JPH05134020A - Battery state detection device - Google Patents

Battery state detection device

Info

Publication number
JPH05134020A
JPH05134020A JP3300854A JP30085491A JPH05134020A JP H05134020 A JPH05134020 A JP H05134020A JP 3300854 A JP3300854 A JP 3300854A JP 30085491 A JP30085491 A JP 30085491A JP H05134020 A JPH05134020 A JP H05134020A
Authority
JP
Japan
Prior art keywords
battery
capacity
voltage
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3300854A
Other languages
Japanese (ja)
Inventor
Hirohide Sato
博英 佐藤
Masatoshi Togawa
雅俊 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3300854A priority Critical patent/JPH05134020A/en
Publication of JPH05134020A publication Critical patent/JPH05134020A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable it to be estimated that an error due to gushing, etc., is included in a battery capacity by measuring the battery capacity according to a relationship between a battery terminal voltage and a charge current in the case of a low capacity. CONSTITUTION:When the number of rotations of E/G is low on idling, etc., capacity of a generator is low and a battery is discharged. A judgment voltage VC is obtained according to a discharge current IB2 and a battery temperature TB2 in this case. In a battery with a charging rate of 25%, the voltage VC at a battery temperature of 25 deg.C is 11v in the case of discharging at 20A, where a battery voltage VB2 during driving is compared with the voltage VC. When it is judged that the voltage VB2 is smaller than the voltage VC, the battery charging rate is 25% or less. When a driving capacity VI2 which is obtained by calculation is 255 or more, it is estimated that the above value is calculated by containing an error due to gushing, etc., thus preventing the battery from running out by taking account of this error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【従来の技術】近年、車両においてバッテリ上りの防止
及び燃費向上を図るために、バッテリの容量を正確に検
出する装置が必要とされている。
2. Description of the Related Art In recent years, there is a need for a device for accurately detecting the capacity of a battery in a vehicle in order to prevent the battery from rising and improve fuel consumption.

【0002】従来より車載バッテリの容量を検出する装
置として、特開昭53−127646号公報に示される
如く、スタータ始動時の放電特性から求めた容量に、そ
の後のバッテリ充放電電流積算値を加えて容量を検出す
るものがあった。
As a conventional device for detecting the capacity of an on-vehicle battery, as shown in JP-A-53-127646, the battery charge / discharge current integrated value after that is added to the capacity obtained from the discharge characteristics at the starter start. There was a thing to detect the capacity.

【0003】しかしながら上記装置にあっては、充電電
流に対する容量の増加率(以下「充電効率」とする)が
考慮されておらず、バッテリの容量の低下を検出できて
もそれが放電によるものであるのかバッテリの劣化によ
るものであるかを検出することができないものであっ
た。そこで本願出願人は先願にて充電効率を考慮したバ
ッテリ容量検出装置を提供している(特願平2−175
023)。この装置は、放電特性により検出したバッテ
リ容量と、電流積算を基に測定した該検出直前のバッテ
リ容量とを比較することにより電流積算値と容量の変化
量とのずれを測定でき、測定されたずれの大きさによっ
てバッテリの劣化度を推定することができるものであ
る。
However, in the above device, the rate of increase in capacity with respect to the charging current (hereinafter referred to as "charging efficiency") is not taken into consideration, and even if a decrease in the capacity of the battery can be detected, it is due to discharging. It was not possible to detect whether it was due to deterioration of the battery. Therefore, the applicant of the present application has provided a battery capacity detection device in consideration of charging efficiency in the prior application (Japanese Patent Application No. 2-175).
023). This device can measure the deviation between the integrated current value and the amount of change in capacity by comparing the battery capacity detected based on the discharge characteristics with the battery capacity measured immediately before the detection based on the integrated current. The degree of deterioration of the battery can be estimated based on the size of the deviation.

【0004】[0004]

【発明が解決しようとする課題】ところが上記先願の装
置にあっては、バッテリの劣化を検出することができる
ものの、このバッテリ使用中は従来技術の如く充放電電
流の積算値をそのまま容量の変化量としているため、結
果的にバッテリ使用時には充電効率に対する考慮がなさ
れておらず、バッテリ使用時に刻々と変化する容量を正
確に検出することができない。そして、充放電電流の積
算値中に含まれるガッシング等による誤差分が大きくな
ると、実際のバッテリ容量は低下しているにもかかわら
ず、大きな値として検出されるため、バッテリ上がりを
起こすという不具合が生じる。
However, in the device of the above-mentioned prior application, although the deterioration of the battery can be detected, the integrated value of the charging / discharging current is used as it is as in the prior art while the battery is in use. Since the change amount is used, the charging efficiency is not taken into consideration when the battery is used, and the capacity that changes momentarily when the battery is used cannot be accurately detected. Then, if the error amount due to gassing included in the integrated value of the charge / discharge current becomes large, it is detected as a large value even though the actual battery capacity has decreased, so that there is a problem that the battery runs out. Occurs.

【0005】そこで本発明は、低容量時のバッテリ端子
電圧と放電電流は比較的大きい相関関係ががあることに
着目し、これら電圧と電流の関係からバッテリの容量を
測定して、ガッシング等による誤差分を推定することを
目的としている。
Therefore, the present invention pays attention to the fact that the battery terminal voltage and the discharge current at the time of low capacity have a relatively large correlation, and the capacity of the battery is measured from the relationship between the voltage and the current, and by gassing or the like. The purpose is to estimate the error.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、バッテリの充放電電流を検出する電流検出
手段と、前記バッテリの端子電圧を検出する電圧検出手
段と、前記電流検出手段により検出された前記バッテリ
の充放電電流を積算する電流積算手段と、前記電流検出
手段により検出された前記バッテリの放電電流が第1の
所定値の時の、前記電圧検出手段により検出された前記
バッテリの電圧を基にバッテリの初期容量を設定する初
期容量設定手段と、この初期容量設定手段により設定さ
れた初期容量に、前記充放電電流積算値を加えて前記バ
ッテリの容量を演算するバッテリ容量演算手段と、前記
バッテリの放電電流が前記第1の所定値より小さい第2
の所定値である時の、前記バッテリの端子電圧と所定電
圧とを比較して、前記電流積算手段による積算値に含ま
れる積算誤差を検出する誤差検出手段と、を備え、前記
所定電圧は、予め求められたバッテリが満充電時の容量
より極めて低い所定容量の時の放電電流と端子電圧との
関係を示す特性に基づき、放電電流が前記第2の所定値
の時に対応する端子電圧として設定されていることを特
徴とするバッテリ状態検出装置を提供するものである。
In order to achieve the above object, the present invention provides a current detecting means for detecting a charging / discharging current of a battery, a voltage detecting means for detecting a terminal voltage of the battery, and the current detecting means. Current integrating means for integrating the charging / discharging current of the battery detected by, and the discharge current detected by the voltage detecting means when the discharge current of the battery detected by the current detecting means is a first predetermined value. Initial capacity setting means for setting the initial capacity of the battery based on the voltage of the battery, and battery capacity for calculating the capacity of the battery by adding the charging / discharging current integrated value to the initial capacity set by the initial capacity setting means. Calculating means and a second discharge current of the battery smaller than the first predetermined value
Error detection means for comparing the terminal voltage of the battery with a predetermined voltage, and detecting an integration error included in the integrated value by the current integration means, wherein the predetermined voltage is Set as a terminal voltage corresponding to when the discharge current is the second predetermined value, based on a characteristic that shows a relationship between the discharge current and the terminal voltage when the battery has a predetermined capacity that is extremely lower than the full charge capacity. The present invention provides a battery state detection device characterized by the above.

【0007】[0007]

【作用および発明の効果】実際のバッテリ容量が所定容
量である時、このバッテリの放電電流が第2の所定値の
時の端子電圧は、所定電圧に近い値となる。この時、電
流積算手段による積算値に誤差が含まれているために演
算手段により演算された容量が所定容量より大きいと、
バッテリの端子電圧はバッテリの容量に対応するため、
端子電圧は所定電圧よりも大きい値となるはずである。
従って、電圧検出手段により検出された端子電圧が所定
電圧より低い場合は、演算された容量が所定容量より大
きくても、実際のバッテリ容量は所定容量より小さいこ
とから、演算された容量に誤差が含まれていることが検
出できる。
When the actual battery capacity is the predetermined capacity, the terminal voltage when the discharge current of the battery is the second predetermined value is close to the predetermined voltage. At this time, if the capacity calculated by the calculating means is larger than the predetermined capacity because the integrated value by the current integrating means contains an error,
Since the terminal voltage of the battery corresponds to the capacity of the battery,
The terminal voltage should be higher than the predetermined voltage.
Therefore, when the terminal voltage detected by the voltage detecting means is lower than the predetermined voltage, the calculated battery capacity is smaller than the predetermined capacity even if the calculated capacity is larger than the predetermined capacity. It can be detected that it is included.

【0008】[0008]

【実施例】以下本発明装置を車載バッテリに適用した実
施例を図面に基づき説明する。図1において、1は車載
バッテリ、2は車両駆動用エンジン、3はエンジン始動
用のスタータ、4はスタータ始動用のスタータスイッチ
であり、周知の如くスタータスイッチ4を投入し、バッ
テリ1からの電力をスタータ3に供給することでスター
タ3が作動しエンジン2が始動する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the device of the present invention is applied to an on-vehicle battery will be described below with reference to the drawings. In FIG. 1, 1 is an on-vehicle battery, 2 is an engine for driving a vehicle, 3 is a starter for starting an engine, 4 is a starter switch for starting a starter. Is supplied to the starter 3, the starter 3 operates and the engine 2 starts.

【0009】5はエンジン2により図示しないベルト及
びプーリを介して駆動され、バッテリ1を充電すると共
に、ランプ,ブロアモータ,デフォッガ等の電気負荷8
に電力を供給する発電機、6はバッテリ1の充放電電流
を検出する電流検出器、7はバッテリ1の温度を検出す
る温度検出器、9はエンジン2の状態、バッテリ1の電
圧、電流、及び温度を入力して、エンジン2の回転数,
発電機5の発電を制御し、さらにバッテリ1の寿命を検
出して表示器10により表示するマイコンを用いた制御
回路である。
The engine 5 is driven by the engine 2 via a belt and a pulley (not shown) to charge the battery 1 and an electric load 8 such as a lamp, a blower motor, and a defogger.
, 6 is a current detector that detects the charging / discharging current of the battery 1, 7 is a temperature detector that detects the temperature of the battery 1, 9 is the state of the engine 2, the voltage and current of the battery 1, And the temperature, input the engine speed,
It is a control circuit using a microcomputer that controls the power generation of the generator 5 and further detects the life of the battery 1 and displays it on the display 10.

【0010】以下、制御回路9内の制御について説明す
る。図2は制御回路9内の処理機能を示すブロック図、
図3はこの制御回路9内の制御を示すフローチャートで
ある。これらに基づき、(I)バッテリ容量検出,(I
I)本発明による誤差の検出、及び(III)発電制御
の項目別に説明する。
The control in the control circuit 9 will be described below. FIG. 2 is a block diagram showing processing functions in the control circuit 9,
FIG. 3 is a flow chart showing the control in the control circuit 9. Based on these, (I) battery capacity detection, (I
An explanation will be given for each item of I) error detection according to the present invention, and (III) power generation control.

【0011】(I)バッテリ容量検出 スタータ3が始動すると、ステップS1にて、スタータ
駆動時の放電特性を測定する。まず、スタータ駆動中の
放電電流を電流検出器6で検出し、これをバッテリ電流
検出部9aより入力する。同時にバッテリ電圧はバッテ
リ電圧検出部9cより入力しており、上記放電電流が第
1の所定値(例えば150A)の時のバッテリ電圧を測
定する。測定は実際に所定値放電した時の電圧を測定し
てもよく、放電電流と電圧の関係より内(外)そうする
ことにより計算で求めてもよい。こうして得られた電圧
(V0 とする)は、通常放電開始より1秒以内(スター
タのクランキング時間は通常1秒以内)の値であるた
め、予め求めたバッテリの放電時間と電圧との関係を示
す特性を基に、電圧の安定する5秒目電圧(V01とす
る)に補正する。これは放電初期は過渡現象によりバッ
テリ電圧が高くなり5秒程度経過するとほぼ安定するた
めである。又、バッテリ電圧は温度特性を有しているた
め、温度検出器7によって得られた温度に応じて電圧V
01を補正し容量検出電圧V02を得る。
(I) Battery Capacity Detection When the starter 3 is started, the discharge characteristic when the starter is driven is measured in step S1. First, the discharge current during driving of the starter is detected by the current detector 6, and this is input from the battery current detector 9a. At the same time, the battery voltage is input from the battery voltage detector 9c, and the battery voltage is measured when the discharge current has a first predetermined value (for example, 150 A). The measurement may be performed by measuring the voltage when a predetermined value is actually discharged, or may be calculated by performing (inside) the relationship between the discharge current and the voltage. The voltage thus obtained ( denoted as V 0 ) is a value within 1 second (usually the cranking time of the starter is within 1 second) from the start of normal discharge, so the relationship between the discharge time of the battery and the voltage obtained in advance The voltage is corrected to the voltage at the 5th second (V 01 ) where the voltage stabilizes, based on the characteristic shown in FIG. This is because the battery voltage rises due to a transient phenomenon at the initial stage of discharge and becomes almost stable after about 5 seconds. Further, since the battery voltage has a temperature characteristic, the voltage V depends on the temperature obtained by the temperature detector 7.
01 is corrected to obtain the capacitance detection voltage V 02 .

【0012】次に、ステップS2にて、この容量検出電
圧V02よりスタータ駆動時のバッテリ容量(以下(始動
時容量)とする)を求めるが、以下にこれを説明する。
バッテリ1が所定電流にて所定時間放電し、かつバッテ
リ液比重の成層化、充電直後の分極の発生等がない場合
の、バッテリ電圧とバッテリ容量との関係を示す特性を
図5に実線にて示している。図に示したようにバッテリ
容量が小さい時には、バッテリ電圧は低くなる。この特
性は放電特性演算部9eに記憶されている。そして、こ
の特性図において、上記容量始動時容量に対応する容量
を求め、始動時容量VI1 とする。ここで、前回が初回
走行、或いは初回走行ではないが前回走行前にバッテリ
1を交換した等の理由で、バッテリ1の容量が未知であ
る場合は、バッテリ容量モニタ部9gは上記始動時容量
VI1 を初期容量VI4 として設定する。電流積算部9
dは、電流検出器6により検出されバッテリ電流検出器
9aに入力されたエンジン2始動後のバッテリ1の充放
電電流を積算しており、バッテリ容量モニタ部9gは、
上記初期容量に上記充放電電流の積算値を加えて走行時
のバッテリ容量(以下「走行時容量」とする)VI2
検出する。そして、バッテリ容量モニタ部9gは、走行
時容量VI2 の最後の値、つまりエンジン停止時の値を
停止時容量VI3 として記憶しておく。
Next, in step S2, the battery capacity when the starter is driven (hereinafter referred to as "starting capacity") is determined from the capacity detection voltage V 02 , which will be described below.
The solid line in FIG. 5 shows the characteristic showing the relationship between the battery voltage and the battery capacity when the battery 1 is discharged at a predetermined current for a predetermined time and there is no stratification of the battery liquid specific gravity or polarization immediately after charging. Shows. As shown in the figure, when the battery capacity is small, the battery voltage becomes low. This characteristic is stored in the discharge characteristic calculation unit 9e. Then, in this characteristic diagram, a capacity corresponding to the capacity at the time of starting is obtained and is defined as a capacity at starting VI 1 . Here, when the capacity of the battery 1 is unknown because the previous run was the first run, or the battery 1 was exchanged before the run but was not the first run, the battery capacity monitor unit 9g causes the start-up capacity VI to be determined. 1 is set as the initial capacity VI 4 . Current accumulator 9
d is the charge / discharge current of the battery 1 after the engine 2 is started, which is detected by the current detector 6 and is input to the battery current detector 9a, and the battery capacity monitor unit 9g
The initial capacity battery capacity during traveling by adding an integrated value of the charge and discharge current (hereinafter referred to as "running at capacity") to detect the VI 2. Then, the battery capacity monitoring unit 9g stores the last value of the running capacity VI 2 , that is, the value when the engine is stopped, as the stopped capacity VI 3 .

【0013】今回の走行では、停止時容量VI3 がバッ
テリ容量モニタ部9gに記憶されているとして、以下に
説明する。図3におけるステップS3にて、この停止時
容量VI3 を読み出す。ステップS4にて、バッテリ容
量モニタ部9gにより、スタータ3駆動時に検出した始
動時容量VI1 と、停止時容量VI3 とを比較して小さ
い方の値を真値とみなし、これを初期容量VI4 に設定
する。通常、バッテリ1の状態が良好であれば、始動時
容量VI1 と停止時容量VI3 とは、略等しい値とな
り、従ってこれらの容量VI1,VI3 のどちらの値を採
用しても良い。しかし、以下の場合が生じるため、これ
らのうち値の小さい方を採用する。
In the traveling this time, the following description will be made on the assumption that the capacity VI 3 at stop is stored in the battery capacity monitor 9g. In step S3 in FIG. 3, the capacity VI 3 during stop is read. In step S4, the battery capacity monitor unit 9g compares the starting capacity VI 1 detected when the starter 3 is driven with the stopping capacity VI 3 , and regards the smaller value as the true value, and determines this as the initial capacity VI. Set to 4 . Normally, when the battery 1 is in a good state, the starting capacity VI 1 and the stopping capacity VI 3 have substantially equal values, so either of these capacities VI 1 and VI 3 may be adopted. .. However, the following cases occur, so the one with the smaller value is adopted.

【0014】第1には、始動時容量VI1 が、停止時容
量VI3に対して所定値大きい場合である。バッテリ1
はバッテリ液比重の成層化、或いは充電直後に、電極付
近でのバッテリ液の濃度が高くなる現象(以下、「分
極」と呼ぶ)が発生すると、その容量に対する電圧の特
性が図5の破線のようになる。つまり成層化あるいは分
極が発生すると、容量に対して発生する電圧は正常時よ
り高くなる。このため、始動時容量検出時に成層化ある
いは分極が発生すると、容量検出電圧V02が正常時より
大きな値で得られ、始動時容量VI1 が真の容量及び停
止時容量VI3 より大きくなる。従って、この場合は停
止時容量VI3 が真の容量に近いと判断し、初期容量V
4 に設定するようにしている。
First, the starting capacity VI 1 is larger than the stopping capacity VI 3 by a predetermined value. Battery 1
When the phenomenon that the concentration of the battery liquid becomes high near the electrodes (hereinafter, referred to as “polarization”) immediately after the stratification of the battery liquid specific gravity or immediately after charging, the characteristic of the voltage with respect to the capacity is shown by the broken line in FIG. Like That is, when stratification or polarization occurs, the voltage generated with respect to the capacitance becomes higher than that in the normal state. For this reason, when stratification or polarization occurs at the time of detecting the capacity at the time of starting, the capacity detection voltage V 02 is obtained with a value larger than that at the normal time, and the capacity VI 1 at the time of starting becomes larger than the true capacity and the capacity VI 3 at the time of stopping. Therefore, in this case, it is determined that the stopped capacity VI 3 is close to the true capacity, and the initial capacity V 3
I set it to I 4 .

【0015】第2には、停止時容量VI3 が始動時容量
VI1 に対して所定値大きい場合である。これは、ガッ
シングが生じたためである。ここで、ガッシングとは、
バッテリを充電しその容量が増加するのに伴って電極の
電圧が上昇し、この電極電圧が所定値以上に上昇した場
合に充電電流によりバッテリ液中の水が電気分解される
現象を指すものである。
Second, the stop capacity VI 3 is larger than the start capacity VI 1 by a predetermined value. This is because gassing has occurred. Here, gassing means
This is a phenomenon in which the voltage of the electrodes rises as the battery is charged and its capacity increases, and when the electrode voltage rises above a specified value, the water in the battery liquid is electrolyzed by the charging current. is there.

【0016】ガッシングを生じた場合、走行時容量VI
2 の検出の基となるバッテリ充放電電流の積算値が、ガ
ッシングに用いられた充電電流を含んだ値となり、従っ
て走行時容量VI2 の最終値である停止時容量VI3
真の容量及び始動時容量VI 1 より大きくなる。さらに
図6に示す如く、バッテリが劣化している場合は新品時
に対して充電効率が低下するため、ガッシング量も多く
なり、停止時容量VI 3 がさらに大きくなる。従って、
この場合は始動時容量VI1 が真の容量に近いと判断
し、初期容量VI4 に設定するようにしている。
When gassing occurs, the running capacity VI
2The integrated value of the battery charge / discharge current, which is the basis of
The value includes the charging current used for
Running capacity VI2Capacity VI at stop, which is the final value of3But
True capacity and starting capacity VI 1Get bigger. further
As shown in Fig. 6, when the battery is deteriorated, it is a new product.
However, the charging efficiency decreases, so there is a lot of gassing.
And capacity VI when stopped 3Will be even larger. Therefore,
In this case, the starting capacity VI1Is determined to be close to the true capacity
And initial capacity VIFourIs set to.

【0017】以上、ステップS1乃至S4は初期容量設
定手段をなすものである。尚、上述の成層化に対して、
ガッシングは電極から気泡が発生して、この気泡により
バッテリ液がかき混ぜられるため、成層化とガッシング
とは同時に発生し難い。従って、始動時各量VI1 及び
停止時各量VI3 が共に大きくなることがなく、上述の
ように小さい方の値を採用することで正確な容量を知る
ことができるものである。
As described above, steps S1 to S4 form an initial capacity setting means. Incidentally, for the above-mentioned stratification,
In the gassing, bubbles are generated from the electrodes, and the battery liquid is agitated by the bubbles, so that stratification and gassing are unlikely to occur at the same time. Therefore, both the amounts VI 1 at the time of starting and the amounts VI 3 at the time of stopping do not become large, and an accurate capacity can be known by adopting the smaller value as described above.

【0018】上述した走行中のバッテリ容量の検出は、
バッテリ容量演算手段をなすステップS5及びS6にて
行われる。すなわち、ステップS5にて走行中のバッテ
リ1の充放電電流IB2,電圧VB2及び、温度TB2を読込
み、これに基づいてステップS6では、充放電電流IB2
を電流積算部9dで積算し、これをステップし4で設定
した初期容量VI4 に加えて走行容量VI2 を求め、バ
ッテリ容量モニタ部9gに記憶する。つまり、刻々と変
化する走行時容量VI2 を常に検出している。
The above-mentioned detection of the battery capacity during traveling is
This is performed in steps S5 and S6 which form a battery capacity calculating means. That is, the charge / discharge current I B2 , the voltage V B2, and the temperature T B2 of the running battery 1 are read in step S5, and based on this, the charge / discharge current I B2 is read in step S6.
The integrated with current accumulating section 9d, which was added seek traveling capacity VI 2 and the initial capacity VI 4 set in step 4, and stored in the battery capacity monitor unit 9g. In other words, the running capacity VI 2 that constantly changes is constantly detected.

【0019】以上述べたバッテリ容量の検出は、前記先
願に開示したものの概要であり、次に本発明による誤差
の検出について説明する。 (II)本発明による誤差の検出 上述までバッテリ容量検出においては、エンジン始動時
に成層化,ガッシング等に対して考慮しており、これは
走行時に生じる誤差をまとめて始動時に補正することを
指すものである。しかしながら車両走行中に後述する発
電制御を行う場合、刻々と変化する走行時容量VI2
応じて制御するため、走行時容量VI2 の検出値は常に
正確である必要がある。すなわちバッテリを充電する際
にガッシングが発生すると、前記ステップS6において
積算値が実際に充電された値より大きくなり、走行時容
量VI2 はバッテリの実際の容量より大きい値として演
算され、この誤差を含んだ走行時容量に基づいて発電機
が制御されるため、この誤差が極めて大きくなるとバッ
テリ上がりを生じる恐れがあるためである。
The detection of the battery capacity described above is an outline of the one disclosed in the above-mentioned prior application. Next, the detection of an error according to the present invention will be described. (II) Detection of Error According to the Present Invention In the battery capacity detection described above, stratification, gassing, etc. are taken into consideration when starting the engine, which means that errors that occur during traveling are collectively corrected at the time of starting. Is. However, when power generation control, which will be described later, is performed while the vehicle is traveling, since the control is performed according to the running capacity VI 2 that changes every moment, the detected value of the running capacity VI 2 must always be accurate. That is, if gassing occurs when charging the battery, the integrated value in step S6 becomes larger than the actually charged value, and the running capacity VI 2 is calculated as a value larger than the actual capacity of the battery, and this error is calculated. This is because the generator is controlled based on the included running capacity, and if this error becomes extremely large, the battery may run out.

【0020】そこでバッテリ放電時の電圧に着目し、上
記走行中の誤差を検出し、適宜補正することにより誤差
によるバッテリ上がりを防止するようにしている。一般
にバッテリは適度に充電されている状態においては、図
5に示す様にバッテリの容量変化に対して放電時の端子
電圧の変化が小さい。特にこの傾向は放電電流が小さい
時(50A以下)強い。しかし充電不足(例えば、充電
率25%の低容量)のものではバッテリ容量変化に対す
る放電時の端子電圧変化が比較的大きい。そして、放電
電流と端子電圧との関係は、ほぼ図4に示す特性図の通
りとなる。本発明はここに着目したものである。
Therefore, attention is paid to the voltage when the battery is discharged, and the error during running is detected and appropriately corrected to prevent the battery from being exhausted due to the error. Generally, when the battery is appropriately charged, the change in the terminal voltage at the time of discharging is small with respect to the change in the battery capacity, as shown in FIG. This tendency is particularly strong when the discharge current is small (50 A or less). However, in the case of insufficient charging (for example, low capacity with a charging rate of 25%), the terminal voltage change at the time of discharging relative to the battery capacity change is relatively large. The relationship between the discharge current and the terminal voltage is almost as shown in the characteristic diagram of FIG. The present invention focuses on this.

【0021】まずステップS7にてバッテリ電圧VB2
評価する。一般に車両はアイドリング時等E/G回転数
が低い時は、発電機の能力が低く、バッテリが放電す
る。この時の放電電流とバッテリ温度(S5にて、それ
ぞれIB2,TB2と測定されている)より判定電圧Vcを
求める。例えば充電立25%のバッテリでは、20Aで
放電されている時のバッテリ温度が25℃とすると、図
4から判定値Vcを11vと求める。そしてS7ではバ
ッテリ電圧VB2を判定値Vcと比較する。ステップS8
はVB2<Vcの状態が1秒間継続したか否かを判定する
ステップであり1秒間の間(S5〜S12の繰り返しに
より)常にS5にて放電電流IB2, 温度T B2を測定し、
S7では求められた判定値Vcと逐次比較判定される。
車両では電動ラジエータファン等、その起動時に瞬間的
に大電流が流れる負荷が数多くあり、これら負荷のON
−OFF時はバッテリ電圧が過渡期を経て安定する。そ
のためステップ8による1秒間(必ずしも1秒である必
要はなく1〜5秒程度)のタイマ機能を設け、過渡期の
不安定な電圧による誤判定の防止を図っている。
First, in step S7, the battery voltage VB2To
evaluate. Generally, the vehicle's E / G speed when idling
Is low, the generator's capacity is low and the battery
It Discharge current and battery temperature at this time (at S5,
Each IB2, TB2It is measured as
Ask. For example, with a 25% charged battery, 20A
If the battery temperature during discharging is 25 ° C,
The determination value Vc is obtained from 4 as 11v. And in S7,
Battery voltage VB2Is compared with the judgment value Vc. Step S8
Is VB2<Determining whether or not the state of Vc has continued for 1 second
It is a step and for 1 second (for repeating S5 to S12
Always) S5 discharge current IB2,Temperature T B2Is measured
In S7, the determination value Vc thus obtained is sequentially compared and determined.
In vehicles, electric radiator fans, etc. are momentarily
There are many loads in which a large current flows, and these loads are turned on.
-When OFF, the battery voltage stabilizes after a transition period. So
For 1 second in step 8 (necessarily 1 second
There is no need to provide a timer function for about 1 to 5 seconds)
We are trying to prevent misjudgment due to unstable voltage.

【0022】ステップS7およびS8(誤差検出手段)
によりバッテリ電圧VB2が判定電圧Vcより小さいと判
定されると、バッテリ1はその充電率が25%以下であ
ると考えられる。つまり、ステップS6にて演算されて
求められた容量VI2 が充電率25%以上であるとする
と、これはガッシング等による誤差を含めて演算された
ものであると推定できる。ステップS9はこの誤差を考
慮して走行時容量を補正するものである。本実施例で
は、大きめに求められたバッテリ容量VI2 から所定値
VIC (例えば1〔Ah〕)を減算するものである。V
C で補正された容量VI2 に基づき、次に説明する発
電制御が行なわれる(容量低下の検出により発電機制御
等を行ない充電増加をする)。又、ステップS5〜S1
2はキーSWオンの間繰返され、前記VIC (1Ah)
1回の補正量で不足の場合は再びS7でVB2<Vcの関
係が成り立つ、再びS9でVIC が補正される。この様
にVIC の補正が繰り返し行なわれ、最終的には電流積
算容量VI2 は正確な値に修正される。この様な補正が
連続して行なわれる事により、容量の補正と共にバッテ
リ電圧低下による機器の誤動作を防止できる。
Steps S7 and S8 (error detecting means)
When it is determined that the battery voltage V B2 is lower than the determination voltage Vc, the battery 1 is considered to have a charging rate of 25% or less. That is, if the capacity VI 2 calculated and calculated in step S6 is equal to or higher than 25% of the charging rate, it can be estimated that this is calculated including an error due to gassing or the like. In step S9, the running capacity is corrected in consideration of this error. In the present embodiment, a predetermined value VI C (for example, 1 [Ah]) is subtracted from the battery capacity VI 2 that is found to be large. V
Based on the capacity VI 2 corrected by I C , the power generation control described below is performed (the power generator is controlled by detecting the capacity decrease to increase the charge). Also, steps S5 to S1
2 is repeated while the key SW is on, and the above-mentioned VI C (1Ah)
If the correction amount for one time is insufficient, the relationship of V B2 <Vc is established again in S7, and again V C is corrected in S9. In this way, the correction of VI C is repeated, and finally the current integration capacity VI 2 is corrected to an accurate value. By continuously performing such a correction, it is possible to correct the capacity and prevent the malfunction of the device due to the battery voltage drop.

【0023】(III)発電制御 ステップS10による発電制御は先願に開示したものと
同様であり、主に次のようなものである。
(III) Power Generation Control The power generation control in step S10 is the same as that disclosed in the prior application, and is mainly as follows.

【0024】(1)最低限必要とされる容量(例えば充
電率25%)を下回らないように発電を増加し、エンジ
ンの始動不良,バッテリ上がりを防止する。発電機の制
御のみで発電量が不足する場合はアイドル回転数を上昇
させる(図7参照)。
(1) The power generation is increased so as not to fall below the minimum required capacity (for example, a charging rate of 25%), and engine start failure and battery exhaustion are prevented. When the amount of power generation is insufficient only by controlling the generator, the idle speed is increased (see FIG. 7).

【0025】(2)E/Gやバッテリ状態に応じた発電
量の制御により加速性の向上や燃費を向上する。 (3)ガッシングを生じ始める容量を大きく越えること
のないように発電を制御して、バッテリの寿命を向上す
ると共にバッテリ電解液の減少を防止する。
(2) Acceleration is improved and fuel consumption is improved by controlling the amount of power generation according to E / G and the battery state. (3) The power generation is controlled so as not to greatly exceed the capacity at which gassing starts to occur, the life of the battery is improved, and the decrease of the battery electrolyte is prevented.

【0026】ステップS11では、走行時容量VI2
充電率25%以下になれば、警報部9iによりバッテリ
上がりの警報を行う。ステップS12にてキースイッチ
が切られたと判断すると、ステップS13にて、走行時
容量VI2 の最後の値を、バッテリ容量モニタ部9gに
停止時容量VI3 として記憶し、次回の走行に備える。
In step S11, when the running capacity VI 2 becomes 25% or less of the charging rate, the alarm unit 9i gives an alarm indicating that the battery is dead. When it is determined that the key switch is turned off in step S12, in step S13, the last value of the running time of capacity VI 2, and stored as stop-time capacity VI 3 in the battery capacity monitor unit 9 g, prepare for the next run.

【0027】以上述べた如く、実施例においては、車両
走行時のガッシング等による誤差を含んだバッテリ容量
演算値の誤差分を推定できるため、この誤差分を考慮す
ることによりバッテリ上がりを防止することができる。
As described above, in the embodiment, it is possible to estimate the error amount of the battery capacity calculation value including the error due to the gassing etc. when the vehicle is running. Therefore, the battery exhaustion can be prevented by considering the error amount. You can

【0028】尚、上記実施例では、ステップS9にて走
行時容量VI2 を補正したが、この補正をすることなく
発電制御(又はバッテリ警報)をするための判定値を補
正してもよい。すなわち、ステップS7,S8にてバッ
テリ電圧の低下を検出すると、判定値(例えばバッテリ
上り警報として判定するために設定された判定値8Ah
を)1AH増加して9AHとし、バッテリ容量VI2
比較する。つまり、ステップS10による発電増加制御
を早めに行わせることによりバッテリ電圧低下による機
器の誤動作やバッテリ上りを防止する。又、前記実施例
と同様に1回の補正(実施例では1AHの増加)後も電
圧が低下する様ならば補正を繰り返す。又、ステップS
9で行なわれた補正は、エンジン始動時のバッテリの放
電特性と積算電流の複合で求めた容量検出値がガッシン
グ現象等種々の要因で生じた誤差を含む場合にのみ行な
われるものであり、バッテリ上りや電圧低下による機器
の誤動作という最悪の事態を防止することができるもの
であればよく、エンジン停止後の最スタート時には、前
回エンジン停止前に行われた判定値の補正を無くし初期
値(上記例では8Ah)に戻してもよい。又本発明で
は、比較的小さな補正値(実施例では1AH)での補正
をS7の条件成立中(バッテリ電圧が判定値より低い)
に繰り返す事としたため、突然の条件成立によるバッテ
リ容量補正で、発電制御やアイドル回転数制御の急変
(たとえば、アイドル回転数の急上昇)を防止する事が
出来る。
Although the running capacity VI 2 is corrected in step S9 in the above embodiment, the determination value for power generation control (or battery alarm) may be corrected without this correction. That is, when a decrease in the battery voltage is detected in steps S7 and S8, a determination value (for example, the determination value 8Ah set to determine the battery up alarm) is set.
) Is increased by 1 AH to 9 AH and compared with the battery capacity VI 2 . In other words, by performing the power generation increase control in step S10 earlier, it is possible to prevent the malfunction of the device and the battery exhaustion due to the battery voltage drop. Further, as in the case of the above-described embodiment, if the voltage drops even after one correction (increase of 1 AH in the embodiment), the correction is repeated. Also, step S
The correction performed in 9 is performed only when the capacity detection value obtained by the composite of the discharge characteristic of the battery and the integrated current at the time of engine start includes an error caused by various factors such as a gassing phenomenon. Anything can be used as long as it can prevent the worst situation such as equipment malfunction due to rising or voltage drop.At the time of the most restart after the engine is stopped, the correction of the judgment value performed before the last engine stop is eliminated and the initial value (above In the example, it may be returned to 8Ah). Further, in the present invention, the correction with the relatively small correction value (1 AH in the embodiment) is performed while the condition of S7 is satisfied (the battery voltage is lower than the determination value).
Since the battery capacity is corrected by suddenly satisfying the condition, it is possible to prevent a sudden change in power generation control or idle speed control (for example, a rapid increase in idle speed).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明バッテリ状態検出装置を用いた車両用充
電制御装置を示す一実施例の全体構成図である。
FIG. 1 is an overall configuration diagram of an embodiment showing a vehicle charging control device using a battery state detection device of the present invention.

【図2】上記実施例装置の制御回路9の処理機能を示す
ブロック図である。
FIG. 2 is a block diagram showing a processing function of a control circuit 9 of the apparatus of the above embodiment.

【図3】上記制御回路9内の処理を示すフローチャート
である。
FIG. 3 is a flowchart showing a process in the control circuit 9.

【図4】本発明誤差検出の説明に用いたバッテリと放電
電流との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a battery and a discharge current used for explaining the error detection of the present invention.

【図5】バッテリを放電した際のバッテリ容量とバッテ
リ電圧との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a battery capacity and a battery voltage when the battery is discharged.

【図6】バッテリを充電した際の実際に増加するバッテ
リ容量とバッテリ充電電流の積算値との関係を示す特性
図である。
FIG. 6 is a characteristic diagram showing a relationship between a battery capacity that actually increases when a battery is charged and an integrated value of a battery charging current.

【図7】バッテリの容量に対するアイドル回転設定数の
関係を示す図である。
FIG. 7 is a diagram showing the relationship between the idle speed setting number and the battery capacity.

【符号の説明】[Explanation of symbols]

1 バッテリ 6 電流検出器 9 制御回路 9a バッテリ電流検出部 9c バッテリ電圧検出部 9d 電流積算部 9e 放電特性演算部 9g バッテリ容量モニタ部 1 Battery 6 Current Detector 9 Control Circuit 9a Battery Current Detector 9c Battery Voltage Detector 9d Current Accumulator 9e Discharge Characteristic Calculator 9g Battery Capacity Monitor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バッテリの充放電電流を検出する電流検
出手段と、 前記バッテリの端子電圧を検出する電圧検出手段と、 前記電流検出手段により検出された前記バッテリの充放
電電流を積算する電流積算手段と、 前記電流検出手段により検出された前記バッテリの放電
電流が第1の所定値の時の、前記電圧検出手段により検
出された前記バッテリの電圧を基にバッテリの初期容量
を設定する初期容量設定手段と、 この初期容量設定手段により設定された初期容量に、前
記充放電電流積算値を加えて前記バッテリの容量を演算
するバッテリ容量演算手段と、 前記バッテリの放電電流が前記第1の所定値より小さい
第2の所定値である時の、前記バッテリの端子電圧と所
定電圧とを比較して、前記電流積算手段による積算値に
含まれる積算誤差を検出する誤差検出手段と、 を備え、前記所定電圧は、予め求められたバッテリが満
充電時の容量より極めて低い所定容量の時の放電電流と
端子電圧との関係を示す特性に基づき、放電電流が前記
第2の所定値の時に対応する端子電圧として設定されて
いることを特徴とするバッテリ状態検出装置。
1. A current detection means for detecting a charge / discharge current of a battery, a voltage detection means for detecting a terminal voltage of the battery, and a current integration for integrating a charge / discharge current of the battery detected by the current detection means. Means and an initial capacity for setting an initial capacity of the battery based on the voltage of the battery detected by the voltage detection means when the discharge current of the battery detected by the current detection means has a first predetermined value. Setting means, battery capacity calculating means for calculating the capacity of the battery by adding the charging / discharging current integrated value to the initial capacity set by the initial capacity setting means, and the discharging current of the battery is the first predetermined value. When the battery voltage is a second predetermined value smaller than the predetermined value, the terminal voltage of the battery is compared with the predetermined voltage, and an integrated error included in the integrated value by the current integrating means. Error detecting means for detecting, and the predetermined voltage is a discharge current based on a characteristic indicating a relationship between a terminal voltage and a discharge current when the battery has a predetermined capacity that is extremely lower than the capacity when the battery is fully charged. Is set as the terminal voltage corresponding to the second predetermined value, the battery state detecting device.
JP3300854A 1991-11-15 1991-11-15 Battery state detection device Withdrawn JPH05134020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3300854A JPH05134020A (en) 1991-11-15 1991-11-15 Battery state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3300854A JPH05134020A (en) 1991-11-15 1991-11-15 Battery state detection device

Publications (1)

Publication Number Publication Date
JPH05134020A true JPH05134020A (en) 1993-05-28

Family

ID=17889926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3300854A Withdrawn JPH05134020A (en) 1991-11-15 1991-11-15 Battery state detection device

Country Status (1)

Country Link
JP (1) JPH05134020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056059A1 (en) * 1997-06-03 1998-12-10 Sony Corporation Method for detecting capacity of battery, battery package, and electronic equipment system
US6307351B1 (en) 1999-11-09 2001-10-23 Toyota Jidosha Kabushiki Kaisha Device and method for determining state of charge
JP2006015914A (en) * 2004-07-02 2006-01-19 Auto Network Gijutsu Kenkyusho:Kk Battery state management device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056059A1 (en) * 1997-06-03 1998-12-10 Sony Corporation Method for detecting capacity of battery, battery package, and electronic equipment system
US6313606B1 (en) 1997-06-03 2001-11-06 Sony Corporation Method and apparatus for detecting battery capacity
US6307351B1 (en) 1999-11-09 2001-10-23 Toyota Jidosha Kabushiki Kaisha Device and method for determining state of charge
JP2006015914A (en) * 2004-07-02 2006-01-19 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
JP4619709B2 (en) * 2004-07-02 2011-01-26 株式会社オートネットワーク技術研究所 Battery state management device

Similar Documents

Publication Publication Date Title
JP4006881B2 (en) Battery discharge capacity detection method and apparatus, and vehicle battery control apparatus
EP2058891B1 (en) Charging control device for a storage battery
JPH08505950A (en) How to check the state of charge of a battery, for example a vehicle starter battery
JPH10288654A (en) Device for detecting remaining battery capacity
JP2007323999A (en) Battery control device of automobile
JPH07191107A (en) Residual capacity detecting method for electric automobile battery
JP2003129927A (en) Method and device for judging condition of secondary battery mounted in vehicle
JP2004042799A (en) Battery residual capacity estimating method
CN111108403A (en) Short-circuit prediction device and short-circuit prediction method for rechargeable battery
JP2003035755A (en) Method for detecting stored power in battery
JP2013176197A (en) Power supply device
JP3432463B2 (en) Battery capacity measurement device
WO2004088343A1 (en) Apparatus and method for detecting fully charged condition, apparatus and method for detecting charged condition, and apparatus and method for determining degree of degradation
JP5112920B2 (en) Deterioration degree calculation device and deterioration degree calculation method
US7538517B2 (en) Method for detecting battery stratification
JP2003127807A (en) Method and device for determining residual capacity of secondary battery mounted on vehicle having idling stop function
JPH05134020A (en) Battery state detection device
JP4652627B2 (en) Vehicle equipped with storage battery, vehicle having idling stop function, state determination device for storage battery mounted on vehicle having idling stop function, and method thereof
JP2003338325A (en) Method of determining deteriorated condition of storage battery and method of charging it
JP2002310044A (en) Residual capacity inspection method of storage battery and residual capacity inspection device of storage battery
JPH10319100A (en) Battery charging state detecting device
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus
JPH05322998A (en) Battery capacity discriminator
JP3186048B2 (en) Battery capacity detection device
JP4751381B2 (en) Engine control method and engine control apparatus for idling stop vehicle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204