality. Uniform uniformity is required. Further, in recent years, electrophotographic copying machines are desired to have higher image quality and higher functions, and therefore it is also indispensable to faithfully reproduce originals including halftone such as photographs. Therefore, the electrophotographic photosensitive member is particularly desired to reduce unevenness in halftone. In particular, in a full-color copying machine which has been widely used in recent years, this unevenness causes subtle unevenness in color and becomes visually apparent, which is a serious problem.

【0013】また、電子写真装置の画像特性向上のため
に電子写真装置内の光学露光系、現像装置、転写装置等
の改良がなされた結果、電子写真用光受容部材において
も、従来以上の画像特性の向上が求められるようになっ
た。特に、画像の解像力が向上した結果、俗に「ガサツ
キ」と呼ばれる画像濃度の微細な領域における不均一性
の減少や、俗に「ポチ」と呼ばれる、黒点状または白点
状の画像欠陥の減少、特には従来あまり問題視されてい
なかった微小な大きさの「ポチ」の減少が求められるよ
うになってきた。
Further, as a result of improvement of an optical exposure system, a developing device, a transfer device and the like in the electrophotographic apparatus in order to improve the image characteristics of the electrophotographic apparatus, even in the light receiving member for electrophotography, an image higher than the conventional image can be obtained. It has become necessary to improve the characteristics. In particular, as a result of improving the resolution of the image, nonuniformity in a fine area of image density commonly called "Gasaki" is reduced, and black spot or white spot image defects commonly called "Pochi" are reduced. In particular, there has been a demand for a reduction in the "pochi" of a minute size, which has not been regarded as a problem in the past.

【0014】特に「ポチ」に関しては、その原因のほと
んどが球状突起と呼ばれる膜の異常成長であり、その発
生数を減らすことが重要である。また、連続して大量に
画像形成を行った場合に、初期画像より「ポチ」が増加
する現象が見られることがあり、このような長期間の使
用による「ポチ」の増加も低減させることが求められて
いる。この原因の一つとして、連続して画像形成を行う
ことによって転写紙の紙粉の一部が分離帯電器の帯電ワ
イヤーに堆積して異常放電を誘発し、光受容部材の一部
が絶縁破壊されることによって発生する。いわゆる「リ
ークポチ」が挙げられる。さらに、光受容部材の表面に
異常成長が存在することにより、連続して画像形成を繰
り返すうちにクリーニングブレードを傷つけ、クリーニ
ング不良を起こして画像品質を低下させることになると
ともに、分離帯電器への残留トナーの飛散により分離帯
電器の帯電ワイヤーにトナーが堆積して異常放電を誘発
し易くなって、これも「リークポチ」の発生の原因とな
る。さらに、光受容部材が転写紙やクリーニングブレー
ドと摺擦することによって、比較的大きな異常成長部が
欠落することも「ポチ」が増加する原因となる。このよ
うにいくつかの原因から発生する「ポチ」を低減させる
ために、電子写真用光受容部材の材料特性の向上ととも
に、製造工程までを含めた「ポチ」対策が求められるよ
うになっている。
[0014] Especially regarding "potty", most of the causes are abnormal growth of a film called spherical projection, and it is important to reduce the number of occurrence. In addition, when a large number of images are continuously formed, a phenomenon in which “pochi” increases from the initial image may be seen, and the increase in “pochi” due to such long-term use may be reduced. It has been demanded. One of the reasons for this is that by continuously forming images, some of the paper dust on the transfer paper accumulates on the charging wire of the separation charger and induces abnormal discharge, causing a part of the light-receiving member to undergo dielectric breakdown. It is caused by being done. The so-called "leak point" can be mentioned. Furthermore, the presence of abnormal growth on the surface of the light-receiving member damages the cleaning blade during repeated image formation, resulting in poor cleaning, resulting in poor image quality. Due to the scattering of the residual toner, the toner is accumulated on the charging wire of the separation charging device to easily induce abnormal discharge, which also causes "leak spots". Furthermore, the fact that the relatively large abnormal growth portion is missing due to the light receiving member rubbing against the transfer paper or the cleaning blade also causes an increase in “potency”. As described above, in order to reduce the "potency" caused by several causes, it has become necessary to improve the material properties of the electrophotographic light-receiving member and take "potty" measures including the manufacturing process. ..

【0015】また、アモルファスシリコン感光体が本来
持つ高耐久特性によって、感光体を消耗品としてみるの
ではなく、複写機の部品の一部と見なし、感光体の交換
といったメンテナンスから開放される可能性が見え始め
ている。そこで、さらなる新製品には複写機本体と同レ
ベルの、若しくはそれ以上の耐久性が要求されるように
なってきており、電子写真用光受容部材においては電気
的特性や光導電特性を高い状態で維持しつつ耐久性もさ
らに大幅に延ばすことが望まれている。
Further, due to the inherently high durability characteristic of the amorphous silicon photoconductor, the photoconductor is not regarded as a consumable item but is regarded as a part of parts of the copying machine, and there is a possibility that the photoconductor is free from maintenance such as replacement of the photoconductor. Is beginning to be seen. Therefore, further new products are required to have durability equal to or higher than that of the main body of the copying machine, and electrophotographic light-receiving members are required to have high electrical properties and photoconductive properties. It is hoped that the durability will be further extended while maintaining.

【0016】さらに近年、電子写真用光受容部材の製造
コストの低減化を図るために、例えば、後述のマイクロ
波プラズマCVD法等の堆積膜作製方法によって堆積速
度を速くした状態で電子写真用光受容部材の光導電層を
形成すると、膜質に不均一性が生じたり、膜内部の応力
によりA−Si膜に微小なクラックやはがれが生じ、生
産性における歩留まりが減少するという問題点があっ
た。
Further, in recent years, in order to reduce the manufacturing cost of the electrophotographic light-receiving member, for example, the electrophotographic light is increased in a state where the deposition rate is increased by a deposition film forming method such as a microwave plasma CVD method described later. When the photoconductive layer of the receiving member is formed, there is a problem that the film quality becomes non-uniform, and the stress inside the film causes minute cracks and peeling of the A-Si film to reduce the yield in productivity. ..

【0017】従って、A−Si材料そのものの特性改良
が図られる一方で、電子写真用光受容部材を設計する際
に、上記したような問題が解決されるように層構成、各
層の化学的組成、及び電子写真用光受容部材の製造工程
までをも含めた総合的な観点からの改良を図ることが必
要とされている。
Therefore, while the characteristics of the A-Si material itself are improved, the layer constitution and the chemical composition of each layer are solved so as to solve the above problems when designing the electrophotographic light-receiving member. , And it is necessary to improve from a comprehensive point of view including the manufacturing process of the electrophotographic light-receiving member.

【0018】本発明は、上記の点に鑑みなされたもので
あって、上述の如きシリコン原子を母体とする材料で構
成された従来の光受容層を有する電子写真用光受容部材
における諸問題を解決することを目的とするものであ
る。すなわち本発明の主たる目的は、電気的、光学的、
光導電的特性が使用環境にほとんど依存することなく実
質的に常時安定しており、耐光疲労に優れ、繰り返し使
用に際しても劣化現象を起こさず、長期の使用において
画像欠陥や画像流れの変化が全くなく、濃度も高く、特
に耐久性、耐湿性に非常に優れ、残留電位がほとんど観
測されない、シリコン原子を母体とする材料で構成され
た光受容層を有する電子写真用光受容部材を歩留まりよ
く提供することにある。
The present invention has been made in view of the above points, and has various problems in the light receiving member for electrophotography having the conventional light receiving layer composed of the material having the silicon atom as the base as described above. The purpose is to resolve. That is, the main purpose of the present invention is electrical, optical,
The photoconductive properties are practically always stable with almost no dependence on the operating environment, have excellent light fatigue resistance, do not cause deterioration phenomena during repeated use, and have no image defects or changes in image deletion during long-term use. , High concentration, extremely excellent durability and moisture resistance, and almost no residual potential observed, providing a photoreceptive member for electrophotography having a photoreceptive layer composed of a material having a silicon atom as a base material with high yield. To do.

【0019】本発明の他の目的は、支持体上に設けられ
る層と支持体との間や、積層される層の各層間における
密着性に優れ、均一で層品質の高いシリコン原子を母体
とする材料で構成された光受容層を有する電子写真用光
受容部材を提供することにある。
Another object of the present invention is to provide a uniform and high layer quality silicon atom as a base material, which is excellent in adhesion between layers provided on the support and between the support and between layers of the laminated layers. Another object of the present invention is to provide a photoreceptive member for electrophotography, which has a photoreceptive layer composed of the above material.

【0020】本発明の更に他の目的は、電子写真用光受
容部材として適用させた場合、静電像形成のための帯電
処理の際の電荷保持能力が充分であり、ハーフトーンが
鮮明に出て、かつ解像度の高い高品質画像を容易に得る
ことができる、通常の電子写真法が極めて有効に適用さ
れ得る優れた電子写真特性を示すシリコン原子を母体と
する材料で構成された光受容層を有する電子写真用光受
容部材を提供することにある。
Still another object of the present invention is that, when it is applied as a light receiving member for electrophotography, it has a sufficient charge holding ability at the time of charging treatment for electrostatic image formation and produces a clear halftone. In addition, a photoreceptive layer made of a material having a silicon atom as a base material, which has excellent electrophotographic characteristics and can be effectively applied to ordinary electrophotography, capable of easily obtaining high-quality images with high resolution. Another object of the present invention is to provide an electrophotographic light-receiving member having the following.

【0021】[0021]

【課題を解決するための手段】本発明の電子写真用光受
容部材の形成方法は、導電性支持体上に、光導電層及び
表面層を順次積層して成る電子写真用光受容部材の形成
方法において、前記光導電層が、シリコン原子を母体と
し、全層にわたって少なくとも炭素原子と水素原子を含
有し、前記炭素原子を層厚方向に不均一に分布させ、か
つその含有量が前記導電性支持体側で多く、前記表面層
側で少なくなるように前記炭素原子を分布させた非単結
晶材料で構成され、前記表面層が、シリコン原子を母体
とするとともに、炭素原子、水素原子、ハロゲン原子、
酸素原子及び窒素原子を同時に含有する非単結晶材料で
構成され、かつ前記光導電層の堆積膜形成速度を層厚方
向に変化させ、前記導電性支持体側で速く、前記表面層
側で遅くなるようにして前記光導電層を形成することを
特徴とする。
The method for forming a light-receiving member for electrophotography according to the present invention comprises forming a photoconductive layer and a surface layer on a conductive support in order to form a light-receiving member for electrophotography. In the method, the photoconductive layer has a silicon atom as a base material, contains at least carbon atoms and hydrogen atoms over the entire layer, and distributes the carbon atoms nonuniformly in the layer thickness direction, and the content thereof is the conductivity. It is composed of a non-single-crystal material in which the carbon atoms are distributed so that the number of carbon atoms is large on the support side and small on the surface layer side, and the surface layer has a silicon atom as a base and also has carbon atoms, hydrogen atoms, and halogen atoms. ,
It is composed of a non-single-crystal material containing oxygen atoms and nitrogen atoms at the same time, and changes the deposition film formation rate of the photoconductive layer in the layer thickness direction so that it becomes faster on the side of the conductive support and slower on the side of the surface layer. Thus, the photoconductive layer is formed.

【0022】また本発明は前記光導電層が、前記導電性
支持体側に形成される光導電層第2領域と、前記表面層
側に形成される光導電層第1領域からなり、前記光導電
層第2領域が全層にわたって少なくとも炭素原子と水素
原子とを含有し、前記炭素原子を層厚方向に不均一に分
布させ、かつその含有量が前記導電性支持体側で多く、
前記光導電層第1領域側で少なくなるように前記炭素原
子を分布させた非単結晶材料で構成され、前記光導電層
第1領域が、水素原子を1〜40原子%含有する非単結晶
材料で構成されることも特徴とする。
In the present invention, the photoconductive layer comprises a photoconductive layer second region formed on the conductive support side and a photoconductive layer first region formed on the surface layer side. The layer second region contains at least carbon atoms and hydrogen atoms over the entire layer, the carbon atoms are unevenly distributed in the layer thickness direction, and the content is large on the side of the conductive support,
A non-single crystal composed of a non-single-crystal material in which the carbon atoms are distributed so as to be reduced on the photoconductive layer first region side, and the photoconductive layer first region contains 1 to 40 atomic% of hydrogen atoms. It is also characterized by being composed of materials.

【0023】本発明の実施態様として以下が挙げられ
る。
The following are examples of embodiments of the present invention.

【0024】1.前記光導電層(または光導電層第2領
域、以下同様)の前記表面層(光導電層第2領域の場合
は光導電層第1領域、以下同様)側の表面または表面近
傍の堆積膜形成速度を前記導電性支持体側の表面または
表面近傍の堆積膜形成速度に対して30〜90%としてもよ
い。
1. Formation of a deposited film on the surface of the photoconductive layer (or photoconductive layer second region, the same applies hereinafter) on the surface layer (photoconductive layer first region in the case of photoconductive layer second region, the same applies below) side The rate may be 30 to 90% with respect to the rate of the deposited film formation on the surface on the conductive support side or in the vicinity of the surface.

【0025】2.前記光導電層中の前記炭素原子の含有
量を前記導電性支持体側の表面または表面近傍で0.5〜5
0原子%、前記表面層側の表面または表面近傍で実質的
に0%とし、前記光導電層中の前記水素原子の含有量を1
〜40原子%としてもよい。
2. The content of the carbon atoms in the photoconductive layer is 0.5 to 5 on the surface of the conductive support side or in the vicinity of the surface.
0 atomic%, substantially 0% on the surface of the surface layer side or near the surface, the content of the hydrogen atoms in the photoconductive layer is 1
It may be up to 40 atom%.

【0026】3.前記光導電層に弗素原子を含有させて
もよい。
3. The photoconductive layer may contain fluorine atoms.

【0027】4.前記光導電層中の前記弗素原子を層厚
方向に不均一に分布させてもよい。
4. The fluorine atoms in the photoconductive layer may be non-uniformly distributed in the layer thickness direction.

【0028】5.前記光導電層中にさらに酸素原子を同
時に含有させてもよい。
5. The photoconductive layer may further contain oxygen atoms at the same time.

【0029】6.前記光導電層中の前記酸素原子を層厚
方向に不均一に分布させてもよい。
6. The oxygen atoms in the photoconductive layer may be non-uniformly distributed in the layer thickness direction.

【0030】7.前記表面層を、前記表面層中の炭素原
子、酸素原子及び窒素原子の含有量の和が、前記シリコ
ン原子、炭素原子、酸素原子及び窒素原子の含有量の和
に対して40〜90原子%であり、ハロゲン原子の含有
量が20原子%以下、かつ水素原子とハロゲン原子の含
有量の和が30〜70原子%となるように形成してもよ
い。
7. In the surface layer, the sum of the contents of carbon atoms, oxygen atoms and nitrogen atoms in the surface layer is 40 to 90 atom% with respect to the sum of the contents of silicon atoms, carbon atoms, oxygen atoms and nitrogen atoms. The halogen atom content may be 20 atomic% or less, and the sum of the hydrogen atom content and the halogen atom content may be 30 to 70 atomic%.

【0031】8.前記表面層を、前記表面層中の前記酸
素原子及び窒素原子の含有量の和が10原子%以下とな
るように形成してもよい。
8. The surface layer may be formed so that the sum of the contents of the oxygen atom and the nitrogen atom in the surface layer is 10 atom% or less.

【0032】9.前記光導電層が光導電層第2領域と光
導電層第1領域の2つの領域から構成される場合、該光
導電層第1領域の膜厚を0.5〜15μmとしても良い。
9. When the photoconductive layer is composed of two regions, the photoconductive layer second region and the photoconductive layer first region, the film thickness of the photoconductive layer first region may be 0.5 to 15 μm.

【0033】[0033]

【作用】本発明においては、光導電層を、炭素原子の分
布が導電性支持体側から層厚方向に連続的に変化するよ
うに形成させることによって、電荷(フォトキャリア)
の発生と、該発生した電荷の輸送という電子写真用光受
容部材にとって重要な機能を滑らかに接続させることが
可能となり、従来の電荷発生層と電荷輸送層を分離し
た、いわゆる機能分離型光受容部材において問題となっ
ていた電荷発生層と電荷輸送層の間の光学的エネルギー
ギャップの差による電荷の走行不良を防ぎ、光感度の向
上及び残留電位の低減に貢献する。また特に、光導電層
が前記の2つの領域から構成される場合、表面層側に炭
素原子を含まない光導電層第1領域を設けることによ
り、長波長光の吸収率が向上し、さらなる光感度の向上
が達成できる。
In the present invention, the photoconductive layer is formed in such a manner that the distribution of carbon atoms continuously changes from the side of the conductive support in the layer thickness direction, whereby charges (photocarriers) are formed.
It is possible to smoothly connect the generation of electric charges and the transportation of the generated electric charges, which is an important function for the electrophotographic light-receiving member. This prevents defective running of charges due to a difference in optical energy gap between the charge generation layer and the charge transport layer, which is a problem in the member, and contributes to improvement of photosensitivity and reduction of residual potential. Further, in particular, when the photoconductive layer is composed of the above-mentioned two regions, by providing the photoconductive layer first region containing no carbon atom on the surface layer side, the absorption rate of long-wavelength light is improved and further light absorption is improved. An improvement in sensitivity can be achieved.

【0034】また光導電層に炭素原子が含有されている
ことにより光受容層の誘電率を小さくすることができる
ため、層厚当りの静電容量を減少させることができ、高
い帯電能を実現し、光感度において著しい改善が見ら
れ、さらに高電圧に対する耐圧性も向上する。
Further, since the photoconductive layer contains carbon atoms, the dielectric constant of the photoreceptive layer can be reduced, so that the capacitance per layer thickness can be reduced and a high charging ability can be realized. However, the photosensitivity is remarkably improved, and the withstand voltage against a high voltage is also improved.

【0035】また、炭素を多く含む層を支持体側に設置
することにより支持体からの電荷の注入が阻止できるた
め、帯電能が改善され、さらに支持体と光導電層との密
着性が向上し、膜の剥離や微小な欠陥の発生を抑制する
ことができる。
By disposing a layer containing a large amount of carbon on the side of the support, the injection of charges from the support can be prevented, so that the charging ability is improved and the adhesion between the support and the photoconductive layer is improved. Therefore, peeling of the film and generation of minute defects can be suppressed.

【0036】さらに本発明においては、光導電層の堆積
膜形成速度を支持体側で速く、表面層側で遅くすること
により、光導電層中の炭素原子の含有量が層厚方向に変
化することによって生じる堆積膜中のストレスが効果的
に緩和され、かつ堆積膜形成速度の変化と炭素含有量の
変化との相乗効果により堆積膜の緻密性が向上されるた
め、堆積膜の均一性が向上され、また堆積膜中の欠陥が
減少させられる。その結果、とりわけハーフトーンむら
等の画像欠陥を改善することができ、また表面層側から
の電荷の注入をより効果的に阻止することが可能とな
り、さらに高い帯電能を得ることができる。またさら
に、堆積膜の剥離や微小な欠陥の発生を大幅に抑制する
ことができる。
Further, in the present invention, the content of carbon atoms in the photoconductive layer changes in the layer thickness direction by increasing the deposition film formation rate of the photoconductive layer on the support side and slowing it on the surface layer side. The stress in the deposited film caused by the above is effectively relieved, and the denseness of the deposited film is improved by the synergistic effect of the change in the deposition film formation rate and the change in the carbon content, so that the uniformity of the deposited film is improved. And the defects in the deposited film are reduced. As a result, in particular, image defects such as uneven halftone can be improved, and injection of charges from the surface layer side can be blocked more effectively, and higher charging ability can be obtained. Furthermore, peeling of the deposited film and generation of minute defects can be significantly suppressed.

【0037】また、この効果は、前記表面層側の表面又
は表面近傍の堆積膜形成速度を、前記導電性支持体側の
表面又は表面近傍の堆積膜形成速度に対して30〜90
%とすることでより顕著に現われる。
The effect is that the deposition film forming rate on the surface on the surface layer side or near the surface is 30 to 90 with respect to the deposition film forming rate on the surface on the conductive support side or in the vicinity of the surface.
It becomes more prominent when set to%.

【0038】更に本発明においては光導電層に弗素原子
を含有させることも有効である。弗素原子は光導電層に
含有される炭素原子及び水素原子の凝集を抑制し、バン
ドギャップ内の局在準位密度を減少させる効果があり、
ゴーストやハーフトーンむらなどが更に改善される。
Further, in the present invention, it is effective that the photoconductive layer contains a fluorine atom. Fluorine atoms have the effect of suppressing the aggregation of carbon atoms and hydrogen atoms contained in the photoconductive layer, and reducing the localized level density in the band gap,
Ghost and halftone unevenness are further improved.

【0039】更に、本発明においては少なくとも光導電
層中に含有される弗素原子を層厚方向に不均一に分布さ
せることも有効である。弗素原子を層厚方向に不均一に
分布させることにより、炭素原子の含有量が層厚方向に
変化するのに伴い発生する支持体側と表面層側での内部
応力の変化を一層緩和するため、堆積膜中の欠陥が減少
し膜質が向上する。その結果、光受容部材の使用環境の
温度変化に従って光受容部材の特性が変化する、いわゆ
る温度特性を向上させることが可能となり、帯電能、及
びコピー画像間の画像濃度むらを改善することができ
る。
Further, in the present invention, it is also effective that at least the fluorine atoms contained in the photoconductive layer are nonuniformly distributed in the layer thickness direction. By unevenly distributing fluorine atoms in the layer thickness direction, in order to further alleviate the change in internal stress on the support side and the surface layer side that occurs as the content of carbon atoms changes in the layer thickness direction, The defects in the deposited film are reduced and the film quality is improved. As a result, it is possible to improve the so-called temperature characteristic in which the characteristics of the light receiving member change according to the temperature change of the environment in which the light receiving member is used, and it is possible to improve the charging ability and the image density unevenness between copy images. ..

【0040】更に本発明においては、前記光導電層中に
更に酸素原子を含有させることも可能であり、この場
合、弗素原子との相乗効果によって、堆積膜のストレス
をより効果的に緩和して膜の構造欠陥を抑制する。この
ため、A−SiC系の光導電層で問題となる電位シフト
が改善される。
Further, in the present invention, it is possible to further contain oxygen atoms in the photoconductive layer. In this case, the stress of the deposited film can be more effectively relieved by the synergistic effect with the fluorine atoms. Suppresses structural defects in the film. Therefore, the potential shift which is a problem in the A-SiC based photoconductive layer is improved.

【0041】更に加えて、本発明においては、少なくと
も前記光導電層中に含有される酸素原子を層厚方向に不
均一に分布させることにより、堆積膜のストレスを更に
効果的に緩和でき、膜の構造欠陥を大幅に改善すること
が可能となる。このため、特に長期間使用し続けること
による光導電層の劣化を抑制するため、長期間使用後の
感度、残留電位、及び電位シフト等の電子写真特性を大
幅に改善することができる。
In addition, in the present invention, at least the oxygen atoms contained in the photoconductive layer are non-uniformly distributed in the layer thickness direction, whereby the stress of the deposited film can be alleviated more effectively, It is possible to significantly improve the structural defect of. Therefore, since deterioration of the photoconductive layer due to continuous use for a long period of time is suppressed, electrophotographic properties such as sensitivity, residual potential, and potential shift after long-term use can be significantly improved.

【0042】本発明により、高帯電能、高感度、低残留
電位で、ゴーストやガサツキ、及びコピー画像間での画
像濃度むらがなく、優れた電気特性を維持したままで耐
久性が飛躍的に向上された電子写真用光受容部材を得る
ことができ、かつ生産性における歩留まりを大幅に改善
することができる。
According to the present invention, high chargeability, high sensitivity, low residual potential, ghost, rustling, and image density unevenness between copy images are maintained, and durability is dramatically improved while maintaining excellent electrical characteristics. An improved electrophotographic light-receiving member can be obtained, and the yield in productivity can be greatly improved.

【0043】以上のような効果は、例えばマイクロ波C
VD法のように堆積速度を速くして層形成を行った時に
特に顕著に現われる。
The effects as described above are obtained by, for example, the microwave C.
This is particularly noticeable when a layer is formed by increasing the deposition rate as in the VD method.

【0044】また、本発明においては、表面層に炭素原
子、酸素原子、窒素原子を同時に含有させることによ
り、従来の表面層にはない、緻密で機械的強度の高い膜
質を得ることができる。また、ハロゲン原子を20原子
%以下で含有させることにより、光受容体表面の撥水性
が高められるために耐湿性が向上し、高温、多湿の環境
下においても画像流れが発生し難い。さらに膜質が緻密
となるため、帯電処理を受けた際に表面より電荷が注入
されるのを効果的に阻止でき、帯電能、使用環境特性、
耐久性及び電気的耐圧性を向上させることができる。ま
た、表面層中での光の吸収が減少するために感度の向上
を図ることができる。さらに、光導電層と表面層との界
面におけるキャリアの蓄積が減少させることができるた
めに、帯電能を高い状態に維持させても画像流れを抑制
することができる。
Further, in the present invention, by containing carbon atoms, oxygen atoms and nitrogen atoms at the same time in the surface layer, it is possible to obtain a dense and high mechanical strength film which conventional surface layers do not have. When the content of halogen atoms is 20 atom% or less, the water repellency of the surface of the photoreceptor is increased, so that the moisture resistance is improved, and image deletion is less likely to occur even in an environment of high temperature and high humidity. Furthermore, since the film quality becomes dense, it is possible to effectively prevent the injection of electric charges from the surface when subjected to a charging treatment, and to improve the charging ability, operating environment characteristics,
It is possible to improve durability and electrical pressure resistance. Further, since the absorption of light in the surface layer is reduced, the sensitivity can be improved. Furthermore, since the accumulation of carriers at the interface between the photoconductive layer and the surface layer can be reduced, image deletion can be suppressed even if the chargeability is maintained at a high level.

【0045】以下、図面にしたがって本発明における電
子写真用光受容部材について具体例を挙げて詳細に説明
する。
The light receiving member for electrophotography according to the present invention will be described in detail below with reference to the drawings with reference to specific examples.

【0046】図1及び図2は、本発明における電子写真
用光受容部材の好適な層構成を説明するために模式的に
示した構成図である。図1に示す電子写真用光受容部材
10は、電子写真用光受容部材用としての導電性支持体
11の上に、光導電層12と、表面層13からなる層構
成を有し、自由表面14を有する構成のものである。ま
た図2は、図1における光導電層12が光導電層第2領
域15と光導電層第1領域16から構成される例を示す
ものである。
FIGS. 1 and 2 are schematic views schematically showing a preferred layer structure of the electrophotographic light-receiving member of the present invention. An electrophotographic light-receiving member 10 shown in FIG. 1 has a layer structure composed of a photoconductive layer 12 and a surface layer 13 on a conductive support 11 for an electrophotographic light-receiving member, and has a free surface. 14 is provided. Further, FIG. 2 shows an example in which the photoconductive layer 12 in FIG. 1 is composed of a photoconductive layer second region 15 and a photoconductive layer first region 16.

【0047】本発明において使用される導電性支持体1
1としては、例えば、Al,Cr,Mo,Au,In,
Nb,Te,V,Ti,Pt,Pd,Fe等の金属、及
びこれらの合金、例えばステンレス等を挙げることがで
きる。また、ポリエステル、ポリエチレン、ポリカーボ
ネート、セルロースアセテート、ポリプロピレン、ポリ
塩化ビニル、ポリスチレン、ポリアミド等の合成樹脂の
フィルムまたはシート、あるいはガラスやセラミック
ス、等の電気絶縁性支持体の少なくとも光導電層を形成
する側の表面を導電処理した支持体も用いることができ
る。電気絶縁性支持体を用いる場合、光導電層を形成す
る側とは反対側の表面に対しても導電処理を施すこして
おくことはさらに好ましい。
Conductive support 1 used in the present invention
1 is, for example, Al, Cr, Mo, Au, In,
Examples thereof include metals such as Nb, Te, V, Ti, Pt, Pd and Fe, and alloys thereof such as stainless steel. In addition, a film or sheet of a synthetic resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polystyrene, or polyamide, or at least a photoconductive layer forming side of an electrically insulating support such as glass or ceramics. It is also possible to use a support whose surface has been subjected to a conductive treatment. When an electrically insulating support is used, it is more preferable to subject the surface opposite to the side on which the photoconductive layer is formed to a conductive treatment.

【0048】導電性支持体11の形状は平滑表面あるい
は凹凸表面を有する円筒状または板状無端ベルト状とす
ることができ、その厚さは、所望の通りの電子写真用光
受容部材10を形成し得るように適宜決定するが、電子
写真用光受容部材10としての可とう性が要求される場
合には、導電性支持体11としての機能が充分発揮でき
る範囲内で可能な限り薄くすることができる。しかしな
がら、導電性支持体11の製造上及び取り扱い上、ある
いは機械的強度の点から、通常は10μm以上必要とされ
る。
The electroconductive support 11 may be in the form of a cylindrical or plate-shaped endless belt having a smooth surface or an uneven surface, and the thickness thereof forms the electrophotographic light-receiving member 10 as desired. When the flexibility of the electrophotographic light-receiving member 10 is required, the thickness thereof should be as thin as possible within a range where the function of the conductive support 11 can be sufficiently exerted. You can However, it is usually required to be 10 μm or more in terms of manufacturing and handling of the conductive support 11, or from the viewpoint of mechanical strength.

【0049】また、特にレーザー光などの可干渉性光を
用いて像記録を行う場合には、可視画像において現われ
る、いわゆる干渉縞模様による画像不良を解消する目的
で、導電性支持体11の表面に凹凸を設けてもよい。こ
のような凹凸は、特開昭60-168156号公報、同60-178457
号公報、同60-225854号公報に記載された公知の方法に
より形成される。また前記の干渉縞模様による画像不良
を解消する別の方法としては、導電性支持体11の表面
に複数の球状痕跡窪みによる凹凸形状を設けてもよい。
すなわち、導電性支持体11の表面にその電子写真用光
受容部材に要求される解像力よりも微小な前記球状痕跡
窪みによる凹凸を設けることである。このような凹凸は
特開昭61-231561号公報に記載された方法により形成す
ることができる。
In particular, when image recording is performed using coherent light such as laser light, the surface of the conductive support 11 is used for the purpose of eliminating image defects due to so-called interference fringe patterns that appear in visible images. You may provide unevenness in. Such irregularities are disclosed in JP-A-60-168156 and 60-178457.
It is formed by the known method described in Japanese Patent Publication No. 60-225854. As another method of eliminating the image defect due to the interference fringe pattern, the surface of the conductive support 11 may be provided with a concavo-convex shape formed by a plurality of spherical trace depressions.
That is, the surface of the conductive support 11 is provided with irregularities due to the spherical trace depressions that are smaller than the resolution required for the electrophotographic light-receiving member. Such unevenness can be formed by the method described in JP-A-61-231561.

【0050】本発明おける光導電層12(2つの領域か
ら構成される場合は光導電層第2領域15、以下同様)
は、シリコン原子を母体とする、炭素原子、水素原子を
含む非単結晶材料からなり、所望の光導電特性、特に電
荷保持特性、電荷発生特性、及び電荷輸送特性を有する
ものである。
Photoconductive layer 12 in the present invention (photoconductive layer second region 15 when composed of two regions, and so on)
Is composed of a non-single-crystal material containing silicon atoms as a base material and containing carbon atoms and hydrogen atoms, and has desired photoconductive characteristics, in particular, charge retention characteristics, charge generation characteristics, and charge transport characteristics.

【0051】光導電層12に含有される炭素原子は分布
を成し、該分布が層の厚み方向には不均一であって、膜
厚方向の各点において前記導電性支持体11側で含有率
が高く、導電性支持体から離れるにしたがって低くなる
ように分布している。炭素原子の含有量としては、前記
導電性支持体11の設けてある側の表面又は表面近傍
で、0.5原子%未満では、前述の導電性支持体11との
密着性向上及び電荷の注入阻止の機能が悪化し、更に静
電容量の減少による帯電能向上の効果が無くなる。また
50原子%を越えると、残留電位が発生してしまう。この
ため、実用的には0..5〜50原子%、好ましくは1〜40原
子%であり、最適には1〜30原子%とされるのが望まし
い。また、本発明において光導電層12中に水素原子が
含有されることが必要であるが、これはシリコン原子の
未結合手を補償し、層品質の向上、特に光導電性及び電
荷保持特性を向上させるために必須不可欠であるからで
ある。特に炭素原子が含有されることにより、その膜質
を維持するためにより多くの水素原子が必要となるた
め、炭素含有量に従って含有される水素原子量が調整さ
れることが望ましい。よって、導電性支持体11側の表
面又は表面近傍における水素原子の含有量は1〜40原子
%、より好ましくは5〜35原子%、最適には10〜30原子
%とされるのが望ましい。
The carbon atoms contained in the photoconductive layer 12 form a distribution, and the distribution is nonuniform in the thickness direction of the layer, and the carbon atoms are contained on the conductive support 11 side at each point in the film thickness direction. The ratio is high, and the distribution is such that it becomes lower as the distance from the conductive support decreases. When the content of carbon atoms is less than 0.5 atom% on the surface on the side where the conductive support 11 is provided or near the surface, if the content is less than 0.5 atom%, the adhesion with the conductive support 11 is improved and charge injection is prevented. The function deteriorates, and the effect of improving the charging ability due to the decrease in electrostatic capacity disappears. Also
If it exceeds 50 atomic%, a residual potential will be generated. Therefore, practically 0 .. It is 5 to 50 atomic%, preferably 1 to 40 atomic%, and optimally 1 to 30 atomic%. Further, in the present invention, it is necessary for the photoconductive layer 12 to contain hydrogen atoms, which compensates for dangling bonds of silicon atoms and improves the layer quality, in particular, photoconductivity and charge retention characteristics. This is because it is essential for improvement. In particular, since the inclusion of carbon atoms requires more hydrogen atoms to maintain the film quality, it is desirable to adjust the amount of hydrogen atoms contained according to the carbon content. Therefore, the content of hydrogen atoms on the surface of the conductive support 11 side or in the vicinity of the surface is preferably 1 to 40 atom%, more preferably 5 to 35 atom%, and optimally 10 to 30 atom%.

【0052】本発明においては、光導電層12の堆積膜
形成速度を層厚方向に変化させ、導電性支持体11側で
速く、表面層13側で遅くすることによって、堆積膜の
ストレスをより一層効果的に緩和し、かつ堆積膜の緻密
性を向上させて、とりわけハーフトーンむら等の画像特
性をより一層改善し、かつ堆積膜の剥離や微小な欠陥の
発生を大幅に抑制することができる。更に帯電能等の電
気的特性を更に向上させることができる。
In the present invention, the deposition film formation rate of the photoconductive layer 12 is changed in the layer thickness direction so that it is faster on the side of the conductive support 11 and slower on the side of the surface layer 13 so that the stress on the deposited film is further reduced. It is possible to alleviate more effectively, improve the denseness of the deposited film, further improve the image characteristics such as halftone unevenness, and significantly suppress the peeling of the deposited film and the occurrence of minute defects. it can. Furthermore, electric characteristics such as charging ability can be further improved.

【0053】また、この効果は、前記表面層13側の表
面又は表面近傍の堆積膜形成速度を前記導電性支持体1
1側の表面又は表面近傍の堆積膜形成速度に対して30〜
90%とすることでより顕著に現われる。30%よりも低い
場合、堆積膜のストレスの緩和が充分には行われず、堆
積膜の剥離や欠陥の抑制効果が充分でなくなり、また、
90%を越えた場合には堆積膜の緻密化、及び堆積膜のス
トレスの緩和が充分ではなくハーフトーンむら等の画像
特性及び帯電能等の電気的特性の改善が充分ではなくな
る。
In addition, this effect is obtained by controlling the deposition film formation rate on the surface on the surface layer 13 side or in the vicinity of the surface by the conductive support 1.
30 to the deposition rate at the surface on the 1st side or near the surface
It becomes more prominent at 90%. When it is lower than 30%, the stress of the deposited film is not sufficiently relaxed, and the effect of suppressing the peeling of the deposited film and defects is insufficient, and
If it exceeds 90%, the densification of the deposited film and the relaxation of the stress of the deposited film are not sufficient, and the image characteristics such as uneven halftone and the electrical characteristics such as charging ability are not sufficiently improved.

【0054】更に本発明の光導電層12には弗素原子を
含有させることも有効である。弗素原子は光導電層12
中に含有される炭素原子及び水素原子の凝集を抑制し、
バンドギャップ内の局在準位密度を減少させる効果があ
り、ゴーストやハーフトーンむらなどが更に改善され
る。光導電層12中の弗素原子の含有量は1原子ppmよ
り少なくすると、弗素原子によるゴースト、ハーフトー
ンむらの改善効果が充分発揮されず、また95原子ppmを
越えると逆に膜質が低下し、ゴースト現象を生じるよう
になってしまう。従って、弗素原子の含有量を、実用的
には1〜95原子ppm、より好ましくは3〜80原子ppm、最適
には5〜50原子ppmとするのが望ましい。
Further, it is effective that the photoconductive layer 12 of the present invention contains a fluorine atom. Fluorine atom is the photoconductive layer 12
Suppresses the aggregation of carbon atoms and hydrogen atoms contained in,
It has an effect of reducing the localized level density in the band gap, and further improves ghost and uneven halftone. If the content of fluorine atoms in the photoconductive layer 12 is less than 1 atomic ppm, the effect of improving the ghost and halftone unevenness due to the fluorine atoms will not be sufficiently exerted, and if it exceeds 95 atomic ppm, the film quality will be deteriorated. The ghost phenomenon comes to occur. Therefore, it is desirable that the content of fluorine atoms is practically 1 to 95 atomic ppm, more preferably 3 to 80 atomic ppm, and most preferably 5 to 50 atomic ppm.

【0055】特に、光導電層12に前述のごとき範囲で
炭素原子を含有せしめた時に、弗素原子の含有量を上記
の範囲に設定することにより、光導電特性、画像特性及
び耐久性が著しく向上することが確認された。
In particular, when the photoconductive layer 12 contains carbon atoms within the above range, the content of fluorine atoms is set within the above range, whereby the photoconductive characteristics, image characteristics and durability are remarkably improved. It was confirmed to do.

【0056】更に本発明においては、少なくとも光導電
層12中に含有される弗素原子を層厚方向に不均一に分
布させることも有効である。弗素原子を層厚方向に不均
一に分布させることにより、炭素原子の含有量の層厚方
向に対する変化に伴い発生する導電性支持体11側と表
面層13側での内部応力の変化を緩和できるため、堆積
膜中の欠陥が減少し膜質が向上する。その結果、使用環
境の温度変化に従って電子写真用光受容部材10の特性
が変化する、いわゆる温度特性を向上させることが可能
となり、帯電能、及びコピー画像間の画像濃度むらを改
善することができる。
Further, in the present invention, it is effective that at least fluorine atoms contained in the photoconductive layer 12 are nonuniformly distributed in the layer thickness direction. By unevenly distributing fluorine atoms in the layer thickness direction, changes in internal stress on the side of the conductive support 11 and the surface layer 13 caused by changes in the content of carbon atoms in the layer thickness direction can be relaxed. Therefore, the defects in the deposited film are reduced and the film quality is improved. As a result, it is possible to improve the so-called temperature characteristic in which the characteristics of the electrophotographic light-receiving member 10 change according to the temperature change of the use environment, and it is possible to improve the charging ability and the image density unevenness between copy images. ..

【0057】また、本発明においては、前記光導電層1
2中に酸素原子を含有させることも可能であり、この場
合、弗素原子との相乗効果によって堆積膜のストレスを
より効果的に緩和して膜の構造欠陥を抑制する。このた
め、A−SiC系の光導電層で問題となる電位シフトが
改善される。
In the present invention, the photoconductive layer 1 is also used.
It is also possible to contain oxygen atoms in 2, and in this case, the synergistic effect with fluorine atoms more effectively relieves the stress of the deposited film and suppresses structural defects of the film. Therefore, the potential shift which is a problem in the A-SiC based photoconductive layer is improved.

【0058】光導電層中の酸素原子含有量は、10原子pp
mより少なくすると、更なる膜の密着性向上及び異常成
長の発生の抑制を図ることが充分にはできず、電位シフ
トも大きくなる。5000原子ppmを越えると、電子写真の
高速化に対応するための電気特性が充分ではなくなる。
従って、酸素原子の含有量としては、10〜5000原子ppm
とするのが好ましい。
The oxygen atom content in the photoconductive layer is 10 atom pp.
When it is less than m, it is not possible to sufficiently improve the adhesion of the film and suppress the occurrence of abnormal growth, and the potential shift becomes large. If it exceeds 5000 atomic ppm, the electrical characteristics will not be sufficient to support the speeding up of electrophotography.
Therefore, the content of oxygen atoms is 10 to 5000 atomic ppm
Is preferred.

【0059】更に加えて、本発明においては、少なくと
も前記光導電層12中に含有される酸素原子を層厚方向
に不均一に分布させることにより、堆積膜のストレスを
更に効果的に緩和でき、膜の構造欠陥を大幅に抑制する
ことが可能となる。このため、特に長期間使用し続ける
ことによる光導電層の劣化が抑制され、長期間使用後の
感度、残留電位、及び電位シフト等の電子写真特性を大
幅に改善することができる。
Further, in the present invention, at least the oxygen atoms contained in the photoconductive layer 12 are non-uniformly distributed in the layer thickness direction, whereby the stress of the deposited film can be alleviated more effectively, It is possible to significantly suppress structural defects in the film. Therefore, deterioration of the photoconductive layer due to long-term use is suppressed, and electrophotographic properties such as sensitivity, residual potential, and potential shift after long-term use can be significantly improved.

【0060】本発明において、光導電層12は真空堆積
膜形成方法によって、所望特性が得られるように適宜成
膜パラメーターの数値条件を設定して作製される。具体
的には、例えばグロー放電法(低周波CVD法、高周波
CVD法またはマイクロ波CVD法等の交流放電CVD
法、あるいは直流放電CVD法等)、スパッタリング
法、真空蒸着法、イオンプレーティング法、光CVD
法、熱CVD法などの数々の薄膜堆積法によって形成す
ることができる。これらの薄膜堆積法は、製造条件、設
備資本投資下の負荷程度、製造規模、作製される電子写
真用光受容部材に要求される特性等の要因によって適宜
選択されるが、所望の特性を有する電子写真用光受容部
材を製造するに当っての条件の制御が比較的容易である
ことから、グロー放電法、スパッタリング法、イオンプ
レーティング法が好適である。そしてこれらの方法を同
一装置系内で併用して薄膜堆積形成を行ってもよい。例
えば、グロー放電法によってA−SiC(H)の光導電
層を形成するには、基本的にはシリコン原子(Si)を
供給し得るSi供給用の原料ガスと、炭素原子(C)を
供給し得るC供給用の原料ガスと、水素原子(H)を供
給し得るH供給用の原料ガスを、内部を減圧にし得る反
応容器内へ所望のガス状態で導入して、該反応容器内に
グロー放電を生起させ、予め所定の位置に設置されてあ
る所定の導電性支持体の表面上にA−SiC(H)から
なる層を形成すればよい。
In the present invention, the photoconductive layer 12 is produced by the vacuum deposition film forming method by appropriately setting the numerical conditions of film forming parameters so that desired characteristics can be obtained. Specifically, for example, glow discharge method (AC discharge CVD such as low frequency CVD method, high frequency CVD method or microwave CVD method)
Method, or DC discharge CVD method), sputtering method, vacuum deposition method, ion plating method, photo CVD method
And various thin film deposition methods such as thermal CVD. These thin film deposition methods have desired characteristics, although they are appropriately selected depending on factors such as manufacturing conditions, load level under capital investment, manufacturing scale, and characteristics required for the electrophotographic light-receiving member to be manufactured. The glow discharge method, the sputtering method, and the ion plating method are preferable because the control of the conditions for manufacturing the electrophotographic light-receiving member is relatively easy. Then, these methods may be used together in the same apparatus system to perform thin film deposition. For example, in order to form a photoconductive layer of A-SiC (H) by the glow discharge method, basically, a source gas for supplying Si, which can supply silicon atoms (Si), and a carbon atom (C) are supplied. A raw material gas for C supply capable of supplying hydrogen and a raw material gas for H supply capable of supplying hydrogen atoms (H) are introduced in a desired gas state into a reaction vessel capable of reducing the pressure inside, and then introduced into the reaction vessel. A glow discharge is caused to occur, and a layer made of A-SiC (H) may be formed on the surface of a predetermined conductive support which is installed in a predetermined position in advance.

【0061】本発明において使用されるSi供給用ガス
となり得る物質としては、SiH4,Si26,Si3
8,Si410等のガス状態の、またはガス化し得る水素
化珪素(シラン類)が有効に使用されるものとして挙げ
られ、なかでも層作製時の取扱易さ、Si供給効率の良
さ等の点でSiH4,Si26が好ましいものとして挙
げられる。またこれらのSi供給用の原料ガスは必要に
応じてH2,He,Ar,Ne等のガスにより希釈して
使用しても良い。
Materials that can be used as the Si supply gas in the present invention include SiH 4 , Si 2 H 6 , and Si 3 H.
Silicon hydrides (silanes) in a gas state such as 8 , Si 4 H 10 or the like that can be gasified are mentioned as being effectively used. Above all, they are easy to handle during layer formation, have good Si supply efficiency, etc. In this respect, SiH 4 and Si 2 H 6 are preferable. The H 2 depending on the raw material gas for these Si supply need, He, Ar, may be used as diluted with a gas Ne or the like.

【0062】本発明において、炭素原子導入用の原料物
質となり得るものとしては、常温常圧でガス状の、また
は少なくとも層形成条件下で容易にガス化し得るものが
採用されるのが望ましい。
In the present invention, as the raw material for introducing carbon atoms, it is desirable to adopt a gaseous substance at room temperature and atmospheric pressure, or at least a substance that can be easily gasified under the layer forming conditions.

【0063】炭素原子(C)導入用の原料物質として
は、CとHを構成原子とする、例えば炭素数1〜5の飽
和炭化水素、炭素数2〜4のエチレン系炭化水素、炭素
数2〜3のアセチレン系炭化水素等が挙げられる。具体
的には、飽和炭化水素としては、メタン、エタン、プロ
パン、n-ブタン、ペンタンなどであり、エチレン系炭化
水素としては、エチレン、プロピレン、1−ブテン、2
−ブテン、イソブチレン、ペンテン、アセチレン系炭化
水素としては、アセチレン、メチルアセチレン、ブチン
等が挙げられる。
The raw material for introducing carbon atoms (C) includes C and H as constituent atoms, for example, saturated hydrocarbon having 1 to 5 carbon atoms, ethylene hydrocarbon having 2 to 4 carbon atoms, and 2 carbon atoms. ~ 3 acetylene hydrocarbons and the like. Specifically, the saturated hydrocarbon is methane, ethane, propane, n-butane, pentane and the like, and the ethylene hydrocarbon is ethylene, propylene, 1-butene, 2
Examples of butene, isobutylene, pentene and acetylene hydrocarbons include acetylene, methylacetylene and butyne.

【0064】また、SiとCとを構成原子とする原料ガ
スとしては、Si(CH34、Si(C254等のケ
イ化アルキルを挙げることができる。
Further, as the source gas containing Si and C as constituent atoms, alkyl silicide such as Si (CH 3 ) 4 and Si (C 2 H 5 ) 4 can be cited.

【0065】この他に、炭素原子(C)の導入に加え
て、弗素原子の導入も行えるという点から、CF4,C2
6,C38,C410等のフッ化炭素化合物、CHF3
等の弗素置換炭化水素も使用できる。
In addition to this, in addition to the introduction of carbon atoms (C), it is also possible to introduce fluorine atoms, so that CF 4 , C 2
Fluorocarbon compounds such as F 6 , C 3 F 8 and C 4 F 10 , CHF 3
Fluorine-substituted hydrocarbons such as

【0066】水素原子(H)を光導電層12中に構造的
に導入するには、上記の他に、H2、あるいはSiH4
Si26,Si38,Si410等の水素化珪素と、S
iを供給するためのシリコンまたはシリコン化合物とを
反応容器中に共存させて放電を生起させることでも行う
ことができる。
In order to structurally introduce hydrogen atoms (H) into the photoconductive layer 12, in addition to the above, H 2 or SiH 4 ,
Si hydrides such as Si 2 H 6 , Si 3 H 8 and Si 4 H 10 , and S
It can also be carried out by causing silicon or a silicon compound for supplying i to coexist in the reaction vessel to cause discharge.

【0067】本発明において使用される弗素供給用ガス
として有効なのは、例えば、弗素ガス、弗素化物、弗素
を含むハロゲン間化合物、弗素で置換されたシラン誘導
体等のガス状のまたはガス化し得る弗素化合物が好まし
く挙げれる。また、更にはシリコン原子と弗素原子とを
構成要素とするガス状のまたはガス化し得る、弗素原子
を含む水素化珪素化合物も有効なものとして挙げること
ができる。本発明おいて好適に使用し得る弗素化合物と
しては、具体的には弗素ガス(F2)、BrF、Cl
F、ClF3、BrF3、BrF5、IF3、IF7等のハ
ロゲン間化合物を挙げることができる。
Effective as the fluorine supply gas used in the present invention is, for example, a gaseous or gasifiable fluorine compound such as fluorine gas, a fluoride, an interhalogen compound containing fluorine, a silane derivative substituted with fluorine, or the like. Are preferred. Further, a gaseous or gasifiable silicon hydride compound containing a fluorine atom, which contains silicon atoms and fluorine atoms as constituent elements, can be cited as an effective one. Specific examples of the fluorine compound that can be preferably used in the present invention include fluorine gas (F 2 ), BrF and Cl.
Interhalogen compounds such as F, ClF 3 , BrF 3 , BrF 5 , IF 3 and IF 7 can be mentioned.

【0068】弗素原子を含む珪素化合物、いわゆる弗素
原子で置換されたシラン誘導体としては、具体的には、
SiF4,Si26等のフッ化珪素が好ましいものとし
て挙げることができる。このような弗素原子を含む珪素
化合物を採用してグロー放電等によって本発明の特徴的
な電子写真用光受容部材を形成する場合には、Si供給
用ガスとしての水素化珪素ガスを使用しなくても、所定
の導電性支持体11上に弗素原子を含むnc−SiC
(H,F)からなる光導電層12を形成することができ
るが、形成される光導電層12中に導入される水素原子
の導入割合の制御を一層容易にするために、これらのガ
スにさらに水素ガスまたは水素原子を含む珪素化合物の
ガスも所望量混合して層形成することが好ましい。ま
た、各ガスは単独種のみではなく所定の混合比で複数種
混合しても差し支えない。
As a silicon compound containing a fluorine atom, a so-called silane derivative substituted with a fluorine atom, specifically,
Silicon fluorides such as SiF 4 and Si 2 F 6 can be mentioned as preferable ones. When such a silicon compound containing a fluorine atom is used to form the characteristic electrophotographic light-receiving member of the present invention by glow discharge or the like, a silicon hydride gas as a Si supply gas is not used. However, nc-SiC containing a fluorine atom is provided on the predetermined conductive support 11.
The photoconductive layer 12 composed of (H, F) can be formed, but in order to make it easier to control the introduction ratio of hydrogen atoms introduced into the photoconductive layer 12 to be formed, these gases are used. Further, it is preferable to form a layer by mixing a desired amount of hydrogen gas or a silicon compound gas containing hydrogen atoms. Further, each gas may be mixed not only with one kind but also with plural kinds at a predetermined mixing ratio.

【0069】本発明において、弗素原子供給用ガスとし
て上記されたフッ化物あるいは弗素を含む珪素化合物が
有効なものとして使用されるものであるが、その他に、
HF,SiH3F,SiH22,SiHF3等の弗素置換
水素化珪素、等々のガス状態のあるいはガス化し得る物
質も有効な光導電層形成用の原料物質として挙げること
ができる。これらの物質のうち、水素原子を含む弗素化
物は、光導電層形成の際に層中に弗素原子の導入と同時
に、電気的あるいは光電的特性の制御に極めて有効な水
素原子も導入されるので、本発明においては好適な弗素
原子供給用ガスとして使用される。
In the present invention, the above-mentioned fluorides or silicon compounds containing fluorine are effectively used as the fluorine atom supplying gas.
Fluorine-substituted silicon hydrides such as HF, SiH 3 F, SiH 2 F 2 and SiHF 3, and the like in a gas state or a gasifiable substance can also be mentioned as effective raw material for forming the photoconductive layer. Among these substances, the fluorinated compounds containing hydrogen atoms are introduced with hydrogen atoms, which are extremely effective for controlling electrical or photoelectrical properties, at the same time as the introduction of fluorine atoms into the layer during formation of the photoconductive layer. In the present invention, it is used as a suitable fluorine atom supply gas.

【0070】本発明において酸素原子(O)導入用のガ
スとなり得るものとして有効に使用される出発物質は、
例えば、酸素、オゾン、一酸化窒素、二酸化窒素、一二
酸化窒素、三二酸化窒素、四三酸化窒素、五二酸化窒素
等を挙げることができる。
In the present invention, the starting material effectively used as a gas for introducing oxygen atoms (O) is
For example, oxygen, ozone, nitric oxide, nitrogen dioxide, nitrogen monoxide, nitrogen trioxide, nitrogen trioxide, nitrogen pentaoxide, etc. can be mentioned.

【0071】この他に、炭素原子(C)の導入に加え
て、酸素原子(O)の導入も行えるという点から、C
O,CO2等を挙げることができる。
In addition to the above, in addition to the introduction of carbon atom (C), the introduction of oxygen atom (O) is also possible.
O, CO 2, etc. can be mentioned.

【0072】光導電層12中に含有させる水素原子及び
/又は弗素原子の量を制御するには、例えば導電性支持
体11の温度、水素原子あるいは弗素原子を含有させる
ために使用される原料物質の反応容器内への導入量、放
電電力等を制御すればよい。更に本発明においては、光
導電層12には必要に応じて伝導性を制御する原子
(M)を含有させることが好ましい。伝導性を制御する
原子(M)は光導電層12中に万遍無く均一に分布した
状態で含有させてもよいし、あるいは層厚方向に不均一
な分布状態で含有している部分があってもよい。
In order to control the amount of hydrogen atoms and / or fluorine atoms contained in the photoconductive layer 12, for example, the temperature of the conductive support 11 and the raw material used for containing hydrogen atoms or fluorine atoms are used. It is sufficient to control the introduction amount into the reaction container, the discharge power, and the like. Further, in the present invention, it is preferable that the photoconductive layer 12 contains an atom (M) that controls conductivity, if necessary. Atoms (M) for controlling conductivity may be contained in the photoconductive layer 12 in a uniformly distributed state, or may be contained in a nonuniformly distributed state in the layer thickness direction. May be.

【0073】上記の伝導性を制御する原子(M)として
は、半導体分野における、いわゆる不純物を挙げること
ができ、p型伝導特性を与える周期律表第3B族に属す
る元素(以後「第3B族元素」と略記する)又はn型伝
導特性を与える周期律表第5B族に属する元素(以後
「第5B族元素」と略記する)を用いることができる。
第3B族元素としては、具体的には、B,Al,Ga,
In,Tl等があり、特にB,Al,Gaが好適であ
る。第5B族元素としては、具体的にはP,As,S
b,Bi等があり、特にP,Asが好適である。
Examples of the atom (M) for controlling the conductivity include so-called impurities in the field of semiconductors, which are elements belonging to Group 3B of the periodic table (hereinafter referred to as “Group 3B”) that give p-type conductivity. Or an element belonging to Group 5B of the periodic table (hereinafter abbreviated as “Group 5B element”) that gives n-type conductivity.
As the Group 3B element, specifically, B, Al, Ga,
There are In, Tl, etc., and B, Al, Ga are particularly preferable. As the Group 5B element, specifically, P, As, S
b, Bi and the like, and P and As are particularly preferable.

【0074】光導電層12に含有させる伝導性を制御す
る原子(M)の含有量としては、好ましくは1×10-3
〜5×104原子ppm、より好ましくは1×10-2〜1×
104原子ppm、最適には1×10-1〜5×103原子ppm
とするのが望ましい。特に光導電層12において炭素原
子(C)の含有量が1×103原子ppm以下の場合、光導
電層12に含有される原子(M)の含有量としては、好
ましくは1×10-3〜1×103原子ppmとするのが望ま
しく、炭素原子含有量が1×103原子ppmを越える場合
は、原子(M)の含有量としては、好ましくは1×10
-1〜5×104原子ppmとするのが望ましい。
The content of atoms (M) controlling the conductivity contained in the photoconductive layer 12 is preferably 1 × 10 −3.
~ 5 x 10 4 atomic ppm, more preferably 1 x 10 -2 to 1 x
10 4 atom ppm, optimally 1 × 10 -1 to 5 × 10 3 atom ppm
Is desirable. In particular, when the content of carbon atoms (C) in the photoconductive layer 12 is 1 × 10 3 atomic ppm or less, the content of atoms (M) contained in the photoconductive layer 12 is preferably 1 × 10 −3. desirable to the to 1 × 10 3 atomic ppm, the content of the case where the carbon atom content exceeds 1 × 10 3 atom ppm, atom (M), preferably 1 × 10
-1 to 5 × 10 4 atomic ppm is preferable.

【0075】光導電層12中に伝導性を制御する原子、
例えば、第3B族元素あるいは第5B族元素を構造的に
導入するには、層形成の際に、第3B族元素導入用の原
料物質あるいは第5B族元素導入用の原料物質ガス状態
で反応容器中に光導電層12を形成するための他のガス
と共に導入してやればよい。第3B族元素導入用の原料
物質あるいは第5B族元素導入用の原料物質となり得る
ものとしては、常温常圧でガス状のあるいは少なくとも
層形成条件下で容易にガス化し得るものが採用されるの
が望ましい。
Atoms for controlling conductivity in the photoconductive layer 12,
For example, in order to structurally introduce a Group 3B element or a Group 5B element, a reaction vessel in a gas state of a raw material for introducing a Group 3B element or a raw material for introducing a Group 5B element during layer formation It may be introduced together with another gas for forming the photoconductive layer 12. As a raw material for introducing a Group 3B element or a raw material for introducing a Group 5B element, a gaseous substance at room temperature and atmospheric pressure or at least a gas which can be easily gasified under the layer forming condition is adopted. Is desirable.

【0076】第3B族元素導入用の原料物質としては、
具体的には、例えばホウ素原子導入用としては、B
26、B410、B59、B511、B610、B612
614等の水素化ホウ素、BF3、BCl3、BBr3
のハロゲン化ホウ素等が挙げられる。その他の第3B族
元素導入用の原料物質としては、AlCl3、GaC
3、Ga(CH33、InCl3、TlCl3等を挙げ
ることができる。
As the raw material for introducing the Group 3B element,
Specifically, for example, for introducing a boron atom, B
2 H 6 , B 4 H 10 , B 5 H 9 , B 5 H 11 , B 6 H 10 , B 6 H 12 ,
Examples thereof include borohydrides such as B 6 H 14 and borohalides such as BF 3 , BCl 3 and BBr 3 . Other raw materials for introducing the Group 3B element include AlCl 3 and GaC.
Examples include l 3 , Ga (CH 3 ) 3 , InCl 3 , TlCl 3 and the like.

【0077】第5B族元素導入用の原料物質として、本
発明において有効に使用されるものは、例えばリン原子
導入用としては、PH3、P24等の水素化リン、PH4
I、PF3、PF5、PCl3、PCl5、PBr3、PB
5、PI3等のハロゲン化リンが挙げられる。その他の
第5B族元素導入用の原料物質として、AsH3、As
3、AsCl3、AsBr3、AsF5、SbH3、Sb
3、SbF5、SbCl3、SbCl5、BiH3、Bi
Cl3、BiBr3等を挙げることができる。
As the raw material for introducing the Group 5B element, those effectively used in the present invention include phosphorus hydrides such as PH 3 and P 2 H 4 and PH 4 for introducing phosphorus atoms.
I, PF 3 , PF 5 , PCl 3 , PCl 5 , PBr 3 , PB
Examples thereof include phosphorus halides such as r 5 and PI 3 . As other raw materials for introducing a Group 5B element, AsH 3 , As
F 3, AsCl 3, AsBr 3 , AsF 5, SbH 3, Sb
F 3 , SbF 5 , SbCl 3 , SbCl 5 , BiH 3 , Bi
Examples thereof include Cl 3 and BiBr 3 .

【0078】尚、これらの伝導性を制御する原子(M)
導入用の原料物質は、必要に応じて、H2、He、A
r、Ne等のガスで希釈して使用してもよい。
The atom (M) that controls the conductivity of these
Raw materials for introduction are H 2 , He, A
You may dilute with gas, such as r and Ne, and may use it.

【0079】更に本発明においては、光導電層12中に
周期律表第1A族、第2A族、第6A族、第8族から選
択される少なくとも1種の元素を0.1〜10000ppm程度含
有させてもよい。前記元素は前記光導電層12中に万遍
無く均一に分布されていてもよいし、あるいは前記光導
電層12中に万遍無く含有されてはいるが、層厚方向に
対し不均一に分布する状態で含有している部分があって
も差し支えない。
Further, in the present invention, the photoconductive layer 12 contains at least one element selected from Group 1A, Group 2A, Group 6A, and Group 8 of the periodic table in an amount of 0.1 to 10000 ppm. Good. The element may be evenly distributed in the photoconductive layer 12, or may be uniformly distributed in the photoconductive layer 12, but may be unevenly distributed in the layer thickness direction. There is no problem even if there is a portion containing it in the state of being.

【0080】第1A族元素としては、具体的にはLi,
Na,Kを挙げることができ、第2A族元素としては、
Be,Mg,Ca,Sr,Baを挙げることができる。
また第6A族元素としては、Cr,Mo,Wを挙げるこ
とができ、第8族元素としては、Fe,Co,Ni等を
挙げることができる。
As the Group 1A element, specifically, Li,
Na and K can be mentioned, and as the Group 2A element,
Be, Mg, Ca, Sr, Ba can be mentioned.
Further, as the Group 6A element, Cr, Mo, W can be cited, and as the Group 8 element, Fe, Co, Ni, etc. can be cited.

【0081】本発明において、光導電層12の層厚は所
望の電子写真特性が得られること及び経済的効果等の点
から適宜所望に従って決定され、好ましくは5〜50μm、
より好ましくは10〜40μm、最適には15〜30μmとするの
が望ましい。
In the present invention, the layer thickness of the photoconductive layer 12 is appropriately determined as desired in view of obtaining desired electrophotographic characteristics and economical effects, and is preferably 5 to 50 μm.
It is more preferably 10 to 40 μm, and most preferably 15 to 30 μm.

【0082】本発明の目的を達成し得る特性を有するA
−SiC(H)からなる光導電層12を形成するには、
導電性支持体11の表面温度、反応容器内のガス圧を所
望に従って適宜設定する必要がある。
A having properties capable of achieving the objects of the present invention
To form the photoconductive layer 12 made of —SiC (H),
It is necessary to appropriately set the surface temperature of the conductive support 11 and the gas pressure in the reaction vessel as desired.

【0083】導電性支持体11の表面温度(Ts)は、
層設計にしたがって適宜最適範囲が選択されるが、通常
の場合、好ましくは20〜500℃、より好ましくは50〜480
℃、最適には100〜450℃とするのが望ましい。
The surface temperature (Ts) of the conductive support 11 is
The optimum range is appropriately selected according to the layer design, but in the usual case, preferably 20 to 500 ° C, more preferably 50 to 480.
It is desirable to set the temperature to 100 ° C, optimally 100 to 450 ° C.

【0084】反応容器内のガス圧も同様に層設計にした
がって適宜最適範囲が選択されるが、通常の場合、好ま
しくは1×10-5〜10Torr、より好ましくは5×10-5〜3 To
rr、最適には1×10-4〜1 Torrとするのが望ましい。
The gas pressure in the reaction vessel is likewise appropriately selected according to the layer design, but in the usual case, it is preferably 1 × 10 −5 to 10 Torr, more preferably 5 × 10 −5 to 3 Tor.
rr, optimally 1 × 10 -4 to 1 Torr.

【0085】本発明においては、層作製ファクターとし
て上記の導電性支持体11の表面温度、ガス圧の数値範
囲が挙げられるが、これらのファクターは通常は独立的
に別々に決められるものではなく、所望の特性を有する
光導電層12を形成すべく相互的かつ有機的関連性に基
づいて、これらのファクターの最適値を決めるのが望ま
しい。
In the present invention, the layer production factors include the numerical range of the surface temperature and the gas pressure of the conductive support 11 described above, but these factors are not usually independently determined separately. It is desirable to determine optimal values for these factors based on their mutual and organic relevance to form photoconductive layer 12 with the desired properties.

【0086】尚、本発明において、光導電層12の前記
導電性支持体11側に、少なくともアルミニウム原子、
シリコン原子、炭素原子及び水素原子が層厚方向に不均
一な分布状態で含有される層領域を有することが望まし
い。
In the present invention, at least an aluminum atom is provided on the electroconductive support 11 side of the photoconductive layer 12.
It is desirable to have a layer region in which silicon atoms, carbon atoms and hydrogen atoms are contained in a non-uniform distribution state in the layer thickness direction.

【0087】本発明においては、光導電層12は光導電
層第2領域15と光導電層第1領域16の2つ領域から
構成されてもよい。その場合、光導電層第2領域15は
上述の光導電層12と同じ組成を有し、上述の方法によ
り導電性支持体11上に形成される。光導電層第1領域
16は、構成要素として、シリコン原子と水素原子を含
むA−Si(H)からなり、所望の光導電特性、特に電
荷発生特性、電荷輸送特性を有する。
In the present invention, the photoconductive layer 12 may be composed of two regions, a photoconductive layer second region 15 and a photoconductive layer first region 16. In that case, the photoconductive layer second region 15 has the same composition as the photoconductive layer 12 described above, and is formed on the conductive support 11 by the method described above. The photoconductive layer first region 16 is made of A-Si (H) containing silicon atoms and hydrogen atoms as a constituent element, and has desired photoconductive characteristics, particularly charge generation characteristics and charge transport characteristics.

【0088】光導電層第1領域16は、シリコン原子、
水素原子からなる非単結晶質であり、水素原子を1〜40
原子%含有して形成される。この光導電層第1領域16
はフォトキャリアを効率よく生成し、長波長の光の吸収
を強め、感度を向上させるために設けられる。また、他
の効果としては、帯電極性と逆の電気極性のキャリアの
走行性が光導電層第2領域15よりもよいため、ゴース
トが軽減されるという予期せぬ効果も得られる。
The first region 16 of the photoconductive layer is a silicon atom,
It is a non-single crystalline material consisting of hydrogen atoms, with 1 to 40 hydrogen atoms.
It is formed by containing atomic%. This photoconductive layer first region 16
Is provided to efficiently generate photocarriers, enhance absorption of long-wavelength light, and improve sensitivity. Further, as another effect, since the traveling property of the carrier having the electric polarity opposite to the charging polarity is better than that of the second region 15 of the photoconductive layer, an unexpected effect that the ghost is reduced can be obtained.

【0089】上述の光導電層12(光導電層第2領域1
5)同様、光導電層第1領域16も真空堆積膜形成方法
によって、所望特性が得られるように適宜成膜パラメー
ターの数値条件を設定して作製される。具体的には、例
えば、グロー放電法によってA−Si(H)の光導電層
第1領域16を形成するには、基本的にはシリコン原子
(Si)を供給し得るSi供給用の原料ガスと、水素原
子(H)を供給し得るH供給用の原料ガスを、内部を減
圧にし得る反応容器内に所望のガス状態で導入して、該
反応容器内にグロー放電を生起させ、予め所定の位置に
設置されている所定の支持体表面上の前記光導電層第2
領域15の上にA−Si(H)からなる層を形成すれば
よい。
The above-mentioned photoconductive layer 12 (photoconductive layer second region 1)
5) Similarly, the photoconductive layer first region 16 is also produced by the vacuum deposition film forming method by appropriately setting the numerical conditions of the film forming parameters so that desired characteristics can be obtained. Specifically, for example, in order to form the A-Si (H) photoconductive layer first region 16 by a glow discharge method, basically, a raw material gas for supplying Si, which can supply silicon atoms (Si), can be used. And a raw material gas for supplying H capable of supplying hydrogen atoms (H) in a desired gas state in a reaction vessel capable of reducing the pressure inside thereof, to cause glow discharge in the reaction vessel, and predetermined The photoconductive layer second on the surface of a predetermined support installed at the position
A layer made of A-Si (H) may be formed on the region 15.

【0090】本発明において使用されるSi供給用ガス
となり得る物質としては、SiH4,Si26,Si3
8,Si410等のガス状態の、またはガス化し得る水素
化珪素(シラン類)が有効に使用されるものとして挙げ
られ、なかでも層作製時の取扱易さ、Si供給効率の良
さ等の点でSiH4,Si26が好ましいものとして挙
げられる。またこれらのSi供給用の原料ガスは必要に
応じてH2,He,Ar,Ne等のガスにより希釈して
使用しても良い。
Materials that can be used as the Si supply gas in the present invention include SiH 4 , Si 2 H 6 , and Si 3 H.
Silicon hydrides (silanes) in a gas state such as 8 , Si 4 H 10 or the like that can be gasified are mentioned as being effectively used. Above all, they are easy to handle during layer formation, have good Si supply efficiency, etc. In this respect, SiH 4 and Si 2 H 6 are preferable. The H 2 depending on the raw material gas for these Si supply need, He, Ar, may be used as diluted with a gas Ne or the like.

【0091】形成される光導電層第1領域16中に導入
される水素原子の導入割合の制御を一層容易にするため
には、これらのガスに更に水素ガスまたは水素原子を含
む珪素化合物のガスも所望量混合して層形成することが
好ましい。また各ガスは単独種のみでなく所定の混合比
で複数種混合しても差し支えないものである。
In order to more easily control the introduction ratio of hydrogen atoms introduced into the photoconductive layer first region 16 to be formed, hydrogen gas or a silicon compound gas containing hydrogen atoms is added to these gases. Also, it is preferable to mix a desired amount to form a layer. Further, each gas may be mixed not only with one kind but also with plural kinds at a predetermined mixing ratio.

【0092】水素原子(H)を光導電層第1領域16中
に構造的に導入するには、上記の他に、H2、あるいは
SiH4,Si26,Si38,Si410等の水素化珪
素と、Siを供給するためのシリコンまたはシリコン化
合物とを反応容器中に共存させて放電を生起させること
でも行うことができる。
In order to structurally introduce hydrogen atoms (H) into the first region 16 of the photoconductive layer, in addition to the above, H 2 , or SiH 4 , Si 2 H 6 , Si 3 H 8 , and Si 4 are used. It can also be performed by causing silicon hydride such as H 10 and silicon or a silicon compound for supplying Si to coexist in the reaction vessel to cause discharge.

【0093】光導電層第1領域16中に含有される水素
原子の量を制御するには、例えば導電性支持体11の温
度、水素原子を含有させるために使用される原料物質の
反応容器内への導入量、放電電力等を制御すればよい。
In order to control the amount of hydrogen atoms contained in the first region 16 of the photoconductive layer, for example, the temperature of the conductive support 11 and the inside of the reaction vessel of the raw material used for containing the hydrogen atoms are controlled. It is sufficient to control the amount of introduction into, the discharge power, and the like.

【0094】更に本発明においては、光導電層第1領域
16にも必要に応じて伝導性を制御する前記原子(M)
を含有させることが好ましい。伝導性を制御する原子
(M)は、光導電層第1領域16中に万遍無く均一に分
布した状態で含有されてもよいし、あるいは層厚方向に
対し不均一に分布する状態で含有している部分があって
も差し支えない。
Further, in the present invention, the atom (M) for controlling the conductivity is also included in the first region 16 of the photoconductive layer, if necessary.
Is preferably contained. The conductivity-controlling atoms (M) may be contained in the photoconductive layer first region 16 in a uniformly distributed state, or may be contained in a non-uniformly distributed state in the layer thickness direction. There is no problem even if there is a part that does.

【0095】光導電層第1領域16に含有される伝導性
を制御する原子(M)の含有量としては、好ましくは1
×10-3〜5×104原子ppm、より好ましくは1×10-2〜1×1
04原子ppm、最適には1×10-1〜5×103原子ppmとされる
のが望ましい。光導電層第1領域16中に伝導性を制御
する原子を構造的に導入するには、上述の光導電層12
の形成方法で述べた方法がとられる。
The content of atoms (M) controlling the conductivity contained in the first region 16 of the photoconductive layer is preferably 1
× 10 -3 to 5 × 10 4 atomic ppm, more preferably 1 × 10 -2 to 1 × 1
It is desirable that the concentration is 0 4 atomic ppm, optimally 1 × 10 -1 to 5 × 10 3 atomic ppm. To structurally introduce conductivity-controlling atoms into the photoconductive layer first region 16, the above-described photoconductive layer 12 is used.
The method described in the method of forming a sheet is used.

【0096】更に光導電層第1領域16中にも前記した
周期律表第1A族、第2A族、第6A族、第8族から選
択される少なくとも1種の元素を0.1〜10000ppm程度含
有させてもよい。前記元素は前記光導電層第1領域16
中に万遍無く均一に分布されていてもよいし、あるいは
万遍無く含有されてはいるが、層厚方向に対し不均一に
分布する状態で含有している部分があっても差し支えな
い。
Further, the first region 16 of the photoconductive layer contains 0.1 to 10000 ppm of at least one element selected from Group 1A, Group 2A, Group 6A and Group 8 of the periodic table. May be. The element is the photoconductive layer first region 16
It may be evenly distributed in the inside, or may be contained evenly, but there may be a part in which it is contained in a state of being unevenly distributed in the layer thickness direction.

【0097】本発明において、光導電層第1領域16の
層厚は所望の電子写真特性が得られること、及び経済的
効果の点から適宜所望に従って決定され、好ましくは0.
5〜15μm、より好ましくは1〜10μm、最適には1〜5μm
とするのが望ましい。
In the present invention, the layer thickness of the first region 16 of the photoconductive layer is appropriately determined as desired in view of obtaining desired electrophotographic characteristics and economical effects, and is preferably 0.
5-15 μm, more preferably 1-10 μm, optimally 1-5 μm
Is desirable.

【0098】本発明の目的を達成し得る特性を有するA
−Si(H)からなる光導電層第1領域16を形成する
には、導電性支持体11の表面温度、反応容器内のガス
圧を所望に従って適宜設定する必要がある。
A having characteristics capable of achieving the object of the present invention
In order to form the photoconductive layer first region 16 made of —Si (H), it is necessary to appropriately set the surface temperature of the conductive support 11 and the gas pressure in the reaction vessel as desired.

【0099】導電性支持体11の表面温度(Ts)は、
層設計にしたがって適宜最適範囲が選択されるが、通常
の場合、好ましくは20〜500℃、より好ましくは50〜480
℃、最適には100〜450℃とするのが望ましい。
The surface temperature (Ts) of the conductive support 11 is
The optimum range is appropriately selected according to the layer design, but in the usual case, preferably 20 to 500 ° C, more preferably 50 to 480.
It is desirable to set the temperature to 100 ° C, optimally 100 to 450 ° C.

【0100】反応容器内のガス圧も同様に層設計にした
がって適宜最適範囲が選択されるが、通常の場合、好ま
しくは1×10-5〜10 Torr、より好ましくは5×10-5〜3 T
orr、最適には1×10-4〜1 Torrとするのが望ましい。
Similarly, the gas pressure in the reaction vessel is appropriately selected in accordance with the layer design, but in the usual case, it is preferably 1 × 10 −5 to 10 Torr, more preferably 5 × 10 −5 to 3 Torr. T
Orr, optimally 1 × 10 -4 to 1 Torr is desirable.

【0101】本発明においては、層作製ファクターとし
て上記の導電性支持体11の表面温度、ガス圧の数値範
囲が挙げられるが、これらのファクターは通常は独立的
に別々に決められるものではなく、所望の特性を有する
光導電層第1領域16を形成すべく相互的かつ有機的関
連性に基づいて、これらのファクターの最適値を決める
のが望ましい。
In the present invention, the layer production factors include the numerical range of the surface temperature and the gas pressure of the conductive support 11 described above, but these factors are not usually independently determined separately. It is desirable to determine optimum values for these factors based on their mutual and organic relevance to form the photoconductive layer first region 16 having the desired characteristics.

【0102】本発明の電子写真用光受容部材10におい
ては、光導電層12と表面層13との間、光導電層12
が2つの領域から構成される場合は光導電層第1領域1
6と表面層13との間に、組成を連続的に変化させた層
領域を設けてもよい。該層領域を設けることにより各層
間での密着性をより向上させることができる。
In the electrophotographic light-receiving member 10 of the present invention, the photoconductive layer 12 is provided between the photoconductive layer 12 and the surface layer 13.
Is composed of two regions, the photoconductive layer first region 1
Between 6 and the surface layer 13, a layer region whose composition is continuously changed may be provided. By providing the layer region, the adhesion between the layers can be further improved.

【0103】本発明における表面層13は、構成要素と
してシリコン原子と炭素原子、窒素原子及び酸素原子を
同時に含有し、さらに水素原子及びハロゲン原子とを含
有する非単結晶材料(以下、「nc−SiC,O,N
(H,X)と表記する)で構成される。
The surface layer 13 in the present invention contains a silicon atom, a carbon atom, a nitrogen atom and an oxygen atom as constituent elements at the same time, and further contains a hydrogen atom and a halogen atom (hereinafter referred to as "nc- SiC, O, N
(Denoted as (H, X)).

【0104】該表面層13に含有される、炭素原子、酸
素原子及び窒素原子は、該層中に万遍無く均一に分布し
た状態で含有されてもよいし、あるいは層厚方向に対し
不均一に分布する状態で含有している部分があっても差
し支えない。
The carbon atoms, oxygen atoms and nitrogen atoms contained in the surface layer 13 may be contained in the layer in a state of being uniformly distributed, or may be nonuniform in the layer thickness direction. It does not matter even if there is a portion that is contained in the state of being distributed in.

【0105】該表面層13の全層領域に含有される、炭
素原子、酸素原子及び窒素原子は、同時に含有される時
に著しい高暗抵抗化、高硬度化等の効果を奏する。表面
層13中に含有される炭素原子、酸素原子及び窒素原子
の含有量の和は、シリコン原子、炭素原子、酸素原子及
び窒素原子の含有量の和に対して好適には40〜90原
子%、より好適には45〜85原子%、最適には50〜
80原子%とされるのが望ましい。本発明における効果
をより一層発揮するには、酸素原子と窒素原子の含有量
の和は10原子%以下が好ましい。
Carbon atoms, oxygen atoms and nitrogen atoms contained in the entire surface region of the surface layer 13 have effects of remarkably high dark resistance and high hardness when they are contained at the same time. The sum of the contents of carbon atoms, oxygen atoms and nitrogen atoms contained in the surface layer 13 is preferably 40 to 90 atom% with respect to the sum of the contents of silicon atoms, carbon atoms, oxygen atoms and nitrogen atoms. , More preferably 45 to 85 atom%, most preferably 50 to
It is preferably set to 80 atom%. In order to further exert the effect of the present invention, the total content of oxygen atoms and nitrogen atoms is preferably 10 atom% or less.

【0106】また、本発明における表面層13に含有さ
れる水素原子およびハロゲン原子はnc−SiC,O,
N(H,X)内に存在する未結合手を補償し、膜質の向
上に効果を奏し、光導電層12と表面層13の界面にト
ラップされるキャリアーを減少させるため、画像流れを
改善する。更にハロゲン原子は表面層13の撥水性を向
上させるので、水蒸気の吸着による高湿流れをも減少さ
せる。表面層13中のハロゲン原子の含有量は好適には
20原子%以下であり、更に水素原子とハロゲン原子の
含有量の和は好適には30〜70原子%、より好適には
35〜65原子%、最適には40〜60原子%とするの
が望ましい。
The hydrogen atoms and halogen atoms contained in the surface layer 13 in the present invention are nc-SiC, O,
The dangling bonds existing in N (H, X) are compensated, the film quality is improved, and the carriers trapped at the interface between the photoconductive layer 12 and the surface layer 13 are reduced, so that the image deletion is improved. .. Further, since the halogen atom improves the water repellency of the surface layer 13, the high humidity flow due to the adsorption of water vapor is also reduced. The content of halogen atoms in the surface layer 13 is preferably 20 atom% or less, and the sum of the content of hydrogen atoms and halogen atoms is preferably 30 to 70 atom%, more preferably 35 to 65 atom. %, Most preferably 40 to 60 atomic%.

【0107】本発明において、酸素原子(O)導入用の
ガスとなり得るものとして有効に使用される出発物質
は、常温常圧でガス状のまたは少なくとも層形成条件下
で容易にガス化し得るものが採用されるのが望ましい。
例えば、酸素(O2)、オゾン(O3)等を挙げることが
できる。
In the present invention, the starting materials that are effectively used as the gas for introducing oxygen atoms (O) are those that are gaseous at room temperature and atmospheric pressure or can be easily gasified under at least the layer forming conditions. It is desirable to be adopted.
For example, oxygen (O 2), ozone (O 3), and the like.

【0108】本発明において、窒素原子(N)導入用の
ガスとなり得るものとして有効に使用される出発物質
は、常温常圧でガス状のまたは少なくとも層形成条件下
で容易にガス化し得るものが採用されるのが望ましい。
例えば、窒素(N2)、アンモニア(NH3)等を挙げる
ことができる。
In the present invention, the starting material effectively used as a gas for introducing a nitrogen atom (N) is one which is gaseous at room temperature and atmospheric pressure or can be easily gasified under at least the layer forming conditions. It is desirable to be adopted.
For example, nitrogen (N 2), ammonia (NH 3), and the like.

【0109】また、酸素原子と窒素原子とを同時に導入
し得る出発物質としては、一酸化窒素(NO)、二酸化
窒素(NO2)、一二酸化窒素(N2O)、三二酸化窒素
(N23)、四三酸化窒素(N34)、五二酸化窒素
(N25)等を挙げることができる。
Further, as a starting material capable of simultaneously introducing an oxygen atom and a nitrogen atom, nitric oxide (NO), nitrogen dioxide (NO 2 ), nitrogen monoxide (N 2 O), nitrogen trioxide (N 2) O 3 ), nitrogen trioxide (N 3 O 4 ), nitrogen pentoxide (N 2 O 5 ), and the like.

【0110】これらの他に、炭素原子の導入に加えて酸
素原子の導入も行えるという点から、CO、CO2等の
化合物も出発物質として挙げることができる。
In addition to these, compounds such as CO and CO 2 can also be mentioned as starting materials because oxygen atoms can be introduced in addition to carbon atoms.

【0111】本発明において使用されるハロゲン供給用
ガスとして有効なものは、例えば、ハロゲンガス、ハロ
ゲン化物、ハロゲン間化合物、ハロゲン原子で置換され
たシラン誘導体等のガス状のまたはガス化し得る弗素化
合物が好ましく挙げれる。また、更にはシリコン原子と
ハロゲン原子とを構成要素とするガス状のまたはガス化
し得る、ハロゲン原子を含む水素化珪素化合物も有効な
ものとして挙げることができる。
Effective halogen-supplying gas used in the present invention is, for example, a gaseous or gasifiable fluorine compound such as a halogen gas, a halide, an interhalogen compound, and a silane derivative substituted with a halogen atom. Are preferred. Further, a gaseous or gasifiable silicon hydride compound containing a halogen atom, which contains a silicon atom and a halogen atom as constituent elements, can also be cited as an effective one.

【0112】本発明おいて好適に使用し得るハロゲン化
合物としては、具体的には弗素ガス(F2)、BrF、
ClF、ClF3、BrF3、BrF5、IF3、IF7
のハロゲン間化合物を挙げることができる。
The halogen compound which can be preferably used in the present invention is specifically fluorine gas (F 2 ), BrF,
Interhalogen compounds such as ClF, ClF 3 , BrF 3 , BrF 5 , IF 3 and IF 7 can be mentioned.

【0113】ハロゲン原子を含む珪素化合物、いわゆる
ハロゲン原子で置換されたシラン誘導体としては、具体
的には、SiF4,Si26等のフッ化珪素が好ましい
ものとして挙げることができる。このようなハロゲン原
子を含む珪素化合物を採用してグロー放電等によって本
発明の特徴的な電子写真用光受容部材を形成する場合に
は、Si供給用ガスとしての水素化珪素ガスを使用しな
くても、ハロゲン原子を含むnc−SiC,O,N
(H,X)からなる表面層13を形成することができる
が、形成される表面層13中に導入される水素原子の導
入割合の制御を一層容易にするために、これらのガスに
さらに水素ガスまたは水素原子を含む珪素化合物のガス
も所望量混合して層形成することが好ましい。また、各
ガスは単独種のみではなく所定の混合比で複数種混合し
ても差し支えない。
As a silicon compound containing a halogen atom, that is, a silane derivative substituted with a halogen atom, specifically, silicon fluoride such as SiF 4 and Si 2 F 6 can be mentioned as a preferable example. When such a silicon compound containing a halogen atom is adopted to form the characteristic electrophotographic light-receiving member of the present invention by glow discharge or the like, a silicon hydride gas as a Si supply gas is not used. However, nc-SiC, O, N containing a halogen atom
The surface layer 13 made of (H, X) can be formed, but in order to more easily control the introduction ratio of hydrogen atoms introduced into the formed surface layer 13, hydrogen is added to these gases. It is preferable to mix a gas or a gas of a silicon compound containing a hydrogen atom in a desired amount to form a layer. Further, each gas may be mixed not only with one kind but also with plural kinds at a predetermined mixing ratio.

【0114】本発明において、ハロゲン原子供給用ガス
として上記されたハロゲン化物あるいはハロゲンを含む
珪素化合物が有効なものとして使用されるものである
が、その他に、HF,SiH3F,SiH22,SiH
3等のハロゲン置換水素化珪素、等々のガス状態のあ
るいはガス化し得る物質も有効な表面層形成用の原料物
質として挙げることができる。これらの物質のうち、水
素原子を含むハロゲン化物は、表面層形成の際に層中に
ハロゲン原子の導入と同時に、電気的あるいは光電的特
性の制御に極めて有効な水素原子も導入されるので、本
発明においては好適なハロゲン原子供給用ガスとして使
用される。
In the present invention, the above-mentioned halide or silicon compound containing halogen is effectively used as the gas for supplying halogen atoms, but in addition, HF, SiH 3 F, SiH 2 F 2 , SiH
Halogen-substituted silicon hydride such as F 3 and the like, and substances in a gas state or capable of being gasified can also be mentioned as effective raw material for forming the surface layer. Among these substances, a halide containing a hydrogen atom is introduced at the same time as the introduction of the halogen atom into the layer during the formation of the surface layer, since a hydrogen atom extremely effective in controlling the electrical or photoelectric properties is also introduced, In the present invention, it is used as a suitable gas for supplying halogen atoms.

【0115】更に本発明においては、表面層13中にも
前記した周期律表第1A族、第2A族、第6A族、第8
族から選択される少なくとも1種の元素を0.1〜10000pp
m程度含有させてもよい。これらの元素は前記表面層1
3中に万遍無く均一に分布されていてもよいし、あるい
は万遍無く含有されてはいるが、層厚方向に対し不均一
に分布する状態で含有している部分があっても差し支え
ない。
Further, in the present invention, the surface layer 13 also includes the above-mentioned groups 1A, 2A, 6A and 8A of the periodic table.
0.1-10000 pp of at least one element selected from the group
You may contain about m. These elements are included in the surface layer 1
3 may be evenly distributed evenly, or even if it is evenly contained, there may be a part that is unevenly distributed in the layer thickness direction. ..

【0116】本発明において使用されるSi供給用ガス
となり得る物質及び炭素原子導入用の原料物質として
は、前記光導電層形成の際に挙げた物質が同様に使用さ
れる。本発明において、表面層13の層厚は所望の電子
写真特性が得られること、及び経済的効果の点から適宜
所望に従って決定され、好ましくは0.01〜30μm、より
好ましくは0.05〜20μm、最適には0.1〜10μmとするの
が望ましい。
As the substance that can be the gas for supplying Si and the raw material for introducing carbon atoms used in the present invention, the same substances as those mentioned above when forming the photoconductive layer can be used. In the present invention, the layer thickness of the surface layer 13 is appropriately determined as desired in view of obtaining desired electrophotographic characteristics and economical effects, and is preferably 0.01 to 30 μm, more preferably 0.05 to 20 μm, and most preferably. It is desirable that the thickness is 0.1 to 10 μm.

【0117】本発明において、nc−SiC,O,N
(H,X)で構成される表面層13を形成するには、前
述の光導電層12を形成する方法と同様の真空堆積法が
採用される。
In the present invention, nc-SiC, O, N
To form the surface layer 13 composed of (H, X), a vacuum deposition method similar to the method of forming the photoconductive layer 12 described above is adopted.

【0118】本発明の目的を達成し得る特性を有する表
面層13を形成するには、導電性支持体11の表面温
度、反応容器内のガス圧が前記表面層の特性を左右する
重要な要因である。
In order to form the surface layer 13 having the characteristics capable of achieving the object of the present invention, the surface temperature of the conductive support 11 and the gas pressure in the reaction vessel are important factors that influence the characteristics of the surface layer. Is.

【0119】導電性支持体11の表面温度は適宜最適範
囲が選択されるが、好ましくは20〜500℃、より好まし
くは50〜480℃、最適には100〜450℃とするのが望まし
い。
The surface temperature of the conductive support 11 is selected in an optimum range, but is preferably 20 to 500 ° C, more preferably 50 to 480 ° C, and most preferably 100 to 450 ° C.

【0120】反応容器内のガス圧も適宜最適範囲が選択
されるが、好ましくは1×10-5〜10Torr、より好ましく
は5×10-5〜3 Torr、最適には1×10-4〜1 Torrとするの
が望ましい。
The gas pressure in the reaction vessel is appropriately selected in an optimum range, but is preferably 1 × 10 −5 to 10 Torr, more preferably 5 × 10 −5 to 3 Torr, most preferably 1 × 10 −4 to 1 Torr is preferred.

【0121】本発明においては、表面層13を形成する
重要なファクターとして上記の導電性支持体11の表面
温度、ガス圧の数値範囲が挙げられるが、これらのファ
クターは通常は独立的に別々に決められるものではな
く、所望の特性を有する表面層13を形成すべく相互的
かつ有機的関連性に基づいて、これらのファクターの最
適値を決めるのが望ましい。
In the present invention, the important factors for forming the surface layer 13 include the above-mentioned surface temperature of the conductive support 11 and the numerical ranges of gas pressure, but these factors are usually independently and separately. It is not determinable, but it is desirable to determine the optimum values of these factors on the basis of mutual and organic relationships to form the surface layer 13 having the desired properties.

【0122】以下、高周波プラズマCVD法及びマイク
ロ波プラズマCVD法によって堆積膜を形成するための
装置及び形成方法について詳述する。
The apparatus and method for forming the deposited film by the high frequency plasma CVD method and the microwave plasma CVD method will be described in detail below.

【0123】図4は高周波プラズマCVD(以下「RF
−PCVD」と表記する)法による電子写真用光受容部
材の製造装置の一例を示す模式的な構成図である。該装
置の構成は以下の通りである。
FIG. 4 shows high frequency plasma CVD (hereinafter referred to as "RF
It is a schematic block diagram which shows an example of the manufacturing apparatus of the photoreceptor member for electrophotography by the method (it describes with -PCVD). The configuration of the device is as follows.

【0124】該装置は大別すると、堆積装置4100、
原料ガスの供給装置4200、反応容器4111内を減
圧にするための排気装置(図示せず)から構成されてい
る。堆積装置4100中の反応容器4111内には導電
性円筒状支持体4112、支持体加熱用ヒーター411
3、原料ガス導入管4114が設置され、さらに高周波
マッチングボックス4115が接続されている。
The apparatus is roughly classified into a deposition apparatus 4100,
It comprises a source gas supply device 4200 and an exhaust device (not shown) for reducing the pressure inside the reaction vessel 4111. A conductive cylindrical support 4112 and a heater 411 for heating the support are provided in the reaction vessel 4111 in the deposition apparatus 4100.
3. The source gas introduction pipe 4114 is installed, and the high frequency matching box 4115 is further connected.

【0125】原料ガス供給装置4200は、SiH4
2,CH4,NO,NH3,SiF4等の原料ガスのボン
ベ4221〜4226とバルブ4231〜4236,4
241〜4246,4251〜4256及びマスフロー
コントローラー4211〜4216から構成され、各原
料ガスのボンベはバルブ4260を介して反応容器41
11内のガス導入管4114に接続されている。
The source gas supply device 4200 is composed of SiH 4 ,
Cylinders 4221-4226 of raw material gases such as H 2 , CH 4 , NO, NH 3 , SiF 4 and valves 4231-4236, 4
241 to 4246, 4251 to 4256 and mass flow controllers 4211 to 4216, and a cylinder of each source gas is a reaction vessel 41 via a valve 4260.
11 is connected to the gas introduction pipe 4114.

【0126】該装置を用いた堆積膜の形成は、例えば以
下のように行うことができる。
The deposited film can be formed using the apparatus, for example, as follows.

【0127】まず、反応容器4111内に円筒状支持体
4112を設置し、不図示の排気装置(例えば真空ポン
プ)により反応容器4111内を排気する。続いて、支
持体加熱用ヒーター4113により円筒状支持体411
2の温度を20〜500℃の所定の温度に制御する。
First, a cylindrical support 4112 is installed in the reaction container 4111, and the reaction container 4111 is evacuated by an exhaust device (not shown) (for example, a vacuum pump). Subsequently, the cylindrical support 411 is heated by the heater 4113 for heating the support.
The temperature of 2 is controlled to a predetermined temperature of 20 to 500 ° C.

【0128】堆積膜形成用の原料ガスを反応容器411
1内に流入させるには、ガスボンベのバルブ4231〜
4236、反応容器のリークバルブ4117が閉じられ
ていることを確認し、また、流入バルブ4241〜42
46、流出バルブ4251〜4256、補助バルブ42
60が開かれていることを確認して、まずメインバルブ
4118を開いて反応容器4111及びガス配管内41
16を排気する。
A source gas for forming a deposited film is supplied to the reaction vessel 411.
The gas cylinder valve 4231-
4236, make sure that the leak valve 4117 of the reaction vessel is closed, and check the inflow valves 4241-42.
46, outflow valves 4251 to 4256, auxiliary valve 42
After confirming that 60 is open, first open the main valve 4118 to open the reaction vessel 4111 and the gas pipe 41.
Evacuate 16.

【0129】次に真空計4119の読みが約5×10-5
Torrになった時点で補助バルブ4260、流出バルブ4
251〜4256を閉じる。その後、ガスボンベ422
1〜4226より各ガスをバルブ4231〜4236を
開いて導入し、圧力調整器4261〜4266により各
ガス圧を2Kg/cm2に調整する。次に流入バルブ4
241〜4246を徐々に開けて、各ガスをマスフロー
コントローラー4211〜4216内に導入する。
Next, the vacuum gauge 4119 reads about 5 × 10 -5.
Auxiliary valve 4260, outflow valve 4 when Torr is reached
251 to 4256 are closed. Then, the gas cylinder 422
Each gas is introduced from 1 to 4226 by opening the valves 4231 to 4236, and each gas pressure is adjusted to 2 Kg / cm 2 by the pressure regulators 4261 to 4266. Next inflow valve 4
The valves 241 to 4246 are gradually opened to introduce the respective gases into the mass flow controllers 4211 to 4216.

【0130】以上のようにして成膜の準備が完了した
後、円筒状支持体4112上に光導電層、表面層の各層
の形成を行う。
After the preparation for film formation is completed as described above, the photoconductive layer and the surface layer are formed on the cylindrical support 4112.

【0131】円筒状支持体4112が所定の温度になっ
たところで流出バルブ4251〜4256のうち所望の
ガスボンベに接続されているバルブ、及び補助バルブ4
260を徐々に開き、ガスボンベ4221〜4226か
ら所望のガスをガス導入管4114を介して反応容器4
111内に導入する。次にマスフローコントローラー4
211〜4216によって各原料ガスが所定の流量にな
るように調整する。その際、反応容器4111内の圧力
が1Torr以下の所定の圧力になるように真空計4119
を見ながらメインバルブ4118の開口を調整する。内
圧が安定したところで、RF電源(不図示)を所定の電
力に設定して、高周波マッチングボックス4115を通
じて反応容器4111内にRF電力を導入し、RFグロ
ー放電を生起させる。この放電エネルギーによって反応
容器内に導入された原料ガスが分解され、円筒状支持体
4112上に所定のシリコンを主成分とする堆積膜が形
成されるところとなる。所望の膜厚の形成が行われた
後、RF電力の供給を止め、流出バルブを閉じて反応容
器へのガスの流入を止め、堆積膜の形成を終える。
When the cylindrical support 4112 reaches a predetermined temperature, one of the outflow valves 4251 to 4256 connected to a desired gas cylinder, and the auxiliary valve 4
260 is gradually opened, and a desired gas is supplied from the gas cylinders 4221 to 4226 through the gas introduction pipe 4114 to the reaction vessel 4.
Introduced into 111. Next, mass flow controller 4
211-4216 are adjusted so that each source gas has a predetermined flow rate. At that time, the vacuum gauge 4119 is adjusted so that the pressure inside the reaction vessel 4111 becomes a predetermined pressure of 1 Torr or less.
The opening of the main valve 4118 is adjusted while watching. When the internal pressure is stable, the RF power source (not shown) is set to a predetermined power, and the RF power is introduced into the reaction vessel 4111 through the high frequency matching box 4115 to cause the RF glow discharge. The source energy introduced into the reaction vessel is decomposed by this discharge energy, and a predetermined deposited film containing silicon as a main component is formed on the cylindrical support 4112. After the desired film thickness is formed, the supply of RF power is stopped, the outflow valve is closed to stop the gas from flowing into the reaction vessel, and the formation of the deposited film is completed.

【0132】同様の操作を複数回繰り返すことによっ
て、所望の多層構造の層が形成される。
By repeating the same operation a plurality of times, a layer having a desired multi-layer structure is formed.

【0133】それぞれの層を形成する際には、必要なガ
ス以外の流出バルブは全て閉じられていることは言うま
でもない。また、それぞれのガスが反応容器4111
内、流出バルブ4251〜4256から反応容器411
1に至る配管内に残留することを避けるため、流出バル
ブ4251〜4256を閉じ、補助バルブ4260を開
き、さらにメインバルブ4118を全開にして系内を一
旦高真空に排気する操作を必要に応じて行う。
It goes without saying that all the outflow valves except for the necessary gas are closed when forming each layer. In addition, each gas is a reaction container 4111.
Inside, outflow valves 4251 to 4256 to reaction vessel 411
In order to avoid remaining in the pipe reaching 1, the outflow valves 4251 to 4256 are closed, the auxiliary valve 4260 is opened, the main valve 4118 is fully opened, and the system is temporarily evacuated to a high vacuum. To do.

【0134】また、膜形成の均一化を図る場合は、膜形
成の間、円筒状支持体4112を駆動装置(不図示)に
よって所定の速度で回転させても良い。
In order to make the film formation uniform, the cylindrical support 4112 may be rotated at a predetermined speed by a driving device (not shown) during the film formation.

【0135】上述のガス種及びバルブ操作は各々の層の
作製条件にしたがって変更が加えられることは言うまで
もない。
It goes without saying that the above-mentioned gas species and valve operation may be changed according to the production conditions of each layer.

【0136】円筒状支持体の加熱方法は、真空仕様であ
る発熱体によって行えばよく、そのような真空仕様の発
熱体としては、具体的には、シース状ヒーターの巻き付
けヒーター、板状ヒーター、セラミックヒーター等の電
気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の熱放
射ランプ発熱体、液体、気体等を温媒とする熱交換手段
による発熱体等が挙げられる。加熱手段の表面材質はス
テンレス、ニッケル、アルミニウム、銅等の金属類、セ
ラミックス、耐熱性高分子樹脂等を使用することができ
る。また、それ以外にも、反応容器4111以外に加熱
専用の容器を設け、円筒状支持体4112を加熱した
後、反応容器4111内に真空中で円筒状支持体を搬送
する等の方法が用いられる。
The heating method for the cylindrical support may be carried out by a heating element having a vacuum specification. Specific examples of the heating element having such a vacuum specification include a wound heater of a sheathed heater, a plate heater, Examples thereof include an electric resistance heating element such as a ceramic heater, a heat radiation lamp heating element such as a halogen lamp and an infrared lamp, and a heating element by a heat exchange means using a liquid, a gas or the like as a heating medium. As the surface material of the heating means, metals such as stainless steel, nickel, aluminum and copper, ceramics, heat resistant polymer resin and the like can be used. In addition to the above, a method such as providing a container dedicated to heating in addition to the reaction container 4111, heating the cylindrical support 4112, and then transporting the cylindrical support in the reaction container 4111 in a vacuum is used. ..

【0137】次に、マイクロ波プラズマCVD(以下
「μW−PCVD」と表記する)法によって形成される
電子写真用光受容部材の製造方法について説明する。
Next, a method for manufacturing the electrophotographic light-receiving member formed by the microwave plasma CVD (hereinafter referred to as “μW-PCVD”) method will be described.

【0138】図5(a)及び(b)はμW−PCVD法
によって電子写真用光受容部材用の堆積膜を形成するた
めの堆積装置5100の一例を示す模式的な構成図であ
り、(a)は側断面を、(b)はX−X’横断面を示
す。図6はμW−PCVD法による電子写真用光受容部
材の製造装置全体の説明図である。
FIGS. 5A and 5B are schematic structural views showing an example of a deposition apparatus 5100 for forming a deposition film for an electrophotographic light receiving member by the μW-PCVD method. ) Shows a side section, (b) shows a XX 'cross section. FIG. 6 is an explanatory diagram of the entire manufacturing apparatus of the electrophotographic light-receiving member by the μW-PCVD method.

【0139】図5に示したμW−PCVD法による堆積
装置5100を図4に示す堆積装置4100と交換し
て、原料ガス供給装置4200と接続することにより、
図6に示すμW−PCVD法による以下の構成の電子写
真用光受容部材製造装置を得ることができる。
By exchanging the deposition apparatus 5100 by the μW-PCVD method shown in FIG. 5 with the deposition apparatus 4100 shown in FIG. 4 and connecting it to the source gas supply apparatus 4200,
By the μW-PCVD method shown in FIG. 6, an electrophotographic light-receiving member manufacturing apparatus having the following configuration can be obtained.

【0140】該装置5100は、真空気密化構造を成し
た減圧にし得る反応容器5111、原料ガスの供給装置
5200、及び反応容器内を減圧にするための排気装置
(不図示)から構成されている。反応容器5111には
マイクロ波電力を反応容器内に効率良く透過し、かつ、
真空気密を保持し得るような材料(例えば、石英ガラ
ス、アルミナセラミックス等)で形成されたマイクロ波
導入窓5112、スタブチューナー(不図示)及びアイ
ソレーター(不図示)を介してマイクロ波電源(不図
示)に接続されているマイクロ波の導波管5113、堆
積膜を形成すべき円筒状支持体5115、支持体加熱用
ヒーター5116、原料ガス導入管5117、プラズマ
電位を制御するための外部電気バイアスを与えるための
電極5118が設置されており、反応容器5111内は
排気管5121を通じて不図示の排気装置(例えば拡散
ポンプ等)により排気が行えるようになっている。原料
ガス供給装置4200は、SiH4,H2,CH4,N
O,NH3,SiF4等の原料ガスのボンベ4221〜4
226とバルブ4231〜4236,4241〜424
6,4251〜4256及びマスフローコントローラー
4211〜4216等から構成され、各原料ガスのボン
ベはバルブ4260を介して反応容器5111内のガス
導入管5117に接続されている。また円筒状支持体5
115によって取り囲まれた空間が放電空間5130を
形成している。
The apparatus 5100 is composed of a reaction vessel 5111 having a vacuum airtight structure and capable of reducing the pressure, a source gas supply apparatus 5200, and an exhaust apparatus (not shown) for reducing the pressure inside the reaction vessel. .. The reaction vessel 5111 efficiently transmits microwave power into the reaction vessel, and
A microwave power source (not shown) is passed through a microwave introduction window 5112, a stub tuner (not shown) and an isolator (not shown) formed of a material capable of maintaining vacuum airtightness (eg, quartz glass, alumina ceramics, etc.). ), A microwave waveguide 5113, a cylindrical support 5115 on which a deposited film is to be formed, a support heating heater 5116, a source gas introduction pipe 5117, and an external electric bias for controlling the plasma potential. An electrode 5118 for giving is provided, and the inside of the reaction vessel 5111 can be exhausted through an exhaust pipe 5121 by an exhaust device (not shown) (for example, a diffusion pump). The source gas supply device 4200 uses SiH 4 , H 2 , CH 4 , and N.
Cylinders 4221-4 of raw material gas such as O, NH 3 , SiF 4
226 and valves 4231-4236, 4241-424
6, 4251 to 4256, mass flow controllers 4211 to 4216, and the like, and each source gas cylinder is connected to a gas introduction pipe 5117 in a reaction vessel 5111 via a valve 4260. In addition, the cylindrical support 5
The space surrounded by 115 forms a discharge space 5130.

【0141】μW−PCVD法による該装置での堆積膜
の形成は、以下のようにして行うことができる。
The formation of the deposited film by the apparatus by the μW-PCVD method can be performed as follows.

【0142】まず、反応容器5111内に円筒状支持体
5115を設置し、支持体回転用モーター5120によ
って支持体5115を回転させ、不図示の排気装置によ
り反応容器5111内を排気管5121を介して排気
し、反応容器5111内の圧力を1×10-5Torr以下に
調整する。続いて、支持体加熱用ヒーター5116によ
り円筒状支持体5115の温度を20〜500℃の所定の温
度に加熱保持する。
First, a cylindrical support 5115 is installed in the reaction vessel 5111, the support 5115 is rotated by a support rotation motor 5120, and the inside of the reaction vessel 5111 is exhausted through an exhaust pipe 5121 by an exhaust device (not shown). Evacuate and adjust the pressure in the reaction vessel 5111 to 1 × 10 −5 Torr or less. Then, the temperature of the cylindrical support 5115 is heated and maintained at a predetermined temperature of 20 to 500 ° C. by the support heating heater 5116.

【0143】堆積膜形成用の原料ガスを反応容器511
1に流入させるには、ガスボンベのバルブ4231〜4
236、反応容器のリークバルブ(不図示)が閉じられ
ていることを確認し、また、流入バルブ4241〜42
46、流出バルブ4251〜4256、補助バルブ42
60が開かれていることを確認して、まずメインバルブ
(不図示)を開いて反応容器5111及びガス配管51
22内を排気する。
A source gas for forming a deposited film is supplied to the reaction vessel 511.
1 for gas cylinder valves 4231-4
236, make sure that the leak valve (not shown) of the reaction vessel is closed, and check the inflow valves 4241-42.
46, outflow valves 4251 to 4256, auxiliary valve 42
After confirming that 60 is open, first open the main valve (not shown) to open the reaction vessel 5111 and the gas pipe 51.
The inside of 22 is exhausted.

【0144】次に真空計(不図示)の読みが約5×10-5T
orrになった時点で補助バルブ4260、流出バルブ4
251〜4256を閉じる。その後、ガスボンベ422
1〜4226より各ガスをバルブ4231〜4236を
開いて導入し、圧力調整器4261〜4266により各
ガス圧を2Kg/cm2に調整する。次に流入バルブ4241
〜4246を徐々に開けて、各ガスをマスフローコント
ローラー4211〜4216内に導入する。
Next, the reading of the vacuum gauge (not shown) is about 5 × 10 -5 T
Auxiliary valve 4260 and outflow valve 4 when orr is reached
251 to 4256 are closed. Then, the gas cylinder 422
Each gas is introduced from 1 to 4226 by opening the valves 4231 to 4236, and each gas pressure is adjusted to 2 Kg / cm 2 by the pressure regulators 4261 to 4266. Then the inflow valve 4241
~ 4246 is gradually opened to introduce each gas into the mass flow controllers 4211-4216.

【0145】以上のようにして成膜の準備が完了した
後、円筒状支持体5115上に光導電層、表面層の各層
の形成を行う。
After the preparation for film formation is completed as described above, the photoconductive layer and the surface layer are formed on the cylindrical support 5115.

【0146】円筒状支持体5115が所定の温度になっ
たところで流出バルブ4251〜4256のうち所望の
ガスボンベに接続されているバルブ、及び補助バルブ4
260を徐々に開き、ガスボンベ4221〜4226か
ら所望のガスをガス導入管5114を介して反応容器5
111内の放電空間5130に導入する。次にマスフロ
ーコントローラー4211〜4216によって各原料ガ
スが所定の流量になるように調整する。その際、反応容
器5111内の圧力が1Torrr以下の所定の圧力になる
ように真空計(不図示)を見ながらメインバルブ(不図
示)の開口を調整する。内圧が安定したところで、マイ
クロ波電源(不図示)により周波数500MHz以上の、好ま
しくは2.45GHzのマイクロ波を発生させ、マイクロ波導
入窓5112を介して放電空間5130にマイクロ波エ
ネルギーを導入して、マイクロ波グロー放電を生起させ
る。それと同時併行的に、電源5119から電極511
8に例えば直流等の電気バイアスを印加する。かくして
放電空間5130において導入された原料ガスは、マイ
クロ波エネルギーにより励起されて解離し、円筒状支持
体5115上に所定のシリコンを主成分とする堆積膜が
形成されるところとなる。この時、層形成の均一化を図
るため、支持体回転用モーター5120によって円筒状
支持体5115は所望の回転速度で回転させられる。
When the cylindrical support 5115 reaches a predetermined temperature, one of the outflow valves 4251 to 4256 connected to a desired gas cylinder, and the auxiliary valve 4
260 is gradually opened, and a desired gas is supplied from the gas cylinders 4221 to 4226 through the gas introduction pipe 5114 to the reaction vessel 5.
It is introduced into the discharge space 5130 in 111. Next, the mass flow controllers 4211 to 4216 are adjusted so that each raw material gas has a predetermined flow rate. At that time, the opening of the main valve (not shown) is adjusted while observing the vacuum gauge (not shown) so that the pressure inside the reaction vessel 5111 becomes a predetermined pressure of 1 Torr or less. When the internal pressure is stable, a microwave power source (not shown) generates a microwave having a frequency of 500 MHz or higher, preferably 2.45 GHz, and introduces microwave energy into the discharge space 5130 through the microwave introduction window 5112, Causes microwave glow discharge. Simultaneously with this, the power source 5119 to the electrode 511
An electric bias such as a direct current is applied to 8. Thus, the source gas introduced into the discharge space 5130 is excited by microwave energy and dissociates, and a predetermined deposited film containing silicon as a main component is formed on the cylindrical support 5115. At this time, the cylindrical support 5115 is rotated at a desired rotation speed by the support rotation motor 5120 in order to make the layer formation uniform.

【0147】所望の膜厚の形成が行われた後、マイクロ
波電力の供給を止め、流出バルブを閉じて反応容器への
ガスの流入を止め、堆積膜の形成を終える。
After the desired film thickness is formed, the supply of microwave power is stopped, the outflow valve is closed to stop the gas from flowing into the reaction container, and the formation of the deposited film is completed.

【0148】同様の操作を複数回繰り返すことによっ
て、所望の多層構造の光受容層が形成される。
By repeating the same operation a plurality of times, a desired light-receiving layer having a multilayer structure is formed.

【0149】それぞれの層を形成する際には、必要なガ
ス以外の流出バルブは全て閉じられていることは言うま
でもない。また、それぞれのガスが反応容器5111
内、流出バルブ4251〜4256から反応容器511
1に至る配管内に残留することを避けるため、流出バル
ブ4251〜4256を閉じ、補助バルブ4260を開
き、さらにメインバルブを全開にして系内を一旦高真空
に排気する操作を必要に応じて行う。
Needless to say, all the outflow valves except for the necessary gas are closed when forming each layer. In addition, each gas is used in the reaction vessel 5111.
Inside, outflow valves 4251 to 4256 to reaction vessel 511
In order to avoid remaining in the pipe up to 1, the outflow valves 4251 to 4256 are closed, the auxiliary valve 4260 is opened, the main valve is fully opened, and the system is temporarily evacuated to a high vacuum as needed. ..

【0150】上述のガス種及びバルブ操作は各々の層の
作製条件にしたがって変更が加えられることは言うまで
もない。
It goes without saying that the above-mentioned gas species and valve operation may be changed according to the production conditions of each layer.

【0151】円筒状支持体5115の加熱方法は、真空
仕様である発熱体によって行えばよく、そのような真空
仕様の発熱体としては、具体的には、シース状ヒーター
の巻き付けヒーター、板状ヒーター、セラミックヒータ
ー等の電気抵抗発熱体、ハロゲンランプ、赤外線ランプ
等の熱放射ランプ発熱体、液体、気体等を温媒とする熱
交換手段による発熱体等が挙げられる。加熱手段の表面
材質はステンレス、ニッケル、アルミニウム、銅等の金
属類、セラミックス、耐熱性高分子樹脂等を使用するこ
とができる。また、それ以外にも、反応容器5111以
外に加熱専用の容器を設け、円筒状支持体5115を加
熱した後、反応容器5111内に真空中で円筒状支持体
を搬送する等の方法が用いられる。
The cylindrical support 5115 may be heated by a heating element having a vacuum specification. Specific examples of such a heating element having a vacuum specification include a winding heater of a sheath heater and a plate heater. Examples thereof include an electric resistance heating element such as a ceramic heater, a heat radiation lamp heating element such as a halogen lamp and an infrared lamp, and a heating element by a heat exchange means using liquid, gas or the like as a heating medium. As the surface material of the heating means, metals such as stainless steel, nickel, aluminum and copper, ceramics, heat resistant polymer resin and the like can be used. In addition to the above, a method such as providing a container for heating only in addition to the reaction container 5111, heating the cylindrical support 5115, and then transporting the cylindrical support in the reaction container 5111 in a vacuum is used. ..

【0152】μW−PCVD法においては、放電空間内
の圧力としては、好ましくは1×10- 3Torr以上1×10-1To
rr以下、より好ましくは3×10-3Torr以上5×10-2Torr以
下、最適には5×10-3Torr以上3×10-2Torr以下に設定す
ることが望ましい。
[0152] In .mu.W-PCVD method, the pressure in the discharge space, preferably 1 × 10 - 3 Torr over 1 × 10 -1 To
rr or less, more preferably 3 × 10 −3 Torr or more and 5 × 10 −2 Torr or less, and most preferably 5 × 10 −3 Torr or more and 3 × 10 −2 Torr or less.

【0153】放電空間外の圧力は、放電空間内の圧力よ
りも低ければ良いが、放電空間内の圧力が1×10-1Torr
以下、特に5×10-2Torr以下では、放電空間内の圧力が
放電空間外の圧力の3倍以上の時、堆積膜特性向上の効
果が特に大きい。
The pressure outside the discharge space may be lower than the pressure inside the discharge space, but the pressure inside the discharge space is 1 × 10 -1 Torr.
Below, particularly, at 5 × 10 −2 Torr or less, when the pressure inside the discharge space is three times or more the pressure outside the discharge space, the effect of improving the characteristics of the deposited film is particularly large.

【0154】マイクロ波の反応容器までの導入方法とし
ては、導波管5113による方法が挙げられ、反応容器
内へは1または複数のマイクロ波導入窓5112から導
入する方法が挙げられる。マイクロ波導入窓5112の
材質としては、アルミナ(Al23)、窒化アルミニウ
ム、窒化ボロン、窒化珪素、炭化珪素、酸化珪素、酸化
ベリリウム、テフロン(商品名)、ポリスチレン等、マ
イクロ波の損失の少ない材料が通常使用される。
As a method of introducing the microwave into the reaction container, a method using a waveguide 5113 can be mentioned, and a method of introducing the microwave into the reaction container through one or a plurality of microwave introduction windows 5112 can be mentioned. Examples of the material of the microwave introduction window 5112 include alumina (Al 2 O 3 ), aluminum nitride, boron nitride, silicon nitride, silicon carbide, silicon oxide, beryllium oxide, Teflon (trade name), polystyrene, etc. Fewer materials are commonly used.

【0155】電極5118と円筒状支持体5115間に
発生させる電界は直流電界が好ましく、又、電界の向き
は電極5118から円筒状支持体5115に向けるのが
好ましい。電界を発生させるための電極5118に印加
する直流電圧の平均の大きさは、15V以上300V以下、好
ましくは30V以上200V以下が適する。直流電圧波形とし
ては、特に制限はなく、種々の波形のものが本発明では
有効である。つまり、時間によって電圧の向きが変化し
なければいずれの場合でもよく、例えば時間に対して大
きさの変化しない定電圧はもちろん、パルス状の電圧、
及び整流機により整流された時間によって大きさが変化
する脈動電圧でも有効である。
The electric field generated between the electrode 5118 and the cylindrical support 5115 is preferably a DC electric field, and the direction of the electric field is preferably directed from the electrode 5118 to the cylindrical support 5115. The average magnitude of the DC voltage applied to the electrode 5118 for generating an electric field is 15 V or more and 300 V or less, preferably 30 V or more and 200 V or less. The DC voltage waveform is not particularly limited, and various waveforms are effective in the present invention. In other words, it does not matter in which case the direction of the voltage does not change with time. For example, a constant voltage whose magnitude does not change with time as well as a pulsed voltage,
Also, a pulsating voltage whose magnitude changes depending on the time rectified by the rectifier is effective.

【0156】又、交流電圧を印加することも有効であ
る。交流の周波数は、いずれの周波数でも問題はなく、
実用的には低周波では50Hzまたは60Hz、高周波では13.5
6MHzが適する。交流の波形としてはサイン波でも矩形波
でも、また他のいずれの波形でも良いが、実用的にはサ
イン波が適する。ただし、この時電圧はいずれの場合も
実行値をいう。
It is also effective to apply an AC voltage. There is no problem with the alternating current frequency,
Practically 50 Hz or 60 Hz at low frequencies, 13.5 at high frequencies
6MHz is suitable. The AC waveform may be a sine wave, a rectangular wave, or any other waveform, but a sine wave is practically suitable. However, at this time, the voltage refers to an actual value in any case.

【0157】電極5118の大きさ及び形状は、放電を
乱さないならばいずれのものでも良く、実用的には直径
0.1cm以上5cm以下の円筒状の形状が好ましい。この時、
電極の長さは支持体に電界が均一にかかる長さであれば
特に制限なく設定できる。
The size and shape of the electrode 5118 may be any as long as the discharge is not disturbed.
A cylindrical shape of 0.1 cm or more and 5 cm or less is preferable. At this time,
The length of the electrode can be set without particular limitation as long as the electric field is uniformly applied to the support.

【0158】電極5118の材質としては、表面が導電
性となるものならばいずれのものでも良く、例えば、ス
テンレス、Al、Cr、Mo、Au、In、Nb、T
e、V、Ti、Pt、Pd、Fe等の金属又はこれらの
合金、あるいは表面を導電処理したガラス、セラミッ
ク、プラスチック等が通常使用される。
The electrode 5118 may be made of any material as long as it has a conductive surface. For example, stainless steel, Al, Cr, Mo, Au, In, Nb, T.
Metals such as e, V, Ti, Pt, Pd, and Fe or alloys thereof, or glass, ceramic, plastic whose surface is subjected to a conductive treatment are usually used.

【0159】[0159]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれらによって何等限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0160】実施例1 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表1
に示す作製条件で電子写真用光受容部材を作製した。本
実施例では光導電層中の炭素含有量の変化パターンを図
13のように変化させるために、光導電層の形成時に導
入するCH4の流量をリニアに変化させた。同時に光導
電層の堆積膜形成速度の変化パターンを図7のように変
化させるため、光導電層の形成時に導入するSiH4
流量をリニアに変化させた。この時光導電層の導電性支
持体側の表面での炭素含有量は、約30原子%となるよう
にし、かつ光導電層の導電性支持体側での堆積膜形成速
度(R1)に対する表面層側での堆積膜形成速度(R2)
の比率R2/R1を約50%とした。
Example 1 Using the apparatus for manufacturing a light receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 1
An electrophotographic light-receiving member was produced under the production conditions shown in. In this example, in order to change the change pattern of carbon content in the photoconductive layer as shown in FIG. 13, the flow rate of CH 4 introduced at the time of forming the photoconductive layer was changed linearly. At the same time, in order to change the change pattern of the deposited film formation rate of the photoconductive layer as shown in FIG. 7, the flow rate of SiH 4 introduced during the formation of the photoconductive layer was changed linearly. At this time, the carbon content on the surface of the photoconductive layer on the side of the conductive support should be about 30 atom%, and on the surface layer side relative to the deposition film forming rate (R1) on the side of the photoconductive layer on the conductive support. Deposited film formation rate (R2)
The ratio R2 / R1 was about 50%.

【0161】尚、炭素含有量の測定にはラザフォード後
方散乱法による元素分析により標準サンプルの検量線を
作成し、標準サンプルと作製したサンプルをオージェ分
光法によるシグナル強度の比から絶対量を求めた。また
堆積膜形成速度の測定には、予め光導電層のSiH4
量を一定にして堆積膜サンプルを作製し、スタイラス法
により堆積膜の厚さを測定して堆積膜形成速度を求め
た。
For the measurement of the carbon content, a calibration curve of the standard sample was prepared by elemental analysis by the Rutherford backscattering method, and the absolute amount of the standard sample and the prepared sample was determined from the signal intensity ratio by Auger spectroscopy. .. To measure the deposition film formation rate, a deposition film sample was prepared in advance with the SiH 4 flow rate in the photoconductive layer being constant, and the thickness of the deposition film was measured by the stylus method to obtain the deposition film formation rate.

【0162】[0162]

【表1】 作製した電子写真用光受容部材をキヤノン製複写機NP
−6650を実験用に改造した電子写真装置に設置し
て、帯電能、感度、残留電位、白ポチ、ハーフトーンむ
ら等の電子写真特性について評価を行った。各項目は、
以下の方法で評価した。
[Table 1] Canon electrophotographic photocopier NP
-6650 was installed in an electrophotographic apparatus modified for experiments, and electrophotographic characteristics such as charging ability, sensitivity, residual potential, white spots, and halftone unevenness were evaluated. Each item is
The following method evaluated.

【0163】帯電能、感度、残留電位: 帯電能:電子写真用光受容部材を実験装置に設置し、帯
電器に+6kVの高電圧を印加し、コロナ帯電を行い、表
面電位計により電子写真用光受容部材の暗部表面電位を
測定する。
Charging Ability, Sensitivity, Residual Potential: Charging Ability: Electrophotographic photoreceptive member is installed in experimental equipment, high voltage of +6 kV is applied to the charger, corona charging is performed, and electrophotographic is performed by a surface electrometer The dark surface potential of the light receiving member is measured.

【0164】感度:電子写真用光受容部材を一定の暗部
表面電位に帯電させる。そして直ちに光像を照射する。
光像はキセノンランプ光源を用い、フィルターを用いて
550nm以下の波長域の光を除いた光を照射した。この
時、表面電位計により電子写真用光受容部材の明部表面
電位を測定する。明部表面電位が所定の電位になるよう
に露光量を調整し、この時の露光量を以て感度とする。
Sensitivity: The photoreceptive member for electrophotography is charged to a constant dark surface potential. Then, the light image is immediately irradiated.
The light image uses a xenon lamp light source and a filter
Irradiation was performed with light excluding light in the wavelength range of 550 nm or less. At this time, the surface potential of the light portion of the electrophotographic light-receiving member is measured with a surface potential meter. The exposure amount is adjusted so that the light surface potential becomes a predetermined potential, and the exposure amount at this time is taken as the sensitivity.

【0165】残留電位:電子写真用光受容部材を一定の
暗部表面電位に帯電させ、直ちに一定光量の比較的強い
光を照射する。光像はキセノンランプ光源を用い、フィ
ルターを用いて550nm以下の波長域の光を除いた光を照
射した。この時、表面電位計により電子写真用光受容部
材の明部表面電位を測定する。
Residual potential: The photoreceptive member for electrophotography is charged to a constant dark part surface potential, and immediately irradiated with a constant intensity of relatively strong light. The light image was emitted by using a xenon lamp light source and excluding light in the wavelength range of 550 nm or less using a filter. At this time, the surface potential of the light portion of the electrophotographic light-receiving member is measured with a surface potential meter.

【0166】白ポチ、ハーフトーンむら: 白ポチ:キヤノン製全面黒チャート(部品番号:FY9
−9073)を原稿台に置き、コピーした時に得られた
コピー画像の同一面積内にある直径0.2mm以下の白ポチ
について評価した。
White spots, halftone unevenness: White spots: Canon full surface black chart (part number: FY9
-9073) was placed on a document table, and white spots having a diameter of 0.2 mm or less within the same area of a copy image obtained by copying were evaluated.

【0167】ハーフトーンむら:キヤノン製中間調チャ
ート(部品番号:FY9−9042)を原稿台に置き、
コピーした時に得られたコピー画像上で0.05mmの円形の
領域を1単位とし、100点の画像濃度を測定し、その
画像濃度のばらつきを評価した。
Halftone unevenness: put a Canon halftone chart (part number: FY9-9042) on the platen,
The image density at 100 points was measured with a circular area of 0.05 mm on the copy image obtained when copying was made as one unit, and the variation in the image density was evaluated.

【0168】それぞれについて◎は特に良好、○は良
好、△は実用上問題無し、×は実用上問題あり、を表わ
している。
In each case, ⊚ indicates particularly good, ∘ indicates good, Δ indicates no practical problem, and x indicates practical problem.

【0169】次に作製した電子写真用光受容部材をキヤ
ノン製複写機NP−6650を実験用に改造した電子写
真装置に設置して、300万枚相当の加速耐久試験を行
い、上記と同様の評価を行った。結果を表4に示す。
Next, the produced electrophotographic light-receiving member was installed in an electrophotographic apparatus which was modified from a Canon copying machine NP-6650 for experiments, and an accelerated durability test equivalent to 3 million sheets was conducted. An evaluation was made. The results are shown in Table 4.

【0170】実施例2 実施例1と同様にして表2に示す作製条件で、導電性支
持体上に、光導電層第2領域、光導電層第1領域、及び
表面層の順で堆積膜形成を行い、電子写真用光受容部材
を作製した。こうして得られた電子写真用光受容部材を
実施例1と同様にして評価した。結果を表4に示す。
Example 2 As in Example 1, under the manufacturing conditions shown in Table 2, a photoconductive layer second region, a photoconductive layer first region, and a surface layer were deposited in this order on a conductive support. Formation was carried out to produce a light receiving member for electrophotography. The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0171】[0171]

【表2】 比較例1 実施例1と同様にして表3に示す作製条件で、導電性支
持体、第2の光導電層、第1の光導電層及び表面層の3
層構成のいわゆる機能分離型電子写真用光受容部材を作
製した。こうして得られた電子写真用光受容部材を実施
例1と同様にして評価した。結果を表4に示す。
[Table 2] Comparative Example 1 Under the production conditions shown in Table 3 in the same manner as in Example 1, 3 of the conductive support, the second photoconductive layer, the first photoconductive layer and the surface layer were prepared.
A so-called function-separated type electrophotographic light-receiving member having a layered structure was produced. The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0172】[0172]

【表3】 [Table 3]

【0173】[0173]

【表4】 これらの結果から、本発明の方法により電子写真用光受
容部材10を形成することによって帯電能、感度が向上
し、かつ残留電位が低く抑えられている。さらにハーフ
トーンむらに関して優れた特性を示していることが分か
る。さらに本発明によれば耐久後においても電気的及び
画像特性上、なんの支障もないことが分かる。
[Table 4] From these results, by forming the electrophotographic light-receiving member 10 by the method of the present invention, the charging ability and sensitivity are improved, and the residual potential is suppressed low. Further, it can be seen that the halftone unevenness shows excellent characteristics. Further, according to the present invention, it can be seen that there is no problem in electrical and image characteristics even after the endurance.

【0174】実施例3 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、マイクロ波グロー放電法を用い
る以外は実施例1と同様にして、表5に示す作製条件で
電子写真用光受容部材を作製した。作製した電子写真用
光受容部材に実施例1と同様の評価を行ったところ、実
施例1と同様の結果が得られた。
Example 3 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 6, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure described in detail above, except that the microwave glow discharge method was used, the same procedure as in Example 1 was carried out under the conditions shown in Table 5 A light receiving member for photography was produced. When the produced electrophotographic light-receiving member was evaluated in the same manner as in Example 1, the same results as in Example 1 were obtained.

【0175】[0175]

【表5】 実施例4 実施例3と同様にして表6に示す作製条件で、導電性支
持体上に、光導電層第2領域、光導電層第1領域、及び
表面層の順で堆積膜形成を行い、電子写真用光受容部材
を作製した。作製した電子写真用光受容部材に実施例1
と同様の評価を行ったところ、実施例1と同様の結果が
得られた。
[Table 5] Example 4 Similar to Example 3, under the production conditions shown in Table 6, a deposited film was formed on the conductive support in the order of the photoconductive layer second region, the photoconductive layer first region, and the surface layer. A light receiving member for electrophotography was produced. Example 1 was applied to the produced electrophotographic light-receiving member.
The same evaluation as in Example 1 was performed, and the same results as in Example 1 were obtained.

【0176】[0176]

【表6】 比較例2 実施例3と同様にして表7に示す作製条件で、導電性支
持体、第2の光導電層、第1の光導電層及び表面層の3
層構成のいわゆる機能分離型電子写真用光受容部材を作
製した。作製した電子写真用光受容部材に実施例1と同
様の評価を行ったところ、比較例1と同様の結果が得ら
れた。
[Table 6] Comparative Example 2 Under the production conditions shown in Table 7 in the same manner as in Example 3, 3 of the conductive support, the second photoconductive layer, the first photoconductive layer and the surface layer were prepared.
A so-called function-separated type electrophotographic light-receiving member having a layered structure was produced. When the manufactured electrophotographic light-receiving member was evaluated in the same manner as in Example 1, the same results as in Comparative Example 1 were obtained.

【0177】[0177]

【表7】 実施例5 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表8
に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12の堆積膜形成速度の変
化パターンを図7〜10のように変化させるために光導
電層12の形成時に導入するSiH4の流量を変化さ
せ、4種類の電子写真用光受容部材10を作製した。い
ずれのパターンにおいても堆積膜形成速度Rの比率R2
/R1を約50%となるようにした。このとき、光導電層
12中の炭素含有量の変化パターンを図13のように変
化させ、光導電層12の導電性支持体側表面での炭素含
有量が約10原子%となるようにした。
[Table 7] Example 5 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, by the RF glow discharge method according to the procedure detailed above, Table 8
An electrophotographic light-receiving member 10 was produced under the production conditions shown in. In this example, in order to change the change pattern of the deposited film formation rate of the photoconductive layer 12 as shown in FIGS. 7 to 10, the flow rate of SiH 4 introduced during the formation of the photoconductive layer 12 was changed and four kinds of electrons were changed. A photographic light-receiving member 10 was produced. In any pattern, the ratio R2 of the deposition film formation rate R
/ R1 was set to about 50%. At this time, the change pattern of the carbon content in the photoconductive layer 12 was changed as shown in FIG. 13 so that the carbon content on the surface of the photoconductive layer 12 on the side of the conductive support was about 10 atom%.

【0178】尚、炭素含有量の測定にはラザフォード後
方散乱法による元素分析により標準サンプルの検量線を
作成し、標準サンプルと作製したサンプルをオージェ分
光法によるシグナル強度の比から絶対量を求めた。また
堆積膜形成速度の測定には、予め光導電層のSiH4
量を一定にして堆積膜サンプルを作製し、スタイラス法
により堆積膜の厚さを測定して堆積膜形成速度を求め
た。
For the measurement of the carbon content, a calibration curve of the standard sample was prepared by elemental analysis by the Rutherford backscattering method, and the absolute amount of the standard sample and the prepared sample was determined from the signal intensity ratio by Auger spectroscopy. .. To measure the deposition film formation rate, a deposition film sample was prepared in advance with the SiH 4 flow rate in the photoconductive layer being constant, and the thickness of the deposition film was measured by the stylus method to obtain the deposition film formation rate.

【0179】作製した電子写真用光受容部材10をキヤ
ノン製複写機NP−6650を実験用に改造した電子写
真装置に設置して、帯電能、感度、残留電位、白ポチ、
ハーフトーンむら等の電子写真特性について実施例1と
同様に評価を行った。
The produced electrophotographic light-receiving member 10 was installed in an electrophotographic apparatus obtained by modifying a Canon copying machine NP-6650 for experiments, and the charging ability, sensitivity, residual potential, white spot,
The electrophotographic characteristics such as halftone unevenness were evaluated in the same manner as in Example 1.

【0180】[0180]

【表8】 比較例3 光導電層の堆積膜形成速度の変化パターンを図11及び
図12のように変化させた以外は実施例5と同様にして
2種の電子写真用光受容部材を作製した。この時堆積膜
形成速度Rの比率R2/R1は、図11は100%、図12
は120%とした。こうして得られた電子写真用光受容部
材を実施例5と同様に評価を行った。
[Table 8] Comparative Example 3 Two types of electrophotographic light-receiving members were produced in the same manner as in Example 5 except that the change pattern of the deposition rate of the photoconductive layer was changed as shown in FIGS. 11 and 12. At this time, the ratio R2 / R1 of the deposited film formation rate R is 100% in FIG.
Was 120%. The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 5.

【0181】実施例5及び比較例3の評価結果を表9に
示す。これらの結果から本発明の光導電層の堆積膜形成
速度の変化パターンでは比較例3に比べ電気的及び画像
特性共に良好な結果が得られることがわかった。
Table 9 shows the evaluation results of Example 5 and Comparative Example 3. From these results, it was found that the change pattern of the deposited film formation rate of the photoconductive layer of the present invention provided better results in electrical and image characteristics than in Comparative Example 3.

【0182】[0182]

【表9】 実施例6 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表1
0に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層第2領域15の堆積膜形成
速度の変化パターンを図7〜10のように変化させるた
めに光導電層第2領域15の形成時に導入するSiH4
の流量を変化させ、4種類の電子写真用光受容部材10
を作製した。いずれのパターンにおいても堆積膜形成速
度Rの比率R2/R1を約50%となるようにした。このと
き、光導電層第2領域15中の炭素含有量の変化パター
ンを図13のように変化させ、光導電層第2領域15の
導電性支持体側表面での炭素含有量が約10原子%となる
ようにした。
[Table 9] Example 6 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 1
The electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this embodiment, SiH 4 introduced at the time of forming the photoconductive layer second region 15 in order to change the change pattern of the deposition film formation rate of the photoconductive layer second region 15 as shown in FIGS.
Of the four types of electrophotographic light-receiving members 10 by changing the flow rate of the
Was produced. In any pattern, the ratio R2 / R1 of the deposition film formation rate R was set to about 50%. At this time, the change pattern of the carbon content in the second region 15 of the photoconductive layer was changed as shown in FIG. 13 so that the carbon content on the surface of the photoconductive layer second region 15 on the side of the conductive support was about 10 atomic%. So that

【0183】こうして得られた電子写真用光受容部材を
実施例5と同様に評価を行った。
The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 5.

【0184】[0184]

【表10】 比較例4 光導電層第2領域の堆積膜形成速度の変化パターンを図
11及び図12のように変化させた以外は実施例6と同
様にして2種の電子写真用光受容部材を作製した。この
時堆積膜形成速度Rの比率R2/R1は、図11は100
%、図12は120%とした。
[Table 10] Comparative Example 4 Two kinds of electrophotographic light-receiving members were produced in the same manner as in Example 6 except that the change pattern of the deposited film formation rate in the second region of the photoconductive layer was changed as shown in FIGS. 11 and 12. .. At this time, the ratio R2 / R1 of the deposition film formation rate R is 100 in FIG.
% And 120% in FIG.

【0185】こうして得られた電子写真用光受容部材を
実施例5と同様に評価を行った。
The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 5.

【0186】実施例6及び比較例4の評価結果を表11
に示す。これらの結果から本発明の光導電層第2領域の
堆積膜形成速度の変化パターンでは比較例4に比べ電気
的及び画像特性共に良好な結果が得られることがわかっ
た。
Table 11 shows the evaluation results of Example 6 and Comparative Example 4.
Shown in. From these results, it was found that the change pattern of the deposition film formation rate in the second region of the photoconductive layer of the present invention provided better results in electrical and image characteristics than in Comparative Example 4.

【0187】[0187]

【表11】 実施例7 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、マイクロ波グロー放電法によ
り、表12に示す作製条件で電子写真用光受容部材を作
製した。表12では、光導電層12の堆積膜形成速度の
変化パターンを図7〜10のように変化させて4種類の
電子写真用光受容部材10を作製した。
[Table 11] Example 7 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 6, a mirror-finished aluminum member having a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, an electrophotographic light-receiving member was produced under the production conditions shown in Table 12 by the microwave glow discharge method according to the procedure detailed above. In Table 12, four kinds of electrophotographic light-receiving members 10 were produced by changing the change pattern of the deposited film formation rate of the photoconductive layer 12 as shown in FIGS.

【0188】作製した電子写真用光受容部材に実施例5
と同様の評価を行ったところ、実施例5と同様の結果が
得られた。
Example 5 was applied to the produced electrophotographic light-receiving member.
The same evaluation as in Example 5 was performed, and the same results as in Example 5 were obtained.

【0189】[0189]

【表12】 比較例5 光導電層の堆積膜形成速度の変化パターンを図11及び
図12のように変化させた以外は実施例7と同様にして
2種の電子写真用光受容部材を作製した。この時堆積膜
形成速度Rの比率R2/R1は、図11は100%、図12
は120%とした。こうして得られた電子写真用光受容部
材を実施例7と同様に評価を行った。
[Table 12] Comparative Example 5 Two types of electrophotographic light-receiving members were produced in the same manner as in Example 7 except that the change pattern of the deposition rate of the photoconductive layer was changed as shown in FIGS. 11 and 12. At this time, the ratio R2 / R1 of the deposited film formation rate R is 100% in FIG.
Was 120%. The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 7.

【0190】比較例5の評価結果は比較例3の評価結果
と全く同じであった。
The evaluation result of Comparative Example 5 was exactly the same as the evaluation result of Comparative Example 3.

【0191】実施例8 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表1
3に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12中の炭素含有量の変化
パターンを図13〜15のように変化させるために光導
電層12の形成時に導入するCH4の流量を変化させ、
3種類の電子写真用光受容部材10を作製した。いずれ
のパターンにおいても光導電層12の導電性支持体11
側表面での炭素含有量が約10原子%となるようにした。
また、この時の光導電層12の堆積膜形成速度の変化パ
ターンを図7のように変化させ、堆積膜形成速度Rの比
率R1/R1を約50%となるようにした。 尚、炭素含有
量、堆積膜形成速度の測定は前記同様にして行った。
Example 8 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 1
An electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this example, in order to change the change pattern of the carbon content in the photoconductive layer 12 as shown in FIGS. 13 to 15, the flow rate of CH 4 introduced during the formation of the photoconductive layer 12 was changed,
Three types of electrophotographic light-receiving members 10 were produced. In any pattern, the conductive support 11 of the photoconductive layer 12
The carbon content on the side surface was set to about 10 atomic%.
Further, the change pattern of the deposited film forming rate of the photoconductive layer 12 at this time was changed as shown in FIG. 7 so that the ratio R1 / R1 of the deposited film forming rate R was about 50%. The carbon content and the deposition film formation rate were measured in the same manner as above.

【0192】作製した電子写真用光受容部材10をキヤ
ノン製複写機NP−6650を実験用に改造した電子写
真装置に設置して、帯電能、感度、残留電位、白ポチ、
ハーフトーンむら等の電子写真特性について実施例1と
同様に評価を行った。更に300万枚程度の加速耐久試
験を行い、各電子写真特性について同様の評価を行っ
た。
The produced electrophotographic light-receiving member 10 was set in an electrophotographic apparatus which was modified from a Canon copying machine NP-6650 for experiments, and the charging ability, sensitivity, residual potential, white spot,
The electrophotographic characteristics such as halftone unevenness were evaluated in the same manner as in Example 1. Further, an accelerated durability test of about 3 million sheets was performed, and the same evaluation was performed for each electrophotographic characteristic.

【0193】[0193]

【表13】 比較例6 光導電層12の炭素含有量の変化パターンを図16及び
図17のように変化させた以外は実施例8と同様にして
2種の電子写真用光受容部材を作製した。
[Table 13] Comparative Example 6 Two types of electrophotographic light-receiving members were produced in the same manner as in Example 8 except that the carbon content change pattern of the photoconductive layer 12 was changed as shown in FIGS. 16 and 17.

【0194】こうして得られた電子写真用光受容部材を
実施例8と同様に評価を行った。
The light-receiving member for electrophotography thus obtained was evaluated in the same manner as in Example 8.

【0195】実施例8及び比較例6の評価結果を表14
に示す。これらの結果から本発明の光導電層12の炭素
含有量の変化パターンでは比較例6に比べ電気的及び画
像特性共に良好な結果が得られることがわかった。
Table 14 shows the evaluation results of Example 8 and Comparative Example 6.
Shown in. From these results, it was found that, in the variation pattern of the carbon content of the photoconductive layer 12 of the present invention, good electrical and image characteristics were obtained as compared with Comparative Example 6.

【0196】[0196]

【表14】 実施例9 実施例8と同様にして表15に示す作製条件で、導電性
支持体上に、光導電層第2領域、光導電層第1領域、及
び表面層の順で堆積膜形成を行い、電子写真用光受容部
材を作製した。こうして得られた電子写真用光受容部材
を実施例8と同様にして評価した。結果を表16に示
す。
[Table 14] Example 9 Similar to Example 8, under the conditions shown in Table 15, a deposited film was formed on the conductive support in the order of the photoconductive layer second region, the photoconductive layer first region, and the surface layer. A light receiving member for electrophotography was produced. The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 8. The results are shown in Table 16.

【0197】[0197]

【表15】 比較例7 光導電層第2領域15の炭素含有量の変化パターンを図
16及び図17のように変化させた以外は実施例9と同
様にして2種の電子写真用光受容部材を作製した。
[Table 15] Comparative Example 7 Two kinds of electrophotographic light-receiving members were produced in the same manner as in Example 9 except that the carbon content change pattern of the photoconductive layer second region 15 was changed as shown in FIGS. 16 and 17. ..

【0198】こうして得られた電子写真用光受容部材を
実施例9と同様に評価を行った。
The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 9.

【0199】実施例9及び比較例7の評価結果を表16
に示す。これらの結果から本発明の光導電層第2領域1
5の炭素含有量の変化パターンでは比較例7に比べ電気
的及び画像特性共に良好な結果が得られることがわかっ
た。
Table 16 shows the evaluation results of Example 9 and Comparative Example 7.
Shown in. From these results, the second region 1 of the photoconductive layer of the present invention
It was found that in the carbon content change pattern of No. 5, good results were obtained in both electrical and image characteristics as compared with Comparative Example 7.

【0200】[0200]

【表16】 実施例10 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表17に示す作製条件で行
った以外は実施例8と同様にして電子写真用光受容部材
を作製した。表15では、光導電層12の炭素含有量の
変化パターンを実施例8同様に図13〜15のように変
化させて3種類の電子写真用光受容部材10を作製し
た。
[Table 16] Example 10 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 6, a mirror-finished aluminum member having a diameter of 108 mm and a length of 3
An electrophotographic light-receiving member for electrophotography was produced in the same manner as in Example 8 except that the production was carried out by the microwave glow discharge method under the production conditions shown in Table 17 on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm. did. In Table 15, the change pattern of the carbon content of the photoconductive layer 12 was changed as shown in FIGS. 13 to 15 in the same manner as in Example 8 to prepare three types of electrophotographic light-receiving members 10.

【0201】作製した電子写真用光受容部材に実施例8
と同様の評価を行ったところ、実施例8と同様の結果が
得られた。
Example 8 was applied to the produced electrophotographic light-receiving member.
The same evaluation as in Example 8 was performed, and the same results as in Example 8 were obtained.

【0202】[0202]

【表17】 比較例8 光導電層12の炭素含有量の変化パターンを図16及び
図17のように変化さた以外は実施例10と同様にして
2種の電子写真用光受容部材を作製した。
[Table 17] Comparative Example 8 Two kinds of electrophotographic light-receiving members were produced in the same manner as in Example 10 except that the carbon content change pattern of the photoconductive layer 12 was changed as shown in FIGS. 16 and 17.

【0203】こうして得られた電子写真用光受容部材を
実施例10と同様に評価を行った。比較例8の評価結果
は比較例6の評価結果と全く同じであった。
The electrophotographic light-receiving member thus obtained was evaluated in the same manner as in Example 10. The evaluation result of Comparative Example 8 was exactly the same as the evaluation result of Comparative Example 6.

【0204】実施例11 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表1
8に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12の堆積膜形成速度の変
化パターンを図7のように変化させ、かつ光導電層12
の堆積膜形成速度の比率R2/R1を変化させるために、
光導電層12の形成時に導入するSiH4の流量を変化
させた。このとき、光導電層第2領域15中の炭素含有
量の変化パターンを図13のように変化させ、光導電層
第2領域15の導電性支持体側表面での炭素含有量が約
10原子%となるようにした。
Example 11 Using the apparatus for manufacturing a light receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 1
An electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this embodiment, the change pattern of the deposited film formation rate of the photoconductive layer 12 is changed as shown in FIG.
In order to change the ratio R2 / R1 of the deposited film formation rate of
The flow rate of SiH 4 introduced when forming the photoconductive layer 12 was changed. At this time, the change pattern of the carbon content in the photoconductive layer second region 15 was changed as shown in FIG. 13, and the carbon content in the surface of the photoconductive layer second region 15 on the side of the conductive support was about 10 atomic%. So that

【0205】[0205]

【表18】 作製した電子写真用光受容部材10をキヤノン製複写機
NP−6650を実験用に改造した電子写真装置に設置
して、帯電能、感度、残留電位、白ポチ、ハーフトーン
むら等の電子写真特性について実施例1と同様に評価を
行った。更に300万枚程度の加速耐久試験を行い、各
電子写真特性について同様の評価を行った。
[Table 18] The produced electrophotographic light-receiving member 10 is installed in an electrophotographic apparatus which is a Canon copying machine NP-6650 modified for experiments, and the electrophotographic characteristics such as charging ability, sensitivity, residual potential, white spots, and halftone unevenness are set. Was evaluated in the same manner as in Example 1. Further, an accelerated durability test of about 3 million sheets was performed, and the same evaluation was performed for each electrophotographic characteristic.

【0206】評価結果を表19に示す。この結果から、
光導電層12の堆積膜形成速度の比率R2/R1を30〜
90%とすることで極めて良好な結果が得られることが
わかった。
Table 19 shows the evaluation results. from this result,
The ratio R2 / R1 of the deposited film formation rate of the photoconductive layer 12 is 30 to
It has been found that an excellent result can be obtained by setting it to 90%.

【0207】[0207]

【表19】 実施例12 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表2
0に示す作製条件で行った以外は実施例11と同様にし
て電子写真用光受容部材を作製した。
[Table 19] Example 12 Using a manufacturing apparatus for a light receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 2
An electrophotographic light-receiving member was produced in the same manner as in Example 11 except that the production conditions were 0.

【0208】作製した電子写真用光受容部材に実施例1
1と同様の評価を行ったところ、実施例11と同様の結
果が得られた。
Example 1 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 1 was performed, the same results as in Example 11 were obtained.

【0209】[0209]

【表20】 実施例13 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表21に示す作製条件で行
った以外は実施例11と同様にして電子写真用光受容部
材を作製した。
[Table 20] Example 13 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 6, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
An electrophotographic light-receiving member was produced in the same manner as in Example 11 except that the production was performed under the production conditions shown in Table 21 on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm by the microwave glow discharge method. did.

【0210】作製した電子写真用光受容部材に実施例1
1と同様の評価を行ったところ、実施例11と同様の結
果が得られた。
Example 1 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 1 was performed, the same results as in Example 11 were obtained.

【0211】[0211]

【表21】 実施例14 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表2
2に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12中の炭素含有量の変化
パターンを図13のように変化させ、かつ光導電層12
の導電性支持体11側表面の炭素含有量を変化させるた
めに、光導電層12の形成時に導入するCH4の流量を
変化させた。このとき、光導電層12の堆積膜形成速度
の変化パターンを図7のように変化させ、かつ堆積膜形
成速度の比率R2/R1を約85%となるようにした。
[Table 21] Example 14 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 2
The electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this example, the change pattern of the carbon content in the photoconductive layer 12 was changed as shown in FIG.
In order to change the carbon content on the surface of the electroconductive support 11 side, the flow rate of CH 4 introduced at the time of forming the photoconductive layer 12 was changed. At this time, the change pattern of the deposited film forming rate of the photoconductive layer 12 was changed as shown in FIG. 7, and the ratio R2 / R1 of the deposited film forming rate was set to about 85%.

【0212】[0212]

【表22】 作製した電子写真用光受容部材10をキヤノン製複写機
NP−6650を実験用に改造した電子写真装置に設置
して、帯電能、感度、残留電位、白ポチ、ハーフトーン
むら等の電子写真特性について実施例1と同様に評価を
行い、電子写真用光受容部材の表面の球状突起の発生数
について評価を行った。球状突起の発生数についての評
価は、以下の方法にしたがった。
[Table 22] The produced electrophotographic light-receiving member 10 is installed in an electrophotographic apparatus which is a Canon copying machine NP-6650 modified for experiments, and the electrophotographic characteristics such as charging ability, sensitivity, residual potential, white spots, and halftone unevenness are set. Was evaluated in the same manner as in Example 1, and the number of spherical projections generated on the surface of the electrophotographic light-receiving member was evaluated. The number of spherical projections generated was evaluated according to the following method.

【0213】作製した電子写真用光受容部材の表面全域
を光学顕微鏡で観察し、100cm2の面積内での直径20μm
以上の球状突起の個数を調べた。各電子写真用光受容部
材について結果を出し、最も球状突起の数の多かったも
のを100%として層対比較した。その結果を以下のよう
に分類した。
The entire surface of the manufactured electrophotographic light-receiving member was observed with an optical microscope, and the diameter was 20 μm within an area of 100 cm 2.
The number of the spherical protrusions was checked. Results were obtained for each electrophotographic light-receiving member, and the layer pair was compared with 100% having the largest number of spherical projections. The results are classified as follows.

【0214】◎は、60%未満、○は80%未満〜60%以
上、△は100〜80%以上。
⊚ is less than 60%, ◯ is less than 80% to 60% or more, and Δ is 100 to 80% or more.

【0215】評価結果を表23に示す。この結果から、
光導電層12の導電性支持体11側の炭素含有量として
は、0.5〜50原子%で特性の向上が見られ、更に1〜30原
子%で極めて良好な結果が得られている。
Table 23 shows the evaluation results. from this result,
When the carbon content of the photoconductive layer 12 on the side of the conductive support 11 is 0.5 to 50 atom%, the characteristics are improved, and further 1 to 30 atom%, an extremely good result is obtained.

【0216】[0216]

【表23】 実施例15 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表2
4に示す作製条件で行った以外は実施例14と同様にし
て電子写真用光受容部材を作製した。
[Table 23] Example 15 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 2
An electrophotographic light-receiving member was produced in the same manner as in Example 14 except that the production conditions shown in 4 were used.

【0217】作製した電子写真用光受容部材に実施例1
4と同様の評価を行ったところ、実施例14と同様の結
果が得られた。
Example 1 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 4 was performed, the same results as in Example 14 were obtained.

【0218】[0218]

【表24】 実施例16 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表25に示す作製条件で行
った以外は実施例14と同様にして電子写真用光受容部
材を作製した。
[Table 24] Example 16 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 6, the mirror-finished aluminum member has a diameter of 108 mm and a length of 3 mm.
An electrophotographic light-receiving member for electrophotography was produced in the same manner as in Example 14 except that the production was performed under the production conditions shown in Table 25 on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm by the microwave glow discharge method. did.

【0219】作製した電子写真用光受容部材に実施例1
4と同様の評価を行ったところ、実施例14と同様の結
果が得られた。
Example 1 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 4 was performed, the same results as in Example 14 were obtained.

【0220】[0220]

【表25】 実施例17 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表2
6に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12中の弗素含有量を図1
8のように層厚方向に一定とし、光導電層12の形成時
に導入するSiF4の流量を変化させ、弗素含有量の異
なる電子写真用光受容部材をそれぞれ作製した。このと
き、光導電層12の堆積膜形成速度の変化パターンを図
7のように変化させ、かつ堆積膜形成速度の比率R2/
R1を約85%となるようにした。また、光導電層12中
の炭素原子含有量の変化パターンを図13のように変化
させ、光導電層12の導電性支持体11側表面での炭素
原子含有量が約30原子%となるようにした。
[Table 25] Example 17 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 2
The electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this embodiment, the fluorine content in the photoconductive layer 12 is shown in FIG.
8, the flow rate of SiF 4 introduced at the time of forming the photoconductive layer 12 was changed to be constant in the layer thickness direction, and electrophotographic light receiving members having different fluorine contents were produced. At this time, the change pattern of the deposition film formation rate of the photoconductive layer 12 is changed as shown in FIG. 7, and the deposition film formation rate ratio R2 /
R1 was set to about 85%. Further, the change pattern of the carbon atom content in the photoconductive layer 12 is changed as shown in FIG. 13 so that the carbon atom content on the surface of the photoconductive layer 12 on the side of the conductive support 11 becomes about 30 atom%. I chose

【0221】尚、光導電層12中の弗素含有量は、SI
MS(CAMECA,IMS−3F)による元素分析に
て行った。
The fluorine content in the photoconductive layer 12 is SI
It was performed by elemental analysis by MS (CAMECA, IMS-3F).

【0222】[0222]

【表26】 作製した電子写真用光受容部材10をキヤノン製複写機
NP−6650を実験用に改造した電子写真装置に設置
して、白ポチ、ハーフトーンむら等の電子写真特性につ
いて実施例1と同様に評価を行い、さらにゴーストにつ
いて評価を行った。ゴーストについての評価は、以下の
方法にしたがった。
[Table 26] The produced electrophotographic light-receiving member 10 was installed in an electrophotographic apparatus which was modified from a Canon copying machine NP-6650 for experiments, and electrophotographic characteristics such as white spots and halftone unevenness were evaluated in the same manner as in Example 1. Then, the ghost was evaluated. The evaluation of the ghost was based on the following method.

【0223】キヤノン製ゴーストテストチャート(部品
番号:FY9−9040)に反射濃度1.1、φ5 mmの黒
丸を張り付けたものを原稿台の画像先端部に置き、その
上にキヤノン製中間調チャートを重ねておいた際のコピ
ー画像において中間調コピー上に認められるゴーストチ
ャートのφ5 mmの反射濃度と中間調部分の反射濃度との
差を測定した。最も差の大きかったものを100%として
相対比較した。その結果を以下のように分類した。
A Canon ghost test chart (part number: FY9-9040) to which a black circle having a reflection density of 1.1 and φ5 mm is attached is placed at the leading edge of the image on the platen, and a Canon halftone chart is overlaid thereon. The difference between the reflection density of φ5 mm of the ghost chart and the reflection density of the halftone portion observed on the halftone copy in the copy image when placed was measured. The one with the largest difference was set as 100% for relative comparison. The results are classified as follows.

【0224】◎は、60%未満、○は80%未満〜60%以
上、△は100〜80%以上。
⊚ is less than 60%, ◯ is less than 80% to 60% or more, and Δ is 100 to 80% or more.

【0225】更に300万枚程度の加速耐久試験を行
い、各電子写真特性について同様の評価を行った。
Further, an accelerated durability test of about 3 million sheets was carried out, and the same evaluation was carried out for each electrophotographic characteristic.

【0226】評価結果を表27に示す。これらの結果か
ら、光導電層12の弗素含有量を95原子ppm以下の範囲
に設定することで、画像特性及び耐久性に関しても非常
に優れた電子写真用光受容部材を作製することが可能で
あることが示された。
Table 27 shows the evaluation results. From these results, by setting the fluorine content of the photoconductive layer 12 in the range of 95 atomic ppm or less, it is possible to produce a photoreceptive member for electrophotography which is also excellent in image characteristics and durability. It was shown to be.

【0227】[0227]

【表27】 実施例18 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表2
8に示す作製条件で行った以外は実施例17と同様にし
て電子写真用光受容部材を作製した。
[Table 27] Example 18 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 2
An electrophotographic light-receiving member was produced in the same manner as in Example 17, except that the production conditions shown in 8 were used.

【0228】作製した電子写真用光受容部材に実施例1
7と同様の評価を行ったところ、実施例17と同様の結
果が得られた。
Example 1 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 7 was performed, the same results as in Example 17 were obtained.

【0229】[0229]

【表28】 実施例19 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表29に示す作製条件で行
った以外は実施例17と同様にして電子写真用光受容部
材を作製した。
[Table 28] Example 19 Using a manufacturing apparatus for a light-receiving member for electrophotography shown in FIG. 6, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
An electrophotographic light-receiving member for electrophotography was produced in the same manner as in Example 17 except that the production was carried out by the microwave glow discharge method under the production conditions shown in Table 29 on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm. did.

【0230】作製した電子写真用光受容部材に実施例1
7と同様の評価を行ったところ、実施例17と同様の結
果が得られた。
Example 1 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 7 was performed, the same results as in Example 17 were obtained.

【0231】[0231]

【表29】 実施例20 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表3
0に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12中の弗素含有量を図1
8〜図22のように層厚方向に変化させるため、光導電
層12の形成時に導入するSiF4の流量を変化させ、
5種類の電子写真用光受容部材10を作製した。このと
き、光導電層12中の弗素含有量は1〜95原子ppmの範囲
内で変化させた。また光導電層12中に弗素原子を含有
させない試料作製も同時に行った。このとき、光導電層
12の堆積膜形成速度の変化パターンを図7のように変
化させ、かつ堆積膜形成速度の比率R2/R1を約85%と
なるようにした。また、光導電層12中の炭素原子含有
量の変化パターンを図13のように変化させ、光導電層
12の導電性支持体11側表面での炭素原子含有量が約
30原子%となるようにした。
[Table 29] Example 20 Using the apparatus for manufacturing a light receiving member for electrophotography shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 3
The electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this embodiment, the fluorine content in the photoconductive layer 12 is shown in FIG.
8 to 22, in order to change in the layer thickness direction, the flow rate of SiF 4 introduced when forming the photoconductive layer 12 is changed,
Five types of electrophotographic light-receiving members 10 were produced. At this time, the fluorine content in the photoconductive layer 12 was changed within the range of 1 to 95 atomic ppm. Further, a sample was prepared at the same time in which the photoconductive layer 12 did not contain fluorine atoms. At this time, the change pattern of the deposited film forming rate of the photoconductive layer 12 was changed as shown in FIG. 7, and the ratio R2 / R1 of the deposited film forming rate was set to about 85%. Further, the change pattern of the carbon atom content in the photoconductive layer 12 is changed as shown in FIG. 13 so that the carbon atom content on the surface of the photoconductive layer 12 on the side of the conductive support 11 becomes about 30 atom%. I chose

【0232】尚、光導電層12中の弗素含有量は、SI
MS(CAMECA,IMS−3F)による元素分析に
て行った。
The fluorine content in the photoconductive layer 12 is SI
It was performed by elemental analysis by MS (CAMECA, IMS-3F).

【0233】[0233]

【表30】 作製した6種の電子写真用光受容部材10をキヤノン製
複写機NP−6650を実験用に改造した電子写真装置
に設置して、帯電能、感度、残留電位、白ポチ、ハーフ
トーンむら、ゴースト等の電子写真特性について実施例
1、17と同様に評価を行い、さらに温度特性、画像濃
度むらについて評価を行った。温度特性、画像濃度むら
についての評価は、以下の方法にしたがった。
[Table 30] The six types of electrophotographic light-receiving members 10 thus prepared were installed in an electrophotographic apparatus modified from a Canon copying machine NP-6650 for experiments, and the charging ability, sensitivity, residual potential, white spots, halftone unevenness, and ghost were set. The electrophotographic characteristics such as the above were evaluated in the same manner as in Examples 1 and 17, and further the temperature characteristics and the image density unevenness were evaluated. The following methods were used to evaluate the temperature characteristics and the image density unevenness.

【0234】温度特性:作製した電子写真用光受容部材
10の表面温度を30〜45℃まで変化させ、帯電器に+6k
Vの高電圧を印加し、コロナ帯電を行い、表面電位計に
より暗部の表面電位を測定する。電子写真用光受容部材
10の表面温度に対する暗部の表面温度の変化を直線で
近似し、その傾きを「温度特性」として、[V/deg]の
単位で表わす。
Temperature characteristics: The surface temperature of the manufactured electrophotographic light-receiving member 10 was changed to 30 to 45 ° C., and +6 k was applied to the charger.
A high voltage of V is applied, corona charging is performed, and the surface potential of the dark part is measured by a surface potential meter. A change in the surface temperature of the dark portion with respect to the surface temperature of the electrophotographic light-receiving member 10 is approximated by a straight line, and the inclination thereof is expressed as a "temperature characteristic" in the unit of [V / deg].

【0235】評価は次の通り、◎は、「特に良好」、○
は「良好」、△は「実用上問題なし」、×は「実用上問
題有り」を示す。
The evaluations are as follows: ⊚: "especially good", ○
Indicates “good”, Δ indicates “no problem in practical use”, and x indicates “problem in practical use”.

【0236】画像濃度むら:キヤノン製中間調チャート
(部品番号:FY9−9042)を原稿台に置き、連続
して200枚コピーした時に得られたそれぞれのコピー
画像上で直径0.05mmの円形の領域を1単位として100
点の画像濃度を測定し、その画像濃度の平均を求める。
評価は得られた200枚の画像間でその画像濃度の平均
のばらつきについて行った。
Image density unevenness: A circular area having a diameter of 0.05 mm on each copy image obtained when a Canon halftone chart (part number: FY9-9042) was placed on a platen and 200 sheets were continuously copied. 100 as one unit
The image density of the points is measured, and the average of the image densities is calculated.
The evaluation was performed on the average variation of the image density among the obtained 200 images.

【0237】評価は次の通り、◎は、「特に良好」、○
は「良好」、△は「実用上問題なし」、×は「実用上問
題有り」を示す。
The evaluations are as follows: ⊚: "especially good", ○
Indicates “good”, Δ indicates “no problem in practical use”, and x indicates “problem in practical use”.

【0238】更に300万枚程度の加速耐久試験を行
い、各電子写真特性について同様の評価を行った。
Further, an accelerated durability test of about 3 million sheets was performed, and the same evaluation was performed for each electrophotographic characteristic.

【0239】評価結果を表31に示す。これらの結果か
ら、光導電層12に弗素原子を含有させること、さらに
弗素含有量を層厚方向に変化させることで、画像特性及
び耐久性に関して非常に効果的であることが確認され
た。
Table 31 shows the evaluation results. From these results, it was confirmed that by containing a fluorine atom in the photoconductive layer 12 and further changing the fluorine content in the layer thickness direction, it was very effective in terms of image characteristics and durability.

【0240】[0240]

【表31】 実施例21 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表3
2に示す作製条件で行った以外は実施例20と同様にし
て電子写真用光受容部材を作製した。
[Table 31] Example 21 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, the mirror-finished aluminum member has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 3
An electrophotographic light-receiving member was produced in the same manner as in Example 20 except that the production conditions shown in 2 were used.

【0241】作製した電子写真用光受容部材に実施例2
0と同様の評価を行ったところ、実施例20と同様の結
果が得られた。
Example 2 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as 0 was performed, the same results as in Example 20 were obtained.

【0242】[0242]

【表32】 実施例22 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表33に示す作製条件で行
った以外は実施例20と同様にして電子写真用光受容部
材を作製した。
[Table 32] Example 22 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 6, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
An electrophotographic light-receiving member was produced in the same manner as in Example 20 except that the production was carried out under the production conditions shown in Table 33 by the microwave glow discharge method on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm. did.

【0243】作製した電子写真用光受容部材に実施例2
0と同様の評価を行ったところ、実施例20と同様の結
果が得られた。
Example 2 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as 0 was performed, the same results as in Example 20 were obtained.

【0244】[0244]

【表33】 実施例23 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表3
4に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12中の酸素含有量を図2
3のように一定とし、光導電層12の形成時に導入する
CO2の流量を変化させることにより、酸素含有量を表
35のように変化させて電子写真用光受容部材10をそ
れぞれ作製した。このとき、光導電層12の堆積膜形成
速度の変化パターンを図7のように変化させ、かつ堆積
膜形成速度の比率R2/R1を約85%となるようにした。
また、光導電層12中の炭素原子含有量の変化パターン
を図13のように変化させ、光導電層12の導電性支持
体11側表面での炭素原子含有量が約30原子%となる
ようにした。
[Table 33] Example 23 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 3
An electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this example, the oxygen content in the photoconductive layer 12 is shown in FIG.
3, the oxygen content was changed as shown in Table 35 by changing the flow rate of CO 2 introduced at the time of forming the photoconductive layer 12 to manufacture the electrophotographic light-receiving members 10. At this time, the change pattern of the deposited film forming rate of the photoconductive layer 12 was changed as shown in FIG. 7, and the ratio R2 / R1 of the deposited film forming rate was set to about 85%.
Further, the change pattern of the carbon atom content in the photoconductive layer 12 is changed as shown in FIG. 13 so that the carbon atom content on the surface of the photoconductive layer 12 on the side of the conductive support 11 becomes about 30 atom%. I chose

【0245】尚、光導電層12中の酸素含有量は、SI
MS(CAMECA,IMS−3F)による元素分析に
て行った。
The oxygen content in the photoconductive layer 12 is SI
It was performed by elemental analysis by MS (CAMECA, IMS-3F).

【0246】[0246]

【表34】 作製した電子写真用光受容部材10をキヤノン製複写機
NP−6650を実験用に改造した電子写真装置に設置
して、帯電能、感度、残留電位等の電子写真特性につい
て実施例1と同様に評価を行い、さらに電位シフトにつ
いて評価を行った。電位シフトについての評価は、以下
の方法にしたがった。
[Table 34] The produced electrophotographic light-receiving member 10 was installed in an electrophotographic apparatus which was modified from a Canon copying machine NP-6650 for experiments, and the electrophotographic characteristics such as charging ability, sensitivity and residual potential were the same as in Example 1. The evaluation was performed and further the potential shift was evaluated. The evaluation of the potential shift was according to the following method.

【0247】作製した電子写真用光受容部材10を実験
装置に設置し、帯電器に+6kVの高電圧を印加し、コ
ロナ帯電を行い、表面電位計により電子写真用光受容部
材10の暗部の表面電位を測定する。この時、帯電器に
電圧を印加し始めた時の暗部表面温電位をVd0とし、2
分後の暗部表面電位をVdとする。そしてVd0とVdとの
差を以て電位シフト量とする。
The electrophotographic light-receiving member 10 thus prepared was placed in an experimental apparatus, a high voltage of +6 kV was applied to the charger, corona charging was performed, and the surface of the dark portion of the electrophotographic light-receiving member 10 was measured by a surface electrometer. Measure the potential. At this time, the dark surface temperature potential when the voltage starts to be applied to the charger is set to Vd0, and 2
The surface potential of the dark area after the minute is set to Vd. Then, the difference between Vd0 and Vd is used as the potential shift amount.

【0248】評価は次の通り、◎は、「特に良好」、○
は「良好」、△は「実用上問題なし」、×は「実用上問
題有り」を示す。
The evaluation is as follows: ⊚: "especially good", ○
Indicates “good”, Δ indicates “no problem in practical use”, and x indicates “problem in practical use”.

【0249】評価結果を表35に示す。これらの結果か
ら、光導電層12に弗素原子を含有させ、更に酸素原子
を10〜5000ppmの範囲で含有させた場合、電位
シフト等の電子写真特性の改善に関して非常に効果的で
あることが確認された。
The evaluation results are shown in Table 35. From these results, it was confirmed that when the photoconductive layer 12 contains a fluorine atom and further contains an oxygen atom in the range of 10 to 5000 ppm, it is very effective in improving electrophotographic characteristics such as potential shift. Was done.

【0250】[0250]

【表35】 実施例24 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表3
6に示す作製条件で行った以外は実施例23と同様にし
て電子写真用光受容部材を作製した。
[Table 35] Example 24 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 3
An electrophotographic light-receiving member was produced in the same manner as in Example 23 except that the production conditions shown in 6 were used.

【0251】作製した電子写真用光受容部材に実施例2
3と同様の評価を行ったところ、実施例23と同様の結
果が得られた。
Example 2 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 3 was performed, the same results as in Example 23 were obtained.

【0252】[0252]

【表36】 実施例25 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表37に示す作製条件で行
った以外は実施例23と同様にして電子写真用光受容部
材を作製した。
[Table 36] Example 25 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 6, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
An electrophotographic light-receiving member for electrophotography was produced in the same manner as in Example 23 except that the production was performed under the production conditions shown in Table 37 on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm by the microwave glow discharge method. did.

【0253】作製した電子写真用光受容部材に実施例2
3と同様の評価を行ったところ、実施例23と同様の結
果が得られた。
Example 2 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 3 was performed, the same results as in Example 23 were obtained.

【0254】[0254]

【表37】 実施例26 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表3
8に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、光導電層12中の酸素含有量を図2
3〜図27のように層厚方向に変化させるため、光導電
層12の形成時に導入するCO2の流量を変化させ、5
種類の電子写真用光受容部材10を作製した。このと
き、光導電層12中の酸素含有量は10〜800原子pp
mの範囲内で変化させた。また光導電層12中に酸素原
子を含有させない試料作製も同時に行った。このとき、
光導電層12の堆積膜形成速度の変化パターンを図7の
ように変化させ、かつ堆積膜形成速度の比率R2/R1を
約85%となるようにした。また、光導電層12中の炭素
原子含有量の変化パターンを図13のように変化させ、
光導電層12の導電性支持体11側表面での炭素原子含
有量が約30原子%となるようにした。
[Table 37] Example 26 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, the mirror-finished aluminum member has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 3
An electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this example, the oxygen content in the photoconductive layer 12 is shown in FIG.
3 to 27, the flow rate of CO 2 introduced at the time of forming the photoconductive layer 12 is changed to change the layer thickness direction.
A variety of electrophotographic light-receiving members 10 were produced. At this time, the oxygen content in the photoconductive layer 12 is 10 to 800 atom pp.
It was changed within the range of m. Further, a sample was prepared at the same time in which the photoconductive layer 12 did not contain oxygen atoms. At this time,
The change pattern of the deposited film forming rate of the photoconductive layer 12 was changed as shown in FIG. 7, and the deposited film forming rate ratio R2 / R1 was set to about 85%. Further, the change pattern of the carbon atom content in the photoconductive layer 12 is changed as shown in FIG.
The carbon atom content on the surface of the photoconductive layer 12 on the electroconductive support 11 side was set to about 30 atom%.

【0255】尚、光導電層12中の酸素含有量は、SI
MS(CAMECA,IMS−3F)による元素分析に
て行った。
The oxygen content in the photoconductive layer 12 is SI
It was performed by elemental analysis by MS (CAMECA, IMS-3F).

【0256】[0256]

【表38】 作製した6種の電子写真用光受容部材10をキヤノン製
複写機NP−6650を実験用に改造した電子写真装置
に設置して、帯電能、感度、残留電位、白ポチ、ハーフ
トーンむら、ゴースト、電位シフト等の電子写真特性に
ついて実施例1、17及び23と同様に評価を行った。
[Table 38] The six types of electrophotographic light-receiving members 10 thus prepared were installed in an electrophotographic apparatus modified from a Canon copying machine NP-6650 for experiments, and the charging ability, sensitivity, residual potential, white spots, halftone unevenness, and ghost were set. The electrophotographic characteristics such as potential shift were evaluated in the same manner as in Examples 1, 17 and 23.

【0257】更に300万枚程度の加速耐久試験を行
い、各電子写真特性について同様の評価を行った。
Further, an accelerated durability test of about 3 million sheets was carried out, and the same evaluation was carried out for each electrophotographic characteristic.

【0258】評価結果を表39に示す。これらの結果か
ら、光導電層12に酸素原子を含有させ、より好ましく
はその濃度を層厚方向に変化させることで、電子写真特
性における耐久性が向上することが明らかとなった。
Table 39 shows the evaluation results. From these results, it has been clarified that the durability in electrophotographic characteristics is improved by containing oxygen atoms in the photoconductive layer 12 and more preferably changing the concentration thereof in the layer thickness direction.

【0259】[0259]

【表39】 実施例27 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表4
0に示す作製条件で行った以外は実施例26と同様にし
て電子写真用光受容部材を作製した。
[Table 39] Example 27 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 4
An electrophotographic light-receiving member was produced in the same manner as in Example 26 except that the production conditions were 0.

【0260】作製した電子写真用光受容部材に実施例2
6と同様の評価を行ったところ、実施例26と同様の結
果が得られた。
Example 2 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 6 was performed, the same results as in Example 26 were obtained.

【0261】[0261]

【表40】 実施例28 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表41に示す作製条件で行
った以外は実施例26と同様にして電子写真用光受容部
材を作製した。
[Table 40] Example 28 Using the apparatus for manufacturing a light-receiving member for electrophotography shown in FIG. 6, the mirror-finished aluminum member has a diameter of 108 mm and a length of 3
A light-receiving member for electrophotography was produced in the same manner as in Example 26 except that the production was performed under the production conditions shown in Table 41 on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm by the microwave glow discharge method. did.

【0262】作製した電子写真用光受容部材に実施例2
6と同様の評価を行ったところ、実施例26と同様の結
果が得られた。
Example 2 was applied to the produced electrophotographic light-receiving member.
When the same evaluation as in Example 6 was performed, the same results as in Example 26 were obtained.

【0263】[0263]

【表41】 実施例29 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表4
2に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、表面層13に含有される炭素原子、
酸素原子、窒素原子の含有量の和をシリコン原子、炭素
原子、酸素原子、窒素原子の含有量の和に対し40原子
%から90原子%まで、表面層13形成時に導入するパ
ワー、CH4流量、CO2流量、NH3流量を変化させ
た。
[Table 41] Example 29 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 4
The electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this example, carbon atoms contained in the surface layer 13,
Oxygen atom, silicon atom and the sum of the content of nitrogen atom, carbon atom, oxygen atom, from 40 atomic% to the sum of the content of nitrogen atoms to 90 atomic%, the power to be introduced at the surface layer 13 formed, CH 4 flow rate , CO 2 flow rate, and NH 3 flow rate were changed.

【0264】[0264]

【表42】 作製した電子写真用光受容部材10をキヤノン製複写機
NP−6650を実験用に改造した電子写真装置に設置
して、帯電能、感度、残留電位等の電子写真特性につい
て実施例1と同様に評価を行い、さらに画像流れ、30
0万枚相当の加速耐久試験前後の画像評価を行った。画
像流れ、画像評価は、以下の方法にしたがった。
[Table 42] The produced electrophotographic light-receiving member 10 was installed in an electrophotographic apparatus which was modified from a Canon copying machine NP-6650 for experiments, and the electrophotographic characteristics such as charging ability, sensitivity and residual potential were the same as in Example 1. Evaluation is performed and further image deletion, 30
Image evaluation was performed before and after the accelerated durability test equivalent to 0,000 sheets. Image deletion and image evaluation were according to the following methods.

【0265】画像流れ:白地に全面文字よりなるキヤノ
ン製テストチャート(部品番号:FY9−9058)を
原稿台に置き、通常の露光量の2倍の露光量で露光し、
コピーをとる。こうして得られた画像を観察し、画像上
の細線が途切れずにつながっているか以下の4段階で評
価した。但しこの時画像上でむらがある時は、全画像域
で最も悪い部位で評価した。
Image deletion: A Canon test chart (part number: FY9-9058) consisting of all characters on a white background is placed on a document table and exposed at an exposure amount twice the normal exposure amount.
Make a copy. The image thus obtained was observed, and whether the thin lines on the image were connected without interruption was evaluated according to the following four grades. However, at this time, when there was unevenness on the image, evaluation was made on the worst part in the entire image area.

【0266】評価は次の通り、◎は、「良好」、○は
「一部途切れあり」、△は「途切れが多いが文字として
判読でき、実用上問題なし」、×は「途切れが多く文字
として判読し難く、実用上問題有り」を示す。
The evaluations are as follows: ⊚ is “good”, ◯ is “partially discontinued”, Δ is “interrupted but legible as a character and practically no problem”, and × is “disrupted with many characters” It is difficult to read, and there is a problem in practical use. "

【0267】画像評価:白ポチ、擦傷それぞれについて
5段階の限度見本を作製し、評価結果の合計を次の4段
階に分類した。◎は「特に良好」、○は「良好」、△は
「実用上問題なし」、×は「実用上問題あり」を示す。
Image evaluation: Five-level limit samples were prepared for each of white spots and scratches, and the total evaluation results were classified into the following four levels. ⊚ indicates “particularly good”, ◯ indicates “good”, Δ indicates “no problem in practical use”, and x indicates “problem in practical use”.

【0268】比較例9 表面層に含有される炭素原子、酸素原子、窒素原子の含
有量の和を40原子%未満、及び90原子%より多くし
た以外は実施例29と同様にして電子写真用光受容部材
を作製し、同様に評価した。
Comparative Example 9 For electrophotography in the same manner as in Example 29 except that the total content of carbon atom, oxygen atom and nitrogen atom contained in the surface layer was set to less than 40 atom% and more than 90 atom%. A light receiving member was prepared and evaluated in the same manner.

【0269】比較例10 表面層形成時にCH4を用いず、さらにCO2の代わりに
NOを用いて表面層に含有される酸素原子、窒素原子の
含有量の和を60原子%とした以外は実施例29と同様
にして電子写真用光受容部材を作製し、同様に評価し
た。
Comparative Example 10 Except that CH 4 was not used at the time of forming the surface layer, NO was used instead of CO 2 , and the total content of oxygen atoms and nitrogen atoms contained in the surface layer was 60 atomic%. An electrophotographic light-receiving member was produced in the same manner as in Example 29, and evaluated in the same manner.

【0270】比較例11 表面層形成時にCO2を用いずに、表面層に含有される
炭素原子、窒素原子の含有量の和を60原子%とした以
外は実施例29と同様にして電子写真用光受容部材を作
製し、同様に評価した。
Comparative Example 11 An electrophotographic process was performed in the same manner as in Example 29 except that CO 2 was not used when forming the surface layer and the total content of carbon atoms and nitrogen atoms contained in the surface layer was set to 60 atom%. A light-receiving member for use was prepared and evaluated in the same manner.

【0271】比較例12 表面層形成時にNH3を用いずに、表面層に含有される
炭素原子、酸素原子の含有量の和を60原子%とした以
外は実施例29と同様にして電子写真用光受容部材を作
製し、同様に評価した。
Comparative Example 12 Electrophotography was carried out in the same manner as in Example 29 except that NH 3 was not used when forming the surface layer, and the total content of carbon atoms and oxygen atoms contained in the surface layer was 60 atom%. A light-receiving member for use was prepared and evaluated in the same manner.

【0272】実施例29、比較例9〜12の結果をあわ
せて表43に示す。これらの結果から、本発明によると
ころの表面層の炭素原子、酸素原子及び窒素原子の含有
量の和が、シリコン原子、炭素原子、酸素原子、窒素原
子の含有量の和に対して40〜90原子%で電子写真特
性、耐久性に著しい改善が見られ、さらに酸素原子及び
窒素原子の含有量の和を10原子%以下とすることで極
めて良好な結果が得られた。
The results of Example 29 and Comparative Examples 9 to 12 are shown in Table 43 together. From these results, the total content of carbon atoms, oxygen atoms and nitrogen atoms in the surface layer according to the present invention is 40 to 90 relative to the total content of silicon atoms, carbon atoms, oxygen atoms and nitrogen atoms. A marked improvement in electrophotographic properties and durability was observed at atomic%, and extremely good results were obtained by adjusting the sum of the content of oxygen atoms and nitrogen atoms to 10 atomic% or less.

【0273】[0273]

【表43】 実施例30 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表4
4に示す作製条件で行った以外は実施例29と同様にし
て電子写真用光受容部材を作製した。得られた電子写真
用光受容部材について実施例29と同様に評価を行っ
た。
[Table 43] Example 30 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, the mirror-finished aluminum member has a diameter of 108 mm and a length of 3 mm.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 4
An electrophotographic light-receiving member was produced in the same manner as in Example 29 except that the production conditions shown in 4 were used. The obtained electrophotographic light-receiving member was evaluated in the same manner as in Example 29.

【0274】[0274]

【表44】 比較例13 表面層に含有される炭素原子、酸素原子、窒素原子の含
有量の和を40原子%未満、及び90原子%より多くし
た以外は実施例30と同様にして電子写真用光受容部材
を作製し、同様に評価した。
[Table 44] Comparative Example 13 An electrophotographic light-receiving member was prepared in the same manner as in Example 30, except that the total content of carbon atom, oxygen atom and nitrogen atom contained in the surface layer was less than 40 atom% and more than 90 atom%. Was prepared and evaluated in the same manner.

【0275】比較例14 表面層形成時にCH4を用いず、さらにCO2の代わりに
NOを用いて表面層に含有される酸素原子、窒素原子の
含有量の和を60原子%とした以外は実施例30と同様
にして電子写真用光受容部材を作製し、同様に評価し
た。
Comparative Example 14 Except that CH 4 was not used at the time of forming the surface layer, and NO was used instead of CO 2 so that the total content of oxygen atoms and nitrogen atoms contained in the surface layer was 60 atomic%. An electrophotographic light-receiving member was produced in the same manner as in Example 30, and evaluated in the same manner.

【0276】比較例15 表面層形成時にCO2を用いずに、表面層に含有される
炭素原子、窒素原子の含有量の和を60原子%とした以
外は実施例30と同様にして電子写真用光受容部材を作
製し、同様に評価した。
Comparative Example 15 An electrophotography was carried out in the same manner as in Example 30 except that CO 2 was not used when forming the surface layer and the total content of carbon atoms and nitrogen atoms contained in the surface layer was set to 60 atom%. A light-receiving member for use was prepared and evaluated in the same manner.

【0277】比較例16 表面層形成時にNH3を用いずに、表面層に含有される
炭素原子、酸素原子の含有量の和を60原子%とした以
外は実施例30と同様にして電子写真用光受容部材を作
製し、同様に評価した。
Comparative Example 16 Electrophotography was carried out in the same manner as in Example 30 except that NH 3 was not used at the time of forming the surface layer and the total content of carbon atoms and oxygen atoms contained in the surface layer was changed to 60 atom%. A light-receiving member for use was prepared and evaluated in the same manner.

【0278】実施例30については実施例29と、比較
例13〜16については比較例9〜12と同様の結果が
得られた。
The same results as in Example 29 were obtained for Example 30 and for Comparative Examples 13 to 16 and Comparative Examples 9 to 12.

【0279】実施例31図6に示す電子写真用光受容部
材の製造装置を用い、鏡面加工を施したアルミニウムよ
り成る直径108mm、長さ358mm、肉厚5mmの円筒状導電性
支持体11の上に、マイクロ波グロー放電法により、表
45に示す作製条件で行った以外は実施例29と同様に
して電子写真用光受容部材を作製した。
Example 31 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 6, on a cylindrical conductive support 11 made of mirror-finished aluminum and having a diameter of 108 mm, a length of 358 mm, and a wall thickness of 5 mm. Further, a light-receiving member for electrophotography was produced by the same method as in Example 29 except that the production conditions shown in Table 45 were used and the microwave glow discharge method was used.

【0280】[0280]

【表45】 比較例17 表面層に含有される炭素原子、酸素原子、窒素原子の含
有量の和を40原子%未満、及び90原子%より多くし
た以外は実施例31と同様にして電子写真用光受容部材
を作製し、同様に評価した。
[Table 45] Comparative Example 17 An electrophotographic light-receiving member for electrophotography was performed in the same manner as in Example 31 except that the total content of carbon atoms, oxygen atoms and nitrogen atoms contained in the surface layer was less than 40 atom% and more than 90 atom%. Was prepared and evaluated in the same manner.

【0281】比較例18 表面層形成時にCH4を用いず、さらにCO2の代わりに
NOを用いて表面層に含有される酸素原子、窒素原子の
含有量の和を60原子%とした以外は実施例31と同様
にして電子写真用光受容部材を作製し、同様に評価し
た。
Comparative Example 18 Except that CH 4 was not used at the time of forming the surface layer, and NO was used instead of CO 2 so that the total content of oxygen atoms and nitrogen atoms contained in the surface layer was 60 atomic%. An electrophotographic light-receiving member was produced in the same manner as in Example 31, and evaluated in the same manner.

【0282】比較例19 表面層形成時にCO2を用いずに、表面層に含有される
炭素原子、窒素原子の含有量の和を60原子%とした以
外は実施例31と同様にして電子写真用光受容部材を作
製し、同様に評価した。
Comparative Example 19 An electrophotographic process was performed in the same manner as in Example 31 except that CO 2 was not used when forming the surface layer and the total content of carbon atoms and nitrogen atoms contained in the surface layer was set to 60 atom%. A light-receiving member for use was prepared and evaluated in the same manner.

【0283】比較例20 表面層形成時にNH3を用いずに、表面層に含有される
炭素原子、酸素原子の含有量の和を60原子%とした以
外は実施例31と同様にして電子写真用光受容部材を作
製し、同様に評価した。
Comparative Example 20 An electrophotographic process was performed in the same manner as in Example 31 except that NH 3 was not used when forming the surface layer and the total content of carbon atoms and oxygen atoms contained in the surface layer was changed to 60 atom%. A light-receiving member for use was prepared and evaluated in the same manner.

【0284】実施例31については実施例29と、比較
例17〜20については比較例9〜12と同様の結果が
得られた。
The same results as in Example 29 were obtained for Example 31 and in Comparative Examples 9-12 for Comparative Examples 17-20.

【0285】実施例32 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表4
6に示す作製条件で電子写真用光受容部材10を作製し
た。本実施例では、表面層に含有される弗素原子の含有
量を20原子%以下とし、かつ水素原子及び弗素原子の
含有量の和を30〜70原子%の範囲で変化させるため
に、表面層形成時に導入するパワー、H2及び/または
SiF4流量を変えて電子写真用光受容部材をそれぞれ
作製した。
Example 32 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, a mirror-finished aluminum member having a diameter of 108 mm and a length of 3 was formed.
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 4
The electrophotographic light-receiving member 10 was produced under the production conditions shown in FIG. In this embodiment, the surface layer contains 20 atomic% or less of fluorine atoms and the total content of hydrogen atoms and fluorine atoms is changed in the range of 30 to 70 atomic%. Electrophotographic light-receiving members were produced by changing the power, H 2 and / or SiF 4 flow rate introduced during formation.

【0286】作製した電子写真用光受容部材をキヤノン
製複写機NP−6650を実験用に改造した電子写真装
置に設置して、実施例29と同様にして、残留電位、感
度、画像流れの3項目について評価を行った。
The produced electrophotographic light-receiving member was placed in an electrophotographic apparatus which was modified from a Canon copying machine NP-6650 for an experiment, and in the same manner as in Example 29, the residual potential, the sensitivity, and the image deletion were 3%. The items were evaluated.

【0287】[0287]

【表46】 比較例21 表面層に含有される水素原子及び弗素原子の含有量の和
を30原子%未満、及び70原子%より多くした以外は
実施例32と同様にして電子写真用光受容部材を作製
し、同様に評価した。
[Table 46] Comparative Example 21 An electrophotographic light-receiving member was produced in the same manner as in Example 32, except that the total content of hydrogen atoms and fluorine atoms contained in the surface layer was less than 30 atom% and more than 70 atom%. , And evaluated in the same manner.

【0288】比較例22 表面層に含有される弗素原子の含有量を20原子%より
多くした以外は実施例32と同様にして電子写真用光受
容部材を作製し、同様に評価した。
Comparative Example 22 An electrophotographic light-receiving member was prepared and evaluated in the same manner as in Example 32 except that the content of fluorine atoms contained in the surface layer was increased to more than 20 atom%.

【0289】比較例23 表面層形成時にSiF4を用いなかった以外は実施例3
2と同様にして電子写真用光受容部材を作製し、同様に
評価した。
Comparative Example 23 Example 3 except that SiF 4 was not used when forming the surface layer.
A light-receiving member for electrophotography was prepared in the same manner as in 2, and evaluated in the same manner.

【0290】実施例32、比較例21〜23の結果をあ
わせて表47に示す。表47より明らかなように、表面
層中の水素原子と弗素原子の含有量の和を30〜70原
子%とし、かつ弗素原子の含有量を20原子%以下の範
囲とすることによって、残留電位、感度のいずれもが良
好な結果を示し、さらに強露光での画像流れを大幅に抑
制できることが分かった。
The results of Example 32 and Comparative Examples 21 to 23 are shown in Table 47 together. As is clear from Table 47, the residual potential is controlled by setting the sum of the content of hydrogen atoms and fluorine atoms in the surface layer to 30 to 70 atom% and the content of fluorine atoms in the range of 20 atom% or less. It was found that both the sensitivity and the sensitivity showed good results and that the image deletion at the strong exposure could be significantly suppressed.

【0291】[0291]

【表47】 実施例33 図4に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、先に
詳述した手順に従って、RFグロー放電法により、表4
8に示す作製条件で行った以外は実施例32と同様にし
て電子写真用光受容部材を作製した。得られた電子写真
用光受容部材について実施例32と同様に評価を行っ
た。
[Table 47] Example 33 Using the electrophotographic light-receiving member manufacturing apparatus shown in FIG. 4, it was made of mirror-finished aluminum and had a diameter of 108 mm and a length of 3
On the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm, according to the procedure detailed above, by the RF glow discharge method, Table 4
An electrophotographic light-receiving member was produced in the same manner as in Example 32 except that the production conditions shown in 8 were used. The obtained electrophotographic light receiving member was evaluated in the same manner as in Example 32.

【0292】[0292]

【表48】 比較例24 表面層に含有される水素原子及び弗素原子の含有量の和
を30原子%未満、及び70原子%より多くした以外は
実施例33と同様にして電子写真用光受容部材を作製
し、同様に評価した。
[Table 48] Comparative Example 24 An electrophotographic light-receiving member was produced in the same manner as in Example 33 except that the total content of hydrogen atoms and fluorine atoms contained in the surface layer was less than 30 atom% and more than 70 atom%. , And evaluated in the same manner.

【0293】比較例25 表面層に含有される弗素原子の含有量を20原子%より
多くした以外は実施例33と同様にして電子写真用光受
容部材を作製し、同様に評価した。
Comparative Example 25 An electrophotographic light-receiving member was prepared and evaluated in the same manner as in Example 33 except that the content of fluorine atoms in the surface layer was increased to more than 20 atom%.

【0294】比較例26 表面層形成時にSiF4を用いなかった以外は実施例3
3と同様にして電子写真用光受容部材を作製し、同様に
評価した。
Comparative Example 26 Example 3 except that SiF 4 was not used when forming the surface layer.
An electrophotographic light-receiving member was produced in the same manner as in 3, and evaluated in the same manner.

【0295】実施例33については実施例32と、比較
例24〜26については比較例21〜23と同様の結果
が得られた。
The same results were obtained as in Example 32 for Example 33 and for Comparative Examples 24 to 26 and Comparative Examples 21 to 23.

【0296】実施例34 図6に示す電子写真用光受容部材の製造装置を用い、鏡
面加工を施したアルミニウムより成る直径108mm、長さ3
58mm、肉厚5mmの円筒状導電性支持体11の上に、マイ
クロ波グロー放電法により、表49に示す作製条件で行
った以外は実施例32と同様にして電子写真用光受容部
材を作製した。得られた電子写真用光受容部材について
実施例32と同様に評価を行った。
Example 34 Using the apparatus for manufacturing a light receiving member for electrophotography shown in FIG. 6, it is made of mirror-finished aluminum and has a diameter of 108 mm and a length of 3 mm.
An electrophotographic light-receiving member was produced in the same manner as in Example 32 except that the production was performed under the production conditions shown in Table 49 by the microwave glow discharge method on the cylindrical conductive support 11 having a thickness of 58 mm and a thickness of 5 mm. did. The obtained electrophotographic light receiving member was evaluated in the same manner as in Example 32.

【0297】[0297]

【表49】 比較例27 表面層に含有される水素原子及び弗素原子の含有量の和
を30原子%未満、及び70原子%より多くした以外は
実施例34と同様にして電子写真用光受容部材を作製
し、同様に評価した。
[Table 49] Comparative Example 27 An electrophotographic light-receiving member was produced in the same manner as in Example 34, except that the total content of hydrogen atoms and fluorine atoms contained in the surface layer was less than 30 atom% and more than 70 atom%. , And evaluated in the same manner.

【0298】比較例28 表面層に含有される弗素原子の含有量を20原子%より
多くした以外は実施例34と同様にして電子写真用光受
容部材を作製し、同様に評価した。
Comparative Example 28 An electrophotographic light-receiving member was prepared and evaluated in the same manner as in Example 34 except that the content of fluorine atoms contained in the surface layer was more than 20 atom%.

【0299】比較例29 表面層形成時にSiF4を用いなかった以外は実施例3
4と同様にして電子写真用光受容部材を作製し、同様に
評価した。
Comparative Example 29 Example 3 except that SiF 4 was not used when forming the surface layer.
An electrophotographic light-receiving member was produced in the same manner as in 4, and evaluated in the same manner.

【0300】実施例34については実施例32と、比較
例27〜29については比較例21〜23と同様の結果
が得られた。
Similar results were obtained as in Example 32 for Example 34 and Comparative Examples 21-23 for Comparative Examples 27-29.

【0301】[0301]

【発明の効果】本発明の方法によれば、A−Siで構成
された従来の電子写真用光受容部材における諸問題を解
決することができ、特に、極めて優れた電気的特性、光
学的特性、光導電特性、画像特性、耐久性及び使用環境
特性を示す電子写真用光受容部材を形成することができ
る。特に本発明においては、光導電層に含まれる炭素原
子を導電性支持体側から表面層側に向かって連続的に減
少させていくことで、電荷(フォトキャリア)の発生と
該発生した電荷の輸送という電子写真用光受容部材にと
っての重要な機能を滑らかに持続でき、光感度の優れた
電子写真用光受容部材が作製できる。また、光導電層に
炭素原子が含有されていることにより、光導電層と表面
層からなる光受容層としての誘電率を小さくすることが
できるため、層厚あたりの静電容量を減少させることが
でき、高い帯電能を実現し、光感度において著しい改善
が見られ、更に高電圧に対する耐圧性も向上し、耐久性
も向上する。
EFFECTS OF THE INVENTION According to the method of the present invention, it is possible to solve various problems in the conventional photoreceptive member for electrophotography composed of A-Si, and in particular, extremely excellent electric characteristics and optical characteristics. It is possible to form a photoreceptive member for electrophotography, which exhibits photoconductive properties, image properties, durability and use environment properties. Particularly in the present invention, the carbon atoms contained in the photoconductive layer are continuously reduced from the side of the conductive support toward the side of the surface layer, whereby the generation of charges (photocarriers) and the transport of the generated charges are carried out. The important function for the electrophotographic light-receiving member can be smoothly maintained, and an electrophotographic light-receiving member having excellent photosensitivity can be produced. In addition, since the photoconductive layer contains carbon atoms, the dielectric constant of the photoreceptive layer including the photoconductive layer and the surface layer can be reduced, so that the capacitance per layer thickness can be reduced. It is possible to achieve high chargeability, a remarkable improvement in photosensitivity, further improvement in withstand voltage against high voltage, and improvement in durability.

【0302】さらに、光導電層の堆積膜形成速度を、支
持体側で速く、表面層側で遅くすることによって、光導
電層中の炭素原子の含有量が層厚方向に変化することに
よる堆積膜中のストレスを効果的に緩和し、かつ堆積膜
形成速度の変化と炭素含有量の変化との相乗効果により
堆積膜の緻密性が向上するため、堆積膜の均一性が向上
し、堆積膜中の欠陥が減少する。その結果、とりわけハ
ーフトーンむら等の画像特性を改善することができ、ま
た表面層側からの電荷の注入をより効果的に阻止するこ
とが可能となり、更に高い帯電能を得ることができる。
また更に、堆積膜の剥離や、微小な欠陥の発生を大幅に
抑制することができる。
Further, by increasing the deposition film formation rate of the photoconductive layer on the support side and slowing it on the surface layer side, the content of carbon atoms in the photoconductive layer changes in the layer thickness direction. The stress of the inside is effectively relieved, and the denseness of the deposited film is improved by the synergistic effect of the change of the deposited film formation rate and the change of the carbon content, so that the uniformity of the deposited film is improved and The number of defects is reduced. As a result, image characteristics such as uneven halftone can be improved, and injection of charges from the surface layer side can be prevented more effectively, and higher charging ability can be obtained.
Furthermore, peeling of the deposited film and generation of minute defects can be significantly suppressed.

【0303】また、光導電層を光導電層第2領域と光導
電層第1領域の2つの領域から構成し、光導電層第1領
域の層厚を0.5〜50μmとすることで、より長波長光の感
度が向上し、帯電極性と逆のキャリアの走行性が向上す
るのでゴーストが良化する。また、本発明による表面層
を設けることにより、撥水性に富み、耐湿性が向上す
る。さらに機械的強度や電気的耐圧性が向上し、また帯
電処理を受けた際に表面より電荷が注入されるのを効果
的に阻止でき、帯電能、使用環境特性、耐久性及び電気
的耐圧性を向上させることができる。さらに、表面層中
での光の吸収が減少するために感度の向上を図ることが
でき、光導電層と表面層の間でのキャリアの蓄積が減少
するために、帯電能を高い状態に維持したままで画像流
れを抑制することのできる電子写真用光受容部材を提供
することができる。
Further, the photoconductive layer is composed of two regions, that is, the second region of the photoconductive layer and the first region of the photoconductive layer, and the layer thickness of the first region of the photoconductive layer is 0.5 to 50 μm. The ghost is improved because the sensitivity of wavelength light is improved and the traveling property of carriers opposite to the charging polarity is improved. Further, by providing the surface layer according to the present invention, the water repellency is enhanced and the moisture resistance is improved. Furthermore, the mechanical strength and electrical withstand voltage are improved, and it is possible to effectively prevent the injection of electric charges from the surface when subjected to electrification treatment, and the charging ability, operating environment characteristics, durability and electrical withstand voltage Can be improved. In addition, the absorption of light in the surface layer is reduced, which can improve the sensitivity, and the accumulation of carriers between the photoconductive layer and the surface layer is reduced, so that the chargeability is maintained at a high level. It is possible to provide an electrophotographic light-receiving member capable of suppressing image deletion as it is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電子写真用光受容部材の好適な実
施態様例の層構成を説明するための模式的構成図であ
る。
FIG. 1 is a schematic configuration diagram for explaining a layer configuration of a preferred embodiment of a light receiving member for electrophotography according to the present invention.

【図2】本発明による電子写真用光受容部材の好適な他
の実施態様例の層構成を説明するための模式的構成図で
ある。
FIG. 2 is a schematic configuration diagram for explaining a layer configuration of another preferred embodiment of the electrophotographic light-receiving member according to the present invention.

【図3】従来の電子写真用光受容部材の層構成の一例を
示す模式的構成図である。
FIG. 3 is a schematic configuration diagram showing an example of a layer configuration of a conventional electrophotographic light-receiving member.

【図4】本発明における電子写真用光受容部材の光受容
層を形成するための装置の一例を示すものであり、RF
グロー放電法による電子写真用光受容部材の製造装置の
模式的説明図である。
FIG. 4 shows an example of an apparatus for forming a light-receiving layer of a light-receiving member for electrophotography according to the present invention, RF
It is a schematic explanatory view of a manufacturing apparatus of a light receiving member for electrophotography by a glow discharge method.

【図5】本発明における電子写真用光受容部材の光受容
層を形成するための装置の一例を示すものであり、μW
グロー放電法による電子写真用光受容部材の製造装置の
堆積装置部分の模式的説明図であり、(a)は装置の側
断面図であり、(b)はX−X’における横断面図であ
る。
FIG. 5 shows an example of an apparatus for forming a light receiving layer of a light receiving member for electrophotography according to the present invention.
It is a schematic explanatory drawing of the deposition apparatus part of the manufacturing apparatus of the electrophotographic light-receiving member by the glow discharge method, (a) is a side sectional view of an apparatus, (b) is a transverse sectional view in XX '. is there.

【図6】本発明における電子写真用光受容部材の光受容
層を形成するための装置の一例を示すものであり、図4
のRFグロー放電法による電子写真用光受容部材の製造
装置の堆積装置を図5の堆積装置に代えた模式的説明図
である。
6 shows an example of an apparatus for forming a light receiving layer of a light receiving member for electrophotography according to the present invention, and FIG.
FIG. 6 is a schematic explanatory view in which the deposition apparatus of the apparatus for manufacturing the electrophotographic light-receiving member by the RF glow discharge method of FIG.

【図7】本発明における光導電層(光導電層第2領域)
の堆積膜形成速度の一変化パターンを示すグラフであ
る。
FIG. 7: Photoconductive layer in the present invention (photoconductive layer second region)
3 is a graph showing a change pattern of the deposited film formation rate of FIG.

【図8】本発明における光導電層(光導電層第2領域)
の堆積膜形成速度の一変化パターンを示すグラフであ
る。
FIG. 8 is a photoconductive layer in the present invention (photoconductive layer second region).
3 is a graph showing a change pattern of the deposited film formation rate of FIG.

【図9】本発明における光導電層(光導電層第2領域)
の堆積膜形成速度の一変化パターンを示すグラフであ
る。
FIG. 9 is a photoconductive layer in the present invention (photoconductive layer second region).
3 is a graph showing a change pattern of the deposited film formation rate of FIG.

【図10】本発明における光導電層(光導電層第2領
域)の堆積膜形成速度の一変化パターンを示すグラフで
ある。
FIG. 10 is a graph showing a change pattern of a deposition film formation rate of a photoconductive layer (photoconductive layer second region) in the present invention.

【図11】本発明外の光導電層(光導電層第2領域)の
堆積膜形成速度の一変化パターンを示すグラフである。
FIG. 11 is a graph showing a change pattern of a deposition film formation rate of a photoconductive layer (photoconductive layer second region) outside the present invention.

【図12】本発明外の光導電層(光導電層第2領域)の
堆積膜形成速度の一変化パターンを示すグラフである。
FIG. 12 is a graph showing a change pattern of a deposition film formation rate of a photoconductive layer (photoconductive layer second region) outside the present invention.

【図13】本発明における光導電層(光導電層第2領
域)の炭素含有量の一変化パターンを示すグラフであ
る。
FIG. 13 is a graph showing a change pattern of carbon content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図14】本発明における光導電層(光導電層第2領
域)の炭素含有量の一変化パターンを示すグラフであ
る。
FIG. 14 is a graph showing a change pattern of carbon content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図15】本発明における光導電層(光導電層第2領
域)の炭素含有量の一変化パターンを示すグラフであ
る。
FIG. 15 is a graph showing a change pattern of carbon content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図16】本発明外の光導電層(光導電層第2領域)の
炭素含有量の一変化パターンを示すグラフである。
FIG. 16 is a graph showing a change pattern of carbon content in the photoconductive layer (photoconductive layer second region) outside the present invention.

【図17】本発明外の光導電層(光導電層第2領域)の
炭素含有量の一変化パターンを示すグラフである。
FIG. 17 is a graph showing a change pattern of carbon content in the photoconductive layer (photoconductive layer second region) outside the present invention.

【図18】本発明における光導電層(光導電層第2領
域)の弗素含有量の一変化パターンを示すグラフであ
る。
FIG. 18 is a graph showing a change pattern of fluorine content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図19】本発明における光導電層(光導電層第2領
域)の弗素含有量の一変化パターンを示すグラフであ
る。
FIG. 19 is a graph showing a change pattern of the fluorine content of the photoconductive layer (photoconductive layer second region) in the present invention.

【図20】本発明における光導電層(光導電層第2領
域)の弗素含有量の一変化パターンを示すグラフであ
る。
FIG. 20 is a graph showing a change pattern of fluorine content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図21】本発明における光導電層(光導電層第2領
域)の弗素含有量の一変化パターンを示すグラフであ
る。
FIG. 21 is a graph showing a change pattern of fluorine content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図22】本発明における光導電層(光導電層第2領
域)の弗素含有量の一変化パターンを示すグラフであ
る。
FIG. 22 is a graph showing a change pattern of fluorine content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図23】本発明における光導電層(光導電層第2領
域)の酸素含有量の一変化パターンを示すグラフであ
る。
FIG. 23 is a graph showing a change pattern of oxygen content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図24】本発明における光導電層(光導電層第2領
域)の酸素含有量の一変化パターンを示すグラフであ
る。
FIG. 24 is a graph showing a change pattern of oxygen content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図25】本発明における光導電層(光導電層第2領
域)の酸素含有量の一変化パターンを示すグラフであ
る。
FIG. 25 is a graph showing a change pattern of oxygen content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図26】本発明における光導電層(光導電層第2領
域)の酸素含有量の一変化パターンを示すグラフであ
る。
FIG. 26 is a graph showing a change pattern of oxygen content in the photoconductive layer (photoconductive layer second region) in the present invention.

【図27】本発明における光導電層(光導電層第2領
域)の酸素含有量の一変化パターンを示すグラフであ
る。
FIG. 27 is a graph showing a change pattern of oxygen content in the photoconductive layer (photoconductive layer second region) in the present invention.

【符号の説明】[Explanation of symbols]

10 電子写真用光受容部材 11 導電性支持体 12 光導電層 13 表面層 14 自由表面 15 光導電層第2領域 16 光導電層第1領域 4100 RFグロー放電法による堆積膜形成装置 4111 反応容器 4112 円筒状支持体 4113 支持体加熱用ヒーター 4114 原料ガス導入管 4115 マッチングボックス 4116 原料ガス配管 4117 反応容器リークバルブ 4118 メイン排気バルブ 4119 真空計 4200 原料ガス供給装置 4211〜4216 マスフローコントローラー 4221〜4226 原料ガスボンベ 4231〜4236 原料ガスボンベバルブ 4241〜4246 ガス流入バルブ 4251〜4256 ガス流出バルブ 4261〜4266 圧力調整器 5100 μWグロー放電法による堆積膜形成装置 5111 反応容器 5112 マイクロ波導入窓 5113 導波管 5114 支持体ホルダー 5115 円筒状支持体 5116 支持体加熱用ヒーター 5117 原料ガス導入管 5118 バイアス電極 5119 バイアス電源 5120 支持体回転用モーター 5121 排気管 5130 放電空間 10 Electrophotographic Photoreceptive Member 11 Conductive Support 12 Photoconductive Layer 13 Surface Layer 14 Free Surface 15 Photoconductive Layer Second Region 16 Photoconductive Layer First Region 4100 RF Glow Discharge Deposition Device 4111 Reaction Vessel 4112 Cylindrical support 4113 Support heating heater 4114 Raw material gas introduction pipe 4115 Matching box 4116 Raw material gas pipe 4117 Reaction vessel leak valve 4118 Main exhaust valve 4119 Vacuum gauge 4200 Raw material gas supply device 4211-4216 Mass flow controller 4221-4226 Raw material gas cylinder 4231 ˜4236 Raw material gas cylinder valve 4241 to 4246 Gas inflow valve 4251 to 4256 Gas outflow valve 4261 to 4266 Pressure regulator 5100 μW Deposition film forming apparatus by glow discharge method 511 1 Reaction vessel 5112 Microwave introduction window 5113 Waveguide 5114 Support holder 5115 Cylindrical support 5116 Support heating heater 5117 Raw material gas introduction tube 5118 Bias electrode 5119 Bias power supply 5120 Support rotation motor 5121 Exhaust pipe 5130 Discharge space

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03G 5/08 305 7144−2H 312 7144−2H 313 7144−2H (72)発明者 白砂 寿康 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location G03G 5/08 305 7144-2H 312 7144-2H 313 7144-2H (72) Inventor Toshiyasu Shirasuna Tokyo 3-30-2 Shimomaruko, Ota-ku Canon Inc.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体と、該導電性支持体上に順
次積層されたシリコン原子を母体とする光導電層及び表
面層からなる光受容層とを含む電子写真用光受容部材の
形成方法において、 前記光導電層が、全層にわたって炭素原子と水素原子と
を少なくとも含有し、該炭素原子の含有量が層厚方向に
不均一に分布し、かつ前記導電性支持体側で多く、前記
表面層側で少なく分布している非単結晶材料で構成さ
れ、 前記表面層が、シリコン原子を母体とするとともに、炭
素原子、水素原子、ハロゲン原子、酸素原子及び窒素原
子を同時に含有する非単結晶材料で構成され、前記光導
電層の堆積膜形成速度を層厚方向に変化させ、前記導電
性支持体側で速く、前記表面層側で遅くなるようにして
前記光導電層を形成することを特徴とする電子写真用光
受容部材の形成方法。
1. A method for forming a photoreceptive member for electrophotography, comprising: a conductive support; and a photoreceptive layer comprising a photoconductive layer having a silicon atom as a base and a photoreceptive layer including a surface layer, which are sequentially laminated on the conductive support. In the method, the photoconductive layer contains at least carbon atoms and hydrogen atoms over the entire layer, the content of the carbon atoms is unevenly distributed in the layer thickness direction, and many on the side of the conductive support, It is composed of a non-single-crystal material that is less distributed on the surface layer side, and the surface layer is a non-single crystal containing silicon atoms as a matrix and simultaneously containing carbon atoms, hydrogen atoms, halogen atoms, oxygen atoms and nitrogen atoms. Forming a photoconductive layer made of a crystalline material, changing the deposition film formation rate of the photoconductive layer in the layer thickness direction so that the photoconductive layer is faster on the conductive support side and slower on the surface layer side. Featured electronic photography Method of forming the light receiving member.
【請求項2】 前記光導電層の、前記表面層側の表面ま
たは表面近傍の堆積膜形成速度を前記導電性支持体側の
表面または表面近傍の堆積膜形成速度に対して30〜9
0%とすることを特徴とする請求項1記載の電子写真用
光受容部材の形成方法。
2. The deposition film forming rate of the surface of the photoconductive layer on the surface layer side or near the surface is 30 to 9 with respect to the deposition film forming rate of the surface on the conductive support side or near the surface.
The method for forming a light-receiving member for electrophotography according to claim 1, wherein the content is 0%.
【請求項3】 前記の光導電層中の前記炭素原子の含有
量を、前記導電性支持体側の表面または表面近傍で0.
5〜50原子%、前記表面層側の表面または表面近傍で
実質的に0%とし、前記光導電層中の前記水素原子の含
有量を1〜40原子%とすることを特徴とする請求項1
または2に記載の電子写真用光受容部材の形成方法。
3. The content of the carbon atom in the photoconductive layer is set to 0 or less on the surface on the conductive support side or in the vicinity of the surface.
The content of the hydrogen atoms in the photoconductive layer is 5 to 50 atomic%, substantially 0% at or near the surface on the surface layer side, and the content of the hydrogen atoms in the photoconductive layer is 1 to 40 atomic%. 1
Alternatively, the method for forming a light receiving member for electrophotography according to the item 2.
【請求項4】 前記光導電層中に弗素原子を含有させる
ことを特徴とする請求項1〜3のいずれか1項に記載の
電子写真用光受容部材の形成方法。
4. The method for forming a photoreceptive member for electrophotography according to claim 1, wherein the photoconductive layer contains a fluorine atom.
【請求項5】 前記光導電層中の前記弗素原子を層厚方
向に不均一に分布させることを特徴とする請求項4記載
の電子写真用光受容部材の形成方法。
5. The method for forming a photoreceptive member for electrophotography according to claim 4, wherein the fluorine atoms in the photoconductive layer are non-uniformly distributed in the layer thickness direction.
【請求項6】 前記光導電層中に酸素原子を含有させる
ことを特徴とする請求項1〜5項のいずれか1項に記載
の電子写真用光受容部材の形成方法。
6. The method for forming a photoreceptive member for electrophotography according to claim 1, wherein oxygen atoms are contained in the photoconductive layer.
【請求項7】 前記光導電層中の前記酸素原子を層厚方
向に不均一に分布させることを特徴とする請求項6に記
載の電子写真用光受容部材の形成方法。
7. The method for forming a photoreceptive member for electrophotography according to claim 6, wherein the oxygen atoms in the photoconductive layer are non-uniformly distributed in the layer thickness direction.
【請求項8】 前記光導電層が、光導電層第1領域と光
導電層第2領域からなり、 前記光導電層第2領域が、全層にわたって炭素原子と水
素原子とを少なくとも含有し、該炭素原子の含有量が層
厚方向に不均一に分布し、かつ前記導電性支持体側で多
く、前記光導電層第1領域側で少なく分布している非単
結晶材料で構成され、 前記光導電層第1領域が、水素原子を1〜40原子%含
有する非単結晶材料で構成され、 前記光導電層第2領域の堆積膜形成速度を層厚方向に変
化させ、前記導電性支持体側で速く、前記光導電層第1
領域側で遅くなるようにして前記光導電層第2領域を形
成することを特徴とする請求項1に記載の電子写真用光
受容部材の形成方法。
8. The photoconductive layer comprises a photoconductive layer first region and a photoconductive layer second region, and the photoconductive layer second region contains at least carbon atoms and hydrogen atoms all over the layer, The carbon atom content is non-uniformly distributed in the layer thickness direction, and is composed of a non-single-crystal material having a large distribution on the conductive support side and a small distribution on the photoconductive layer first region side, The conductive layer first region is made of a non-single-crystal material containing 1 to 40 atomic% of hydrogen atoms, and the deposition film formation rate of the photoconductive layer second region is changed in the layer thickness direction, and the conductive support side is provided. And fast, the photoconductive layer first
The method for forming a light-receiving member for electrophotography according to claim 1, wherein the second region of the photoconductive layer is formed so as to be delayed on the region side.
【請求項9】 前記光導電層第2領域の、前記光導電層
第1領域側の表面または表面近傍の堆積膜形成速度を前
記導電性支持体側の表面または表面近傍の堆積膜形成速
度に対して30〜90%とすることを特徴とする請求項
8記載の電子写真用光受容部材の形成方法。
9. The deposition film formation rate of the surface of the photoconductive layer second region on the side of the photoconductive layer first region or near the surface of the second region of the photoconductive layer with respect to the deposition film formation rate on the surface of the conductive support side or near the surface thereof. 9. The method for forming a photoreceptive member for electrophotography according to claim 8, wherein the total content is 30 to 90%.
【請求項10】 前記の光導電層第2領域中の前記炭素
原子の含有量を、前記導電性支持体側の表面または表面
近傍で0.5〜50原子%、前記光導電層第1領域側の
表面または表面近傍で実質的に0%とし、前記光導電層
第2領域中の前記水素原子の含有量が1〜40原子%と
することを特徴とする請求項8または9に記載の電子写
真用光受容部材の形成方法。
10. The content of the carbon atom in the second region of the photoconductive layer is 0.5 to 50 atom% at or near the surface on the side of the conductive support, and the first region side of the photoconductive layer. The content of the hydrogen atoms in the second region of the photoconductive layer is substantially 1% on the surface of or near the surface, and the content of the hydrogen atoms is 1 to 40 atom%. A method for forming a photographic light-receiving member.
【請求項11】 前記光導電層第2領域中に弗素原子を
含有させることを特徴とする請求項8〜10のいずれか
1項に記載の電子写真用光受容部材の形成方法。
11. The method for forming a light receiving member for electrophotography according to claim 8, wherein a fluorine atom is contained in the second region of the photoconductive layer.
【請求項12】 前記光導電層第2領域中の前記弗素原
子を層厚方向に不均一に分布させることを特徴とする請
求項11記載の電子写真用光受容部材の形成方法。
12. The method for forming a photoreceptive member for electrophotography according to claim 11, wherein the fluorine atoms in the second region of the photoconductive layer are non-uniformly distributed in the layer thickness direction.
【請求項13】 前記光導電層第2領域中に酸素原子を
含有させることを特徴とする請求項8〜12項のいずれ
か1項に記載の電子写真用光受容部材の形成方法。
13. The method for forming a photoreceptive member for electrophotography according to claim 8, wherein oxygen atoms are contained in the second region of the photoconductive layer.
【請求項14】 前記光導電層第2領域中の酸素原子を
層厚方向に不均一に分布させることを特徴とする請求項
13に記載の電子写真用光受容部材の形成方法。
14. The method for forming a photoreceptive member for electrophotography according to claim 13, wherein oxygen atoms in the second region of the photoconductive layer are non-uniformly distributed in the layer thickness direction.
【請求項15】 前記光導電層第1領域の膜厚を0.5
〜15μmとすることを特徴とする請求項8〜14のい
ずれか1項に記載の電子写真用光受容部材の形成方法。
15. The film thickness of the first region of the photoconductive layer is 0.5.
15. The method for forming a photoreceptive member for electrophotography according to any one of claims 8 to 14, wherein the thickness is from 15 to 15 [mu] m.
【請求項16】 前記表面層を、前記表面層中の炭素原
子、酸素原子及び窒素原子の含有量の和が、前記シリコ
ン原子、炭素原子、酸素原子及び窒素原子の含有量の和
に対して40〜90原子%であり、ハロゲン原子の含有
量が20原子%以下、かつ水素原子とハロゲン原子の含
有量の和が30〜70原子%となるように形成すること
を特徴とする請求項1〜15のいずれか1項に記載の電
子写真用光受容部材の形成方法。
16. The surface layer, wherein the sum of the content of carbon atoms, oxygen atoms and nitrogen atoms in the surface layer is relative to the sum of the content of silicon atoms, carbon atoms, oxygen atoms and nitrogen atoms. 40 to 90 atomic%, the content of halogen atoms is 20 atomic% or less, and the sum of the content of hydrogen atoms and halogen atoms is 30 to 70 atomic%. 16. The method for forming a light-receiving member for electrophotography according to any one of items 1 to 15.
【請求項17】 前記表面層を、前記表面層中の前記酸
素原子及び窒素原子の含有量の和が10原子%以下とな
るように形成することを特徴とする請求項1〜16のい
ずれか1項に記載の電子写真用光受容部材の形成方法。
17. The surface layer is formed so that the sum of the contents of the oxygen atom and the nitrogen atom in the surface layer is 10 atom% or less. 2. The method for forming a light receiving member for electrophotography according to item 1.
JP29338891A 1991-11-08 1991-11-08 Method of forming light receiving member for electrophotography Expired - Fee Related JP2902509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29338891A JP2902509B2 (en) 1991-11-08 1991-11-08 Method of forming light receiving member for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29338891A JP2902509B2 (en) 1991-11-08 1991-11-08 Method of forming light receiving member for electrophotography

Publications (2)

Publication Number Publication Date
JPH05134441A true JPH05134441A (en) 1993-05-28
JP2902509B2 JP2902509B2 (en) 1999-06-07

Family

ID=17794125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29338891A Expired - Fee Related JP2902509B2 (en) 1991-11-08 1991-11-08 Method of forming light receiving member for electrophotography

Country Status (1)

Country Link
JP (1) JP2902509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049241A (en) * 2008-07-25 2010-03-04 Canon Inc Electrophotographic photoreceptor and electrophotographic equipment
JP2013011916A (en) * 2008-07-25 2013-01-17 Canon Inc Electrophotographic photoreceptor and electrophotographic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049241A (en) * 2008-07-25 2010-03-04 Canon Inc Electrophotographic photoreceptor and electrophotographic equipment
JP2013011916A (en) * 2008-07-25 2013-01-17 Canon Inc Electrophotographic photoreceptor and electrophotographic apparatus

Also Published As

Publication number Publication date
JP2902509B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5455138A (en) Process for forming deposited film for light-receiving member, light-receiving member produced by the process, deposited film forming apparatus, and method for cleaning deposited film forming apparatus
JP2962851B2 (en) Light receiving member
JP4562163B2 (en) Method for producing electrophotographic photosensitive member and electrophotographic photosensitive member
JP3122281B2 (en) Method of forming light receiving member for electrophotography
JP2902509B2 (en) Method of forming light receiving member for electrophotography
JP3229002B2 (en) Light receiving member for electrophotography
JP2895286B2 (en) Method of forming light receiving member for electrophotography
JPH05134439A (en) Method for formation of light receiving member by microwave plasma cvd method
JP3154259B2 (en) Light receiving member
JPH1073982A (en) Electrifying device and electrophotographic device using it
JP3420385B2 (en) Deposited film forming apparatus and deposited film forming method
JP3459700B2 (en) Light receiving member and method of manufacturing light receiving member
JP3289011B2 (en) Cleaning method for deposited film forming apparatus
JP2960609B2 (en) Light receiving member
JPH05119501A (en) Formation of photoreceptive member
JP3466745B2 (en) Electrophotographic equipment
JP3076404B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP3076405B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP3412957B2 (en) Method for manufacturing light receiving member
JP3076406B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP3076403B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP3323681B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH0943884A (en) Formation of electrophotographic photoreceptor
JPH05134438A (en) Method for formation of light receiving member by microwave plasma cvd method
JPH04352167A (en) Photoreceptive member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees