JPH05133630A - Cryogenic refrigerating device - Google Patents

Cryogenic refrigerating device

Info

Publication number
JPH05133630A
JPH05133630A JP29582491A JP29582491A JPH05133630A JP H05133630 A JPH05133630 A JP H05133630A JP 29582491 A JP29582491 A JP 29582491A JP 29582491 A JP29582491 A JP 29582491A JP H05133630 A JPH05133630 A JP H05133630A
Authority
JP
Japan
Prior art keywords
heat exchanger
pulse tube
temperature end
end heat
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29582491A
Other languages
Japanese (ja)
Other versions
JP2877592B2 (en
Inventor
Takahiro Nakamura
隆広 中村
Kazuo Ikegami
和男 池上
Masato Osumi
正人 大隅
Michihiro Kurokawa
通広 黒河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3295824A priority Critical patent/JP2877592B2/en
Publication of JPH05133630A publication Critical patent/JPH05133630A/en
Application granted granted Critical
Publication of JP2877592B2 publication Critical patent/JP2877592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1414Pulse-tube cycles characterised by pulse tube details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To make the device compact by tuning back a pulse tube 180 deg. in an arc and arranging the pulse tube, a high temperature end heat exchanger, an orifice valve, and a buffer tank in a line parallel to an arrangement of a compressor, a heat exchanger for preliminary cooling, a cold heat accumulator, and a low temperature end heat exchanger. CONSTITUTION:A pulse tube 15 is turned back 180' at the end connected with a low temperature end heat exchanger 14 so that the pulse tube 15, a high temperature end heat exchanger 16, an orifice valve 18, and a buffer tank 17 are arranged in a line parallel to an arrangement of a compressor 8, a heat exchanger for preliminary cooling 11, a cold heat accumulator 12, and a low temperature end heat exchanger 14. For this structure, the total length X can be reduced to roughly a half compared with a conventional structure and, unlike an elbow-shaped bend, the bend is formed in an arc. With no sharp turning in the passageway for refrigerant, a cryogenic refrigerating device having the pressure loss minimized, being compact in structure, and having a high refrigerating capacity can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パルスチューブを使用
して低温端熱交換器に150K〜20K(−123℃〜
−253℃)の極低温を発生し、この極低温を各種赤外
線センサーや高温超伝導ディバイス等の冷却に利用する
極低温冷凍装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a low temperature end heat exchanger using a pulse tube at 150K to 20K (-123 ° C to
The present invention relates to a cryogenic refrigerating apparatus which generates a cryogenic temperature of −253 ° C.) and uses the cryogenic temperature for cooling various infrared sensors and high temperature superconducting devices.

【0002】[0002]

【従来の技術】本発明に先行する特開平1−11467
0号公報に記載された従来の極低温冷凍装置では、図5
に示すように、コンプレッサー1を順次、予冷用熱交換
器2、蓄冷器3、低温端熱交換器4、パルスチューブ
5、オリフィス弁6及びバッファータンク7に連通し、
圧縮過程においてコンプレッサー1で圧縮したガス状冷
媒を、予冷用熱交換器2及び蓄冷器3を通る間に冷却し
てパルスチューブ5に流入しこのパルスチューブ5の残
留冷媒を圧縮してその圧縮熱を高温端部5aで放熱し、
更にオリフィス弁6を通る間に断熱膨張により冷却して
バッファータンク7に流入し、その後膨張過程において
コンプレッサー1を吸引動作することで前記バッファー
タンク7のガス状冷媒を、復帰移動してパルスチューブ
5内で断熱膨張し更に低温化して低温端熱交換器4及び
蓄冷器3を冷却しコンプレッサー1に帰還させ、斯る往
復移動サイクルを繰り返すことにより、低温端熱交換器
4に極低温を得ている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 1-116767 prior to the present invention
In the conventional cryogenic refrigeration system disclosed in Japanese Patent Publication No.
As shown in, the compressor 1 is sequentially connected to the pre-cooling heat exchanger 2, the regenerator 3, the low temperature end heat exchanger 4, the pulse tube 5, the orifice valve 6, and the buffer tank 7.
During the compression process, the gaseous refrigerant compressed by the compressor 1 is cooled while passing through the pre-cooling heat exchanger 2 and the regenerator 3 and flows into the pulse tube 5 to compress the residual refrigerant in the pulse tube 5 and compress it. Radiates heat at the high temperature end 5a,
Further, while passing through the orifice valve 6, it is cooled by adiabatic expansion and flows into the buffer tank 7, and then the compressor 1 is sucked in the expansion process to return and move the gaseous refrigerant in the buffer tank 7 to the pulse tube 5. Adiabatic expansion is performed in the interior to further lower the temperature, the low temperature end heat exchanger 4 and the regenerator 3 are cooled and returned to the compressor 1, and the reciprocating cycle is repeated to obtain an extremely low temperature in the low temperature end heat exchanger 4. There is.

【0003】しかしながらこの種従来の極低温冷凍装置
では、冷凍能力のアップの目的で前記パルスチューブ5
を伸長させた場合、極低温冷凍装置の全長についても大
型化し取扱が困難となり機構も複雑化する等の欠点があ
る。
However, in the conventional cryogenic refrigerating apparatus of this kind, the pulse tube 5 is used for the purpose of increasing the refrigerating capacity.
When extended, the entire length of the cryogenic refrigeration system becomes large, making it difficult to handle and making the mechanism complicated.

【0004】[0004]

【発明が解決しようとする課題】本発明は前述の欠点を
解消して、コンパクトで且つ冷凍能力の高い極低温冷凍
装置を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks and provides a compact cryogenic refrigerating apparatus having a high refrigerating capacity.

【0005】[0005]

【課題を解決するための手段】本発明は、コンプレッサ
ーを順次、予冷用熱交換器、蓄冷器、低温端熱交換器、
パルスチューブ、高温端熱交換器、オリフィス弁及びバ
ッファータンクに連通し、前記バッファータンクと前記
コンプレッサーとの間で、ガス状冷媒を往復移動させる
ことにより、前記低温端熱交換器を極低温に冷却してな
るものであって、前記パルスチューブを孤状に略180
°折り曲げることにより、前記パルスチューブ、前記高
温端熱交換器、前記オリフィス弁及び前記バッファータ
ンクを、前記コンプレッサー、前記予冷用熱交換器、前
記蓄冷器及び前記低温端熱交換器に対して略並行して配
置したものである。
DISCLOSURE OF THE INVENTION In the present invention, a compressor is sequentially provided with a precooling heat exchanger, a regenerator, a low temperature end heat exchanger,
The low temperature end heat exchanger is cooled to an extremely low temperature by communicating with the pulse tube, the high temperature end heat exchanger, the orifice valve and the buffer tank, and moving the gaseous refrigerant back and forth between the buffer tank and the compressor. The pulse tube is formed into an arc shape of about 180
By being bent, the pulse tube, the high temperature end heat exchanger, the orifice valve and the buffer tank are substantially parallel to the compressor, the precooling heat exchanger, the regenerator and the low temperature end heat exchanger. It has been arranged.

【0006】[0006]

【作用】本発明によれば、パルスチューブを略180°
折り曲げることにより、このパルスチューブを極低温冷
凍装置の全長についての大型化を招来することなしに延
長して、極低温冷凍装置の冷凍能力の向上を図れると共
に、前記パルスチューブの折り曲げ態様を孤状とするこ
とにより、冷媒流の急激な進路変更も、これにともなう
渦流の発生も防止して、パルスチューブ内の圧力損失を
最小限に抑制でき、従って、コンパクトで且つ冷凍能力
の高い極低温冷凍装置を提供できるようになる。
According to the present invention, the pulse tube is set to approximately 180 °.
By bending, the pulse tube can be extended without increasing the total length of the cryogenic refrigerator, the refrigerating capacity of the cryogenic refrigerator can be improved, and the bending mode of the pulse tube can be arcuate. By this, it is possible to prevent the sudden change of the refrigerant flow and the generation of vortex accompanying it, and it is possible to suppress the pressure loss in the pulse tube to the minimum. The device can be provided.

【0007】[0007]

【実施例】次に本発明の一実施例について説明する。Next, an embodiment of the present invention will be described.

【0008】8はコンプレッサーで、シリンダー9の内
部に往復動型のピストン10を収納している。11はコ
ンプレッサー8に配管接続した予冷用熱交換器で、水冷
又は空冷される。12は予冷用熱交換器11をその一部
に備えた蓄冷器で、鉛や銅等からなる蓄冷材13を収納
している。14は蓄冷器12に接続した低温端熱交換
器、15は低温端熱交換器14にその一端部を接続した
ステンレス鋼製のパルスチューブで、圧縮過程で発生し
た圧縮熱を他端部の高温端熱交換器16から放熱する。
17はバッファータンクで、パルスチューブ15から押
し出された圧縮過程時のガス状冷媒をオリフィス弁18
にて断熱膨張させ更に冷却して流入させる。
Reference numeral 8 is a compressor, and a reciprocating piston 10 is housed inside a cylinder 9. A heat exchanger 11 for pre-cooling is connected to the compressor 8 by piping and is water-cooled or air-cooled. Reference numeral 12 is a regenerator having a pre-cooling heat exchanger 11 as a part thereof, and stores a regenerator material 13 made of lead, copper or the like. Reference numeral 14 is a low temperature end heat exchanger connected to the regenerator 12, and 15 is a stainless steel pulse tube whose one end is connected to the low temperature end heat exchanger 14. The compression heat generated in the compression process is heated to the high temperature at the other end. Heat is radiated from the end heat exchanger 16.
Reference numeral 17 is a buffer tank, which uses an orifice valve 18 to pass the gaseous refrigerant extruded from the pulse tube 15 during the compression process.
At adiabatic expansion, it is further cooled and made to flow in.

【0009】而して前記パルスチューブ15は、前記低
温端熱交換器14の接続端部15aの近傍を孤状に略1
80°折り曲げると共にその全長Xを前記従来例に比較
して延長してある。この折り曲げられたパルスチューブ
15は、パルスチューブ15、高温端熱交換器16、オ
リフィス弁18及びバッファータンク17を、コンプレ
ッサー8、予冷用熱交換器11、蓄冷器12及び低温端
熱交換器14に対して並行して配置することにより、極
低温冷凍装置の全長Xを前記従来例に比較して略1/2
に短縮する。またパルスチューブ15は、その折り曲げ
態様を孤状とすることにより、図2に示すような、エル
ボ型折り曲げのパルスチューブ19とは異なり、冷媒流
の急激な進路変更も、これにともなう渦流20の発生も
防止して、パルスチューブ15内の圧力損失を最小限に
抑制できるようになる。
Thus, the pulse tube 15 has an arc-shaped shape near the connection end 15a of the low temperature end heat exchanger 14 in an arc shape.
It is bent by 80 ° and its total length X is extended as compared with the conventional example. The bent pulse tube 15 includes a pulse tube 15, a high temperature end heat exchanger 16, an orifice valve 18 and a buffer tank 17, which are connected to a compressor 8, a precooling heat exchanger 11, a regenerator 12 and a low temperature end heat exchanger 14. By arranging them in parallel with each other, the total length X of the cryogenic refrigeration system is about 1/2 of that of the conventional example.
Shorten to. In addition, the pulse tube 15 has an arcuate bending mode, so that unlike the elbow-type bending pulse tube 19 as shown in FIG. 2, even when the refrigerant flow is suddenly changed, the vortex flow 20 associated therewith is changed. It also becomes possible to prevent the occurrence of pressure and to minimize the pressure loss in the pulse tube 15.

【0010】前記極低温冷凍装置では、圧縮過程におい
てコンプレッサー8を圧縮動作させると、圧縮冷媒はそ
の圧縮熱を予冷用熱交換器11及び蓄冷器12にて放熱
してパルスチューブ15に流入しこのパルスチューブ1
5の残留冷媒を圧縮してこの圧縮熱を高温端熱交換器1
6から放熱し更にオリフィス弁18を通って断熱膨張に
より冷却してバッファータンク17に流入する。その後
膨張過程においてコンプレッサー8を吸引動作させる
と、ガス状冷媒は前記バッファータンク17から高速で
復帰移動してパルスチューブ15内で断熱膨張して更に
低温化して低温端熱交換器15及び蓄冷器13を冷却し
コンプレッサー8に戻る。斯る往復移動サイクルを繰り
返すことにより、低温端熱交換器14に150K〜20
K(−123℃〜−253℃)の極低温が得られるよう
になる。
In the cryogenic refrigeration system, when the compressor 8 is compressed during the compression process, the compressed refrigerant releases its compression heat in the precooling heat exchanger 11 and the regenerator 12 and flows into the pulse tube 15. Pulse tube 1
The residual refrigerant of No. 5 is compressed and this compression heat is transferred to the high temperature end heat exchanger 1
The heat is radiated from 6 and is further cooled through adiabatic expansion through the orifice valve 18 to flow into the buffer tank 17. Then, when the compressor 8 is suctioned in the expansion process, the gaseous refrigerant moves back from the buffer tank 17 at a high speed, adiabatically expands in the pulse tube 15 and further cools to a low temperature end heat exchanger 15 and a regenerator 13. Is cooled and returned to the compressor 8. By repeating such a reciprocating movement cycle, the low temperature end heat exchanger 14 has a temperature of 150K to 20K.
An extremely low temperature of K (-123 ° C to -253 ° C) can be obtained.

【0011】また前記極低温冷凍装置では、パルスチュ
ーブ15は略180°折り曲げることにより、極低温冷
凍装置の全長Xの大型化を招来することなしに延長でき
るようになり、このパルスチューブ15を延長すること
で、このパルスチューブ15の両端の高温端熱交換器1
6と低温端熱交換器14との温度差が大きくなり、高温
端熱交換器16の放熱が促進されると共にこの高温端熱
交換器16から低温端熱交換器14への熱的悪影響も制
限され、冷凍能力が向上する。更に、前記パルスチュー
ブ15の折り曲げ態様を孤状とすることにより、冷媒流
の急激な進路変更も、これにともなう渦流の発生も防止
され、パルスチューブ15内の圧力損失が最小限に抑制
され、冷凍能力が向上する。
In the above cryogenic refrigerator, the pulse tube 15 can be extended by bending it by about 180 ° without increasing the total length X of the cryogenic refrigerator, and the pulse tube 15 can be extended. By doing so, the high temperature end heat exchanger 1 at both ends of the pulse tube 15
6, the temperature difference between the low temperature end heat exchanger 14 and the low temperature end heat exchanger 14 becomes large, the heat radiation of the high temperature end heat exchanger 16 is promoted, and the thermal adverse effect from the high temperature end heat exchanger 16 to the low temperature end heat exchanger 14 is also limited. The refrigerating capacity is improved. Furthermore, by making the bent form of the pulse tube 15 arcuate, it is possible to prevent a sudden change in the course of the refrigerant flow and the generation of a vortex accompanying it, and the pressure loss inside the pulse tube 15 is suppressed to a minimum. Freezing capacity is improved.

【0012】図3は他の実施例を示し、この実施例の特
徴点は、パルスチューブ21に、該パルスチューブ21
と同一形状に折り曲げた複数個のベンドチューブ22を
挿入したことである。ベンドチューブ22に示すよう
に、口径の異なる各ベンドチューブ22a,22b,2
2cをスペーサー23で保持することにより、パルスチ
ューブ21に対して中心軸を一致させて挿入してある。
各ベンドチューブ22a,22b,22cは、曲管状故
にパルスチューブ21内で複雑化しようとする冷媒流
を、整流すべく機能する。
FIG. 3 shows another embodiment. The feature of this embodiment is that the pulse tube 21 is
That is, a plurality of bend tubes 22 bent into the same shape as the above are inserted. As shown in the bend tube 22, the bend tubes 22a, 22b, 2 having different diameters are used.
By holding 2c by a spacer 23, the central axis of the pulse tube 21 is aligned with that of the pulse tube 21.
Each of the bend tubes 22a, 22b, 22c functions to rectify the refrigerant flow that tends to be complicated in the pulse tube 21 because of the bent tube shape.

【0013】他の実施例の極低温冷凍装置では、その圧
縮過程においてパルスチューブ21に流入したガス状圧
縮冷媒は、各ベンドチューブ22a,22b,22cに
沿ってパルスチューブ21の中心軸と平行に案内されて
円滑に高温端熱交換器16に向かって圧送され圧送途中
における径方向外側への内部熱拡散が防止されるように
なり、その結果、低温端熱交換器14から高温端熱交換
器16に向かっての熱勾配が大きくなり、高温端熱交換
器16の温度が上昇して放熱量が増加し、その増加分だ
け更に冷凍能力が向上する。
In the cryogenic refrigeration system of another embodiment, the gaseous compressed refrigerant flowing into the pulse tube 21 in the compression process becomes parallel to the central axis of the pulse tube 21 along each bend tube 22a, 22b, 22c. It is guided and smoothly sent to the high temperature end heat exchanger 16 so that internal heat diffusion to the outside in the radial direction during the pressurization is prevented, and as a result, the low temperature end heat exchanger 14 moves to the high temperature end heat exchanger. The heat gradient toward 16 increases, the temperature of the high temperature end heat exchanger 16 rises, the amount of heat radiation increases, and the refrigerating capacity is further improved by the increase.

【0014】尚、他の実施例では、その他の部分は前記
実施例と同様に構成され同一符号を付してその説明を省
略する。
Incidentally, in the other embodiments, the other parts are constructed in the same manner as in the above-mentioned embodiment and are given the same reference numerals, and their explanations are omitted.

【0015】[0015]

【発明の効果】本発明は以上のように構成したから、パ
ルスチューブを略180°折り曲げることにより、この
パルスチューブを極低温冷凍装置の全長についての大型
化を招来することなしに延長して、極低温冷凍装置の冷
凍能力の向上を図れると共に、前記パルスチューブの折
り曲げ態様を孤状とすることにより、冷媒流の急激な進
路変更も、これにともなう渦流の発生も防止して、パル
スチューブ内の圧力損失を最小限に抑制でき、従って、
コンパクトで且つ冷凍能力の高い極低温冷凍装置を提供
できる。
Since the present invention is constructed as described above, by bending the pulse tube by approximately 180 °, the pulse tube can be extended without increasing the total length of the cryogenic refrigerator, By improving the refrigerating capacity of the cryogenic refrigerating device, and by making the bent form of the pulse tube arcuate, it is possible to prevent a sudden change in the refrigerant flow path and to prevent the occurrence of vortex flow associated therewith, and Pressure loss can be minimized, therefore
It is possible to provide a cryogenic refrigeration system that is compact and has a high refrigeration capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】同実施例の従来例と比較して示す動作説明図で
ある。
FIG. 2 is an operation explanatory view shown in comparison with a conventional example of the same embodiment.

【図3】本発明の他の実施例の構成図である。FIG. 3 is a configuration diagram of another embodiment of the present invention.

【図4】図3におけるA−A線断面図である。4 is a cross-sectional view taken along the line AA in FIG.

【図5】従来例の構成図である。FIG. 5 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

8 コンプレッサー 11 予冷用熱交換器 12 蓄冷器 14 低温端熱交換器 15 パルスチューブ 16 高温端熱交換器 17 バッファータンク 18 オリフィス弁 22 ベンドチューブ 8 Compressor 11 Pre-cooling heat exchanger 12 Regenerator 14 Low temperature end heat exchanger 15 Pulse tube 16 High temperature end heat exchanger 17 Buffer tank 18 Orifice valve 22 Bend tube

フロントページの続き (72)発明者 黒河 通広 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continuation (72) Inventor Michihiro Kurokawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサーを順次、予冷用熱交換
器、蓄冷器、低温端熱交換器、パルスチューブ、高温端
熱交換器、オリフィス弁及びバッファータンクに連通
し、前記バッファータンクと前記コンプレッサーとの間
で、ガス状冷媒を往復移動させることにより、前記低温
端熱交換器を極低温に冷却してなるものであって、 前記パルスチューブを孤状に略180°折り曲げること
により、前記パルスチューブ、前記高温端熱交換器、前
記オリフィス弁及び前記バッファータンクを、前記コン
プレッサー、前記予冷用熱交換器、前記蓄冷器及び前記
低温端熱交換器に対して略並行して配置したことを特徴
とする極低温冷凍装置。
1. A compressor is sequentially connected to a pre-cooling heat exchanger, a regenerator, a low temperature end heat exchanger, a pulse tube, a high temperature end heat exchanger, an orifice valve and a buffer tank, and the buffer tank and the compressor are connected to each other. In between, the low temperature end heat exchanger is cooled to an extremely low temperature by reciprocating the gaseous refrigerant, and the pulse tube is bent in an arc shape by about 180 °, The high temperature end heat exchanger, the orifice valve and the buffer tank are arranged substantially parallel to the compressor, the precooling heat exchanger, the regenerator and the low temperature end heat exchanger. Cryogenic refrigerator.
【請求項2】 前記パルスチューブは、該パルスチュー
ブと同一形状に折り曲げた複数個のベンドチューブを挿
入してなることを特徴とする請求項1記載の極低温冷凍
装置。
2. The cryogenic refrigerator according to claim 1, wherein the pulse tube is formed by inserting a plurality of bend tubes bent into the same shape as the pulse tube.
JP3295824A 1991-11-12 1991-11-12 Cryogenic refrigeration equipment Expired - Lifetime JP2877592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295824A JP2877592B2 (en) 1991-11-12 1991-11-12 Cryogenic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295824A JP2877592B2 (en) 1991-11-12 1991-11-12 Cryogenic refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05133630A true JPH05133630A (en) 1993-05-28
JP2877592B2 JP2877592B2 (en) 1999-03-31

Family

ID=17825652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295824A Expired - Lifetime JP2877592B2 (en) 1991-11-12 1991-11-12 Cryogenic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2877592B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664854B1 (en) * 2005-07-28 2007-01-04 두산중공업 주식회사 Cryo-cooling system
JP2014190582A (en) * 2013-03-26 2014-10-06 Sumitomo Heavy Ind Ltd U-shaped pulse tube refrigerator
CN106440448A (en) * 2015-08-05 2017-02-22 同济大学 Phase modulation type push piston pulse tube refrigerator and phase modulation method thereof
CN107677004A (en) * 2017-09-20 2018-02-09 上海理工大学 Microchannel vascular refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664854B1 (en) * 2005-07-28 2007-01-04 두산중공업 주식회사 Cryo-cooling system
JP2014190582A (en) * 2013-03-26 2014-10-06 Sumitomo Heavy Ind Ltd U-shaped pulse tube refrigerator
CN106440448A (en) * 2015-08-05 2017-02-22 同济大学 Phase modulation type push piston pulse tube refrigerator and phase modulation method thereof
CN107677004A (en) * 2017-09-20 2018-02-09 上海理工大学 Microchannel vascular refrigerator

Also Published As

Publication number Publication date
JP2877592B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
Matsubara et al. Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K
GB2241565A (en) Cryogenic cooling apparatus
US4484458A (en) Apparatus for condensing liquid cryogen boil-off
JP3702964B2 (en) Multistage low temperature refrigerator
EP1422485A2 (en) Multistage pulse tube refrigeration system for high temperature superconductivity
CN114151989B (en) Superconducting magnet
US7234307B2 (en) Cryocooler with grooved flow straightener
JPH08222429A (en) Device for cooling to extremely low temperature
WO2022042457A1 (en) Efficient liquefaction system of regenerative refrigerator using direct flow
JPH05133630A (en) Cryogenic refrigerating device
Charles et al. Permanent flow in low and high frequency pulse tube coolers–experimental results
JPH05126426A (en) Cryogenic refrigerator
US6484516B1 (en) Method and system for cryogenic refrigeration
JPS63302259A (en) Cryogenic generator
JP2734893B2 (en) Cryogenic refrigerator
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
JPH09113052A (en) Freezer
Xu et al. Study of low vibration 4 K pulse tube cryocoolers
WO2024111338A1 (en) Joule-thomson refrigerator
JPH1073333A (en) Cryogenic cooling apparatus
JP2697476B2 (en) Cryogenic refrigerator heat exchanger
JP2723342B2 (en) Cryogenic refrigerator
WO2022153713A1 (en) Pulse tube freezer and superconductive magnet apparatus
WO2024111339A1 (en) Joule-thomson refrigerator
JPH03194364A (en) Cryostatic freezer