JPH0513165B2 - - Google Patents

Info

Publication number
JPH0513165B2
JPH0513165B2 JP15140285A JP15140285A JPH0513165B2 JP H0513165 B2 JPH0513165 B2 JP H0513165B2 JP 15140285 A JP15140285 A JP 15140285A JP 15140285 A JP15140285 A JP 15140285A JP H0513165 B2 JPH0513165 B2 JP H0513165B2
Authority
JP
Japan
Prior art keywords
resin composition
epoxy resin
machinability
epoxy equivalent
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15140285A
Other languages
Japanese (ja)
Other versions
JPS6213432A (en
Inventor
Masae Yamada
Keiji Ooi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP15140285A priority Critical patent/JPS6213432A/en
Publication of JPS6213432A publication Critical patent/JPS6213432A/en
Publication of JPH0513165B2 publication Critical patent/JPH0513165B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐熱性及び強度に優れ、かつ切削加工
性に優れたエポキシ樹脂組成物に関するものであ
る。 〔従来技術〕 エポキシ樹脂組成物は、硬化剤として酸無水
物、アミン系化合物、フエノールノボラツクが用
いられてきたが、耐熱性、毒性、保存性などの点
から、近年ではフエノール硬化のものが多くなつ
ている。 半導体封止用材料の場合には、全てフエノール
硬化と言つて差し支えないが、コイル封入用材料
など一般電気部品の場合にもフエノール硬化のも
のが次第に多用されつつある。 これらフエノール硬化型の場合、一般に酸無水
物系などよりも耐熱性に優れているが、それは架
橋密度の高さに由来するものであり、硬化物とし
ては、より「硬い」ものとなつている。 このため、成形品の仕上げ工程で切削加工を行
う場合に切削しにくく、成形品が欠けたり、刃の
摩耗が大きい等の問題を生じてしまい、これを解
決せんがため、架橋密度を下げると耐熱性が犠牲
とならざるを得なかつた。 〔発明の目的〕 本発明は、従来、両立させることが困難であつ
た耐熱性と切削加工性を両立させんとして研究し
た結果、結晶水を有する無機化合物を用いること
で、切削加工性を顕著に改良できることを見い出
し、更に検討を進め本発明に至つたものである。 その目的とするところは、耐熱性及び強度と切
削加工性に優れたエポキシ樹脂組成物を提供する
にある。 〔発明の構成〕 本発明は、エポキシ当量が200〜250であるクレ
ゾールノボラツク型エポキシ樹脂とエポキシ当量
が500〜1000であるビスフエノール型エポキシ樹
脂とを2種あるいは3種以上併用し、その平均エ
ポキシ当量が270〜400であつて、硬化剤にノボア
ツク型フエノール樹脂を用い、かつ充填材として
ガラス繊維及び結晶水を有する無機化合物を必須
成分とし、結晶水を有する無機化合物が樹脂組成
物中に少なくとも3重量%以上含まれることを特
徴とするエポキシ樹脂組成物である。 本発明において用いられるクレゾールノボラツ
ク型エポキシ樹脂はエポキシ当量200〜250のもの
であつて、このようなものには例えば、住友化学
ESCN−220をあげることができる。ビスフエノ
ール型エポキシ樹脂はエポキシ当量500〜1000の
ものであつて、このようなものには例えば、シエ
ル社のエピコート1101、1002、1004などをあげる
ことができる。エポキシ当量が500未満のものは
軟化点が低いか或は液状で取扱かい作業性に劣
る。また当量が1000を越えるものは、結果的に添
加料が少なくなるため配合の安定上好ましくな
い。硬化剤として用いられるノボラツク型フエノ
ールは常法により合成されたものを用いることが
できる。 これらを樹脂成分として、無機充填材を加える
が、使用する充填材の総量は、樹脂組成物中に40
〜80重量%であることが望ましい。40重量%未満
では剛性が不十分であり、80重量%を超えると流
動性が低下し、成形性の点で好ましくない。 無機充填材には、ガラス繊維と結晶水を有する
無機化合物を必須成分とする。ガラス繊維量は樹
脂組成物中に5〜50重量%であることが望まし
い。5重量%以下では補強効果が十分でなく50重
量%を超えると、切削治具の摩耗が大きくなるな
ど、切削加工の点で好ましくない。 結晶水を有する無機化合物には、水酸化アルミ
ニウム、水酸化マグネシウム、水酸化カルシウ
ム、未焼成クレー(2SiO2・Al2O3・XH2O)、朋
砂(Na2B4O7・XH2O)などをあげることができ
る。これらは、切削加工時に局部的発熱に対し
て、結晶水を放出することで発熱を抑え、切削治
具の摩耗を抑え、切削性を向上させる。これらの
結晶水を有する無機化合物の添加量は樹脂組成物
に3重量%以上でなければならない。3重量%未
満では切削性向上の効果が認められない。先に述
べた無機物総量、ガラス繊維量を望ましい範囲に
保つていれば多量に添加するのは差し支えない。 これらの原材料とともに必要により離型材、着
色剤、硬化助剤等を添加し、ロール、コニーダ
ー、二軸混練機等により加熱混練御、粉砕あるい
は押出造粒等により顆粒化し、樹脂組成物を得
る。 〔発明の効果〕 このようにして得られたエポキシ樹脂組成物
は、耐熱性及び強度に優れると同時に切削加工性
に優れているので切削加工を後工程に持つ一般電
気部品用材料として好適である。特にガラス繊維
で強度の維持を図つているのでコイルその他の封
止用として用いれば、冷熱サイクルでのクラツク
も発生しにくいという特徴も発揮される。 〔実施例〕 本発明の効果を見るための切削加工性の評価
は、ドリルでの穿孔試験によつて行なつた。これ
は、径3mmのドリルを用い、所定の回転数、荷重
のもとでまずアルミニウム板(厚さ3mm)を1回
穿孔し、続いてエポキシ樹脂組成物の成形品(厚
さ3mm)を30回穿孔し、その後再びアルミニウム
板を1回穿孔するものである。合計32回の穿孔時
間を順にt1,t2……t32とした時、t2/t1を成形品
の切削性指数、t32/t1をドリル摩耗指数として、
この2ケの指数により、切削加工性を表わした。 実施例1〜3及び比較例1〜4の配合及び評価
結果を表1に示した。実施例1〜3は、それぞれ
水酸化アルミ、水酸化マグネシウム、未焼成クレ
ーという結晶水を有する無機化合物を用いて切削
加工性を向上させたものであり、樹脂の平均エポ
キシ当量も小さいので耐熱性にも優れている。ま
たガラス繊維により、強度も良好である。表2に
これら無機化合物の結晶水含有量及び脱水分解温
度を示した。 これらに対し、比較例1は、エポキシ当量は小
さく耐熱性が良いが、結晶水を有する無機化合物
を用いていないので切削加工性が著るしく劣るも
のである。比較例2は、エポキシ当量が更に小さ
いので、結晶水を有する無機化合物を用いても、
切削加工性が十分には向上しない例である。比較
例3は、エポキシ当量が大きく、結晶水を有する
無機化合物を使用しているので、切削加工性は最
も良いが、ガラス繊維を使用していないので強度
が劣る。比較例4は、エポキシ当量が更に大きい
ので、結晶水を有する無機化合物を使用しなくて
も切削加工性が良いが、耐熱性は劣る。 このように、本発明によるエポキシ樹脂組成物
は、耐熱性、強度、切削加工性に優れており、極
めて有用なことが明らかである。
[Industrial Application Field] The present invention relates to an epoxy resin composition that has excellent heat resistance and strength, and excellent cutting workability. [Prior art] Acid anhydrides, amine compounds, and phenol novolaks have been used as curing agents for epoxy resin compositions, but in recent years, phenol-cured ones have been used from the viewpoint of heat resistance, toxicity, and storage stability. There are more and more. In the case of semiconductor encapsulation materials, it can be said that all phenol-cured materials are used, but phenol-cured materials are also increasingly being used for general electrical components such as coil encapsulation materials. These phenol-curing types generally have better heat resistance than acid anhydride-based ones, but this is due to their high crosslinking density, and the cured product is more "hard". . For this reason, when cutting is performed in the finishing process of a molded product, it becomes difficult to cut, resulting in problems such as chipping of the molded product and large wear on the blade.In order to solve this problem, lowering the crosslinking density Heat resistance had to be sacrificed. [Object of the Invention] As a result of research aimed at achieving both heat resistance and machinability, which have been difficult to achieve in the past, the present invention has been developed to significantly improve machinability by using an inorganic compound containing water of crystallization. They discovered that the method could be improved, and further studies led to the present invention. The purpose is to provide an epoxy resin composition that has excellent heat resistance, strength, and machinability. [Structure of the Invention] The present invention uses two or more of a cresol novolac type epoxy resin having an epoxy equivalent of 200 to 250 and a bisphenol type epoxy resin having an epoxy equivalent of 500 to 1000, and The resin composition has an epoxy equivalent of 270 to 400, uses a novoac type phenolic resin as a curing agent, and has glass fiber and an inorganic compound having crystal water as fillers as essential components, and the inorganic compound having crystal water is contained in the resin composition. It is an epoxy resin composition characterized by containing at least 3% by weight or more. The cresol novolac type epoxy resin used in the present invention has an epoxy equivalent of 200 to 250, and such resins include, for example, Sumitomo Chemical Co., Ltd.
I can give you ESCN-220. The bisphenol type epoxy resin has an epoxy equivalent of 500 to 1000, and examples of such resins include Epicote 1101, 1002, and 1004 manufactured by Ciel. Epoxy equivalents of less than 500 have a low softening point or are liquid and have poor handling and workability. Moreover, those having an equivalent weight of more than 1000 are undesirable from the viewpoint of stability of the formulation, since the amount of additives will be reduced as a result. The novolak type phenol used as the curing agent can be one synthesized by a conventional method. Inorganic fillers are added to these as resin components, but the total amount of fillers used is 40% in the resin composition.
~80% by weight is desirable. If it is less than 40% by weight, the rigidity is insufficient, and if it exceeds 80% by weight, the fluidity decreases, which is not preferable in terms of moldability. The inorganic filler contains glass fiber and an inorganic compound containing water of crystallization as essential components. The amount of glass fiber in the resin composition is preferably 5 to 50% by weight. If the content is less than 5% by weight, the reinforcing effect will not be sufficient, and if it exceeds 50% by weight, the wear of the cutting jig will increase, which is undesirable from the viewpoint of cutting. Inorganic compounds with crystal water include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, uncalcined clay (2SiO 2・Al 2 O 3・XH 2 O), and borax (Na 2 B 4 O 7・XH 2 O) etc. can be given. These materials suppress localized heat generation during cutting by releasing crystallized water, suppressing wear on cutting jigs, and improving machinability. The amount of these inorganic compounds having water of crystallization added to the resin composition must be 3% by weight or more. If it is less than 3% by weight, no effect of improving machinability is observed. There is no problem in adding a large amount as long as the total amount of inorganic substances and the amount of glass fibers mentioned above are kept within the desired ranges. A mold release agent, a coloring agent, a curing aid, etc. are added as necessary to these raw materials, and the resin composition is granulated by heat kneading, crushing, or extrusion granulation using a roll, co-kneader, twin-screw kneader, etc. [Effects of the Invention] The epoxy resin composition thus obtained has excellent heat resistance and strength as well as excellent machinability, so it is suitable as a material for general electrical parts that require machining as a subsequent process. . In particular, glass fiber is used to maintain strength, so when used for sealing coils and other items, it also exhibits the characteristic that cracks are less likely to occur during cooling and heating cycles. [Example] Evaluation of machinability in order to see the effects of the present invention was carried out by a drilling test using a drill. First, an aluminum plate (thickness: 3 mm) is drilled once using a drill with a diameter of 3 mm under a predetermined rotation speed and load, and then a molded article (thickness: 3 mm) of an epoxy resin composition is drilled for 30 minutes. The hole is drilled twice, and then the aluminum plate is drilled once again. When the total drilling time of 32 times is set as t 1 , t 2 ... t 32 in order, t 2 / t 1 is the machinability index of the molded product, and t 32 / t 1 is the drill wear index,
The machinability was expressed by these two indexes. The formulations and evaluation results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1. In Examples 1 to 3, the machinability was improved by using inorganic compounds having crystallization water such as aluminum hydroxide, magnesium hydroxide, and unfired clay, respectively, and the average epoxy equivalent of the resin was also small, so the heat resistance was improved. It is also excellent. Also, the strength is good due to the glass fiber. Table 2 shows the crystal water content and dehydration decomposition temperature of these inorganic compounds. On the other hand, Comparative Example 1 has a small epoxy equivalent and good heat resistance, but has significantly poor cutting workability because it does not use an inorganic compound containing water of crystallization. In Comparative Example 2, the epoxy equivalent is even smaller, so even if an inorganic compound having crystal water is used,
This is an example in which machinability is not sufficiently improved. Comparative Example 3 uses an inorganic compound with a large epoxy equivalent and water of crystallization, so it has the best machinability, but it has poor strength because it does not use glass fiber. Comparative Example 4 has a larger epoxy equivalent, so it has good machinability without using an inorganic compound having crystallization water, but its heat resistance is poor. As described above, it is clear that the epoxy resin composition according to the present invention has excellent heat resistance, strength, and machinability, and is extremely useful.

【表】【table】

【表】 * 示差熱天秤分析法による。
[Table] *Based on differential thermal analysis.

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ当量が200〜250であるクレゾールノ
ボラツク型エポキシ樹脂とエポキシ当量が500〜
1000であるビスフエノール型エポキシ樹脂とを2
種あるいは3種以上併用し、その平均エポキシ当
量が270〜400であつて硬化剤にノボラツク型フエ
ノール樹脂を用い、かつ充填材としてガラス繊維
及び結晶水を有する無機化合物を必須成分とし、
結晶水を有する無機化合物が樹脂組成物中に少な
くとも3重量%以上含まれることを特徴とするエ
ポキシ樹脂組成物。
1 Cresol novolac type epoxy resin with an epoxy equivalent of 200 to 250 and an epoxy equivalent of 500 to 250
1000 bisphenol type epoxy resin and 2
seeds or a combination of three or more kinds, the average epoxy equivalent of which is 270 to 400, a novolac type phenolic resin is used as a curing agent, and an inorganic compound having glass fiber and crystal water as a filler is an essential component,
An epoxy resin composition characterized in that the resin composition contains at least 3% by weight of an inorganic compound having water of crystallization.
JP15140285A 1985-07-11 1985-07-11 Epoxy resin composition Granted JPS6213432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15140285A JPS6213432A (en) 1985-07-11 1985-07-11 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15140285A JPS6213432A (en) 1985-07-11 1985-07-11 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS6213432A JPS6213432A (en) 1987-01-22
JPH0513165B2 true JPH0513165B2 (en) 1993-02-19

Family

ID=15517805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15140285A Granted JPS6213432A (en) 1985-07-11 1985-07-11 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6213432A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245208B1 (en) * 1986-05-07 1990-04-18 Ciba-Geigy Ag Glass fibre-reinforced epoxy resin moulding composition and its use
KR100660082B1 (en) * 2005-05-12 2006-12-20 권성웅 Improved Phenolic Foam Using Novolak Type Phenolic Resin and its Method and the Composition
JPWO2011043058A1 (en) * 2009-10-09 2013-03-04 住友ベークライト株式会社 Semiconductor device
CN104987656A (en) * 2015-07-01 2015-10-21 安徽丹凤电子材料股份有限公司 Formula of glass fiber composite

Also Published As

Publication number Publication date
JPS6213432A (en) 1987-01-22

Similar Documents

Publication Publication Date Title
KR930008739B1 (en) Epoxy resin composition and semiconductor sealing material comprising same
JPH0513165B2 (en)
US4992488A (en) Glass fibre-reinforced epoxide resin moulding composition and its use
CA2026994A1 (en) Imidazole compound-containing hardening agent composition, method of preparing the same and thermosetting epoxy resin composition
US5969060A (en) Epoxy resin composition and method for producing the same
KR0180034B1 (en) Encapsulating semiconductors
JPS6222825A (en) Sealing resin composition
JPH02175749A (en) Sealing resin composition
JPH11323097A (en) Epoxy resin composition and sealing agent using the same
KR0158716B1 (en) Epoxy resin composition for photo-semiconductor
KR100529258B1 (en) Epoxy Molding Compound for Excapsulation of Semiconductor
JPH039920A (en) Low-viscosity epoxy resin composition
JPS61266455A (en) Phenolic resin molding material for commutator
JPS5975923A (en) Epoxy resin composition for semiconductor sealing
JPH05345328A (en) Preparation of ferrule for optical fiber connector
JPS6225118A (en) Sealing resin composition
JPS6181421A (en) Epoxy resin composition
JPS6143621A (en) Sealing resin composition
JPH01178516A (en) Cured epoxy resin
JPS63142024A (en) Resin composition for sealing use
JPH05301942A (en) Epoxy resin composition and its cured product
JPS6092318A (en) Epoxy resin composition
JPS6040152A (en) Amino resin molding material
JPH0222765B2 (en)
JPS59108332A (en) Sealing method of electronic parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees