JPH05131271A - Contactless type instrument for measuring feed speed of welding wire - Google Patents

Contactless type instrument for measuring feed speed of welding wire

Info

Publication number
JPH05131271A
JPH05131271A JP29285091A JP29285091A JPH05131271A JP H05131271 A JPH05131271 A JP H05131271A JP 29285091 A JP29285091 A JP 29285091A JP 29285091 A JP29285091 A JP 29285091A JP H05131271 A JPH05131271 A JP H05131271A
Authority
JP
Japan
Prior art keywords
welding wire
speed
consumable electrode
welding
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29285091A
Other languages
Japanese (ja)
Inventor
Mitsuaki Otoguro
黒 盈 昭 乙
Harumichi Ichimura
村 治 通 市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29285091A priority Critical patent/JPH05131271A/en
Publication of JPH05131271A publication Critical patent/JPH05131271A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To exactly measure the moving speed of a consumable electrode for welding and a welding wire stably with lapse of time without contact. CONSTITUTION:Magnets 6a, 6b are disposed to face each other in the form of holding the welding wire 7 in its cross sectional direction. Magneto-resistance elements 1a, 1b which change the electric resistance values according to a change in magnetism are installed between these magnets 6a, 6b and the welding wire 7. The electric resistance of the magneto-resistance elements 1a, 1b is converted to an electric signal by a measuring circuit 2 and this electric signal is converted by a conversion circuit 3 to a speed signal which is displayed with a display circuit 4. A constant correcting circuit 5 applies the correction signal corresponding to the kind of the welding wire 7 and ambient temp. to the circuits 2, 3 which in turn correct the conversion constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、消耗電極あるいは溶接
用ワイヤの送給速度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feed rate measuring device for a consumable electrode or a welding wire.

【0002】[0002]

【従来の技術】一般的に自動アーク溶接においては、消
耗電極を連続的に送給しつつ、該送給された消耗電極先
端に於いて溶接電源から供給された電圧によってアーク
を点弧し溶接を実施する。ここで溶接電源の出力特性が
定電圧特性の場合、溶接電流は定速度送給されている消
耗電極とアークによって溶融される消耗電極溶融量とが
ある一定のアーク長を保つように、送給速度に比例した
電流が流れる。したがって、消耗電極の送給速度は溶接
条件に直接関与し溶接品質を決定する上で重要な要因と
なることは改めて言うまでもなく公知である。またTI
G溶接あるいはプラズマ溶接等のような非消耗電極溶接
に於いては、溶加材として溶接用ワイヤをアーク中に連
続的あるいは間欠的に送給し溶着金属を形成しつつ溶接
が実施される。
2. Description of the Related Art Generally, in automatic arc welding, a consumable electrode is continuously fed, and an arc is ignited by a voltage supplied from a welding power source at the fed consumable electrode tip for welding. Carry out. Here, when the output characteristic of the welding power source is a constant voltage characteristic, the welding current is fed so that a constant arc length is maintained with the consumable electrode being fed at a constant speed and the consumable electrode melting amount melted by the arc. An electric current proportional to the speed flows. Therefore, it is well known that the feed rate of the consumable electrode is directly related to the welding conditions and is an important factor in determining the welding quality. Also TI
In non-consumable electrode welding such as G welding or plasma welding, welding is performed while forming a weld metal by continuously or intermittently supplying a welding wire as a filler material into an arc.

【0003】従って、溶接ワイヤの送給量は溶接継ぎ手
を形成する上で重要な要因と成る事は言うまでもなく、
該消耗電極あるいは溶接ワイヤの送給量の過不足は、ア
ンダーカット,オーバーラップ等の溶接欠陥の発生原因
となるので、適正な送給量を保つことは健全な溶接継ぎ
手を形成する上で重要な要因である。消耗電極あるいは
溶接ワイヤは、一般的に言って、2個ないしは複数個の
加圧ローラで消耗電極あるいは溶接用ワイヤを挟み、そ
の内のいずれかのロ−ラを電動機で回転駆動することに
よって定速度送給されているのが通常である。この定速
度送給のために消耗電極あるいは溶接用ワイヤの移動速
度を測定する必要がある。
Therefore, it goes without saying that the feed amount of the welding wire is an important factor in forming the welding joint.
Since the excess or deficiency of the supply amount of the consumable electrode or the welding wire causes the occurrence of welding defects such as undercut and overlap, it is important to maintain an appropriate supply amount in order to form a sound welding joint. It is a factor. Generally, the consumable electrode or the welding wire is fixed by sandwiching the consumable electrode or the welding wire with two or a plurality of pressure rollers, and rotating one of the rollers by an electric motor. It is usually sent by speed. For this constant speed feeding, it is necessary to measure the moving speed of the consumable electrode or the welding wire.

【0004】消耗電極あるいは溶接用ワイヤの移動速度
を測定する方法としては従来、送給中の消耗電極あるい
は溶接用ワイヤに回転自在のローラを接触させ該ローラ
の回転数から消耗電極の送給速度を換算する方法、ある
いは、送給モータの印加電圧または電機子電圧を測定
し、これをモータの回転数に換算し更に消耗電極あるい
は溶接用ワイヤを送給するローラの回転数に換算して消
耗電極あるいは溶接用ワイヤの送給速度を算出する方法
が、既に知られている。
As a method of measuring the moving speed of the consumable electrode or the welding wire, a consumable electrode or a welding wire being fed is contacted with a rotatable roller, and the feeding speed of the consumable electrode is determined from the number of revolutions of the roller. Or the applied voltage or armature voltage of the feed motor is measured, converted to the motor rotation speed, and further converted to the rotation speed of the roller that feeds the consumable electrode or welding wire. A method for calculating the feed rate of an electrode or a welding wire is already known.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこれら従
来の方法では、ローラの送給方向に対する接触角度のず
れあるいは接触圧力の減少によるスリップで、実際の移
動速度よりも小さい速度を検出し、マイナスの測定誤差
を生ずる。また、接触式であるから速度測定用のローラ
の経時的な摩耗,変形等によって実際の移動速度よりも
大きい速度を検出し、プラスの測定誤差を生じる。ある
いは、前述の、送給モータ印加電圧または電機子電圧に
基づく移動速度の算出では、特に溶接ワイヤ径が細い場
合、該ワイヤ自身の曲率半径が小となるために加圧ロー
ラとの接触面積が少なくスリップしやすく、かといって
該ローラ加圧圧力を必要以上に増大すると消耗電極ある
いは溶接用ワイヤは送給途中で座屈してしまう恐れがあ
る。また送給速度が速い場合などには、加圧送給ローラ
でのスリップを生じやすく実際の移動速度よりも高い速
度を検出し、プラスの測定誤差を生じる事となる。この
ように、これら従来法による接触式溶接用ワイヤの送給
速度測定方法には、送給速度を正確に測定できないとい
う問題がある。
However, in these conventional methods, a speed smaller than the actual moving speed is detected by the slip due to the deviation of the contact angle of the roller with respect to the feeding direction or the decrease of the contact pressure, and the negative measurement is performed. It causes an error. Further, since it is a contact type, a speed higher than the actual moving speed is detected due to the wear and deformation of the speed measuring roller over time, which causes a positive measurement error. Alternatively, in the above-described calculation of the moving speed based on the feed motor applied voltage or the armature voltage, particularly when the welding wire diameter is small, the radius of curvature of the wire itself is small, and thus the contact area with the pressure roller is small. If the roller pressure is increased more than necessary, the consumable electrode or the welding wire may buckle during feeding. When the feeding speed is high, slipping is likely to occur at the pressure feeding roller, and a speed higher than the actual moving speed is detected, which causes a positive measurement error. As described above, these conventional methods for measuring the feed rate of the contact welding wire have a problem that the feed rate cannot be accurately measured.

【0006】またレーザ光線を用い、被測定物で反射さ
せ該反射光のドップラ効果によって生じる時間差を測定
し速度を求める速度測定方法も既に知られているが、該
方法はレーザ光を発振するための装置が必要で、装置が
大掛りかつ高価になること、また溶接ワイヤに用いる場
合は、円形面の最突出部に向けてすなわちワイヤ中心軸
に向けて照射しなければならないが、溶接用ワイヤの中
心を通る直線上に常に照射光軸を維持することが極めて
難しいという問題もある。
A speed measuring method for obtaining a speed by using a laser beam to measure the time difference caused by the Doppler effect of the reflected light reflected by the object to be measured is already known, but this method oscillates the laser light. However, the welding wire must be radiated toward the most prominent part of the circular surface, that is, toward the center axis of the wire. There is also a problem that it is extremely difficult to always maintain the irradiation optical axis on the straight line that passes through the center of.

【0007】本発明は、溶接時の入熱管理及び溶着金属
量の正確な管理を行い溶接品質を簡便かつ安価に向上さ
せるため、溶接用消耗電極及び溶接用ワイヤの移動速度
を非接触で正確に測定することを目的とする。
The present invention controls the heat input during welding and the accurate control of the amount of deposited metal to improve the welding quality simply and inexpensively. Therefore, the moving speed of the consumable electrode for welding and the welding wire can be accurately measured without contact. The purpose is to measure.

【0008】[0008]

【課題を解決するための手段】本発明は、消耗電極ある
いは溶接用ワイヤの移動速度を渦電流を用いて非接触で
測定する装置において、消耗電極あるいは溶接ワイヤの
横断面方向にそれを狭む形で磁石を対向配置し、少くと
も一方の磁石と消耗電極あるいは溶接ワイヤの間に磁気
抵抗素子を設置して、該磁気抵抗素子の電気抵抗を電気
信号レベルに変換する測定回路,該電気信号レベルを移
動速度に変換する変換回路,該移動速度を表示する表示
回路、及び、前記電気抵抗から移動速度までの変換定数
を補正する補正回路を具備する事を特徴とする。
DISCLOSURE OF THE INVENTION The present invention is an apparatus for measuring the moving speed of a consumable electrode or a welding wire in a non-contact manner using an eddy current, and narrowing the consumable electrode or the welding wire in the cross-sectional direction. Measuring circuit for converting the electric resistance of the magnetoresistive element into an electric signal level by disposing the magnetoresistive element between at least one of the magnets and the consumable electrode or the welding wire in such a manner that the magnets face each other. It is characterized by comprising a conversion circuit for converting a level into a moving speed, a display circuit for displaying the moving speed, and a correction circuit for correcting a conversion constant from the electric resistance to the moving speed.

【0009】[0009]

【作用】消耗電極あるいは溶接ワイヤの横断面方向にそ
れを狭む形で磁石を対向配置しているので、消耗電極あ
るいは溶接ワイヤはそれらの磁石が発生する磁束と直交
する方向に移動する。この移動により消耗電極あるいは
溶接ワイヤに、その移動速度に比例する渦電流が発生し
この渦電流が磁束を発生する。磁気抵抗素子には磁石が
発生する磁束と渦電流が発生する磁束の合成磁束が加わ
りこの合成磁束の強度が消耗電極あるいは溶接ワイヤの
移動速度に対応する。ところで、磁気抵抗素子の抵抗値
は例えば図3に示すように磁束密度に対応するので、磁
気抵抗素子の抵抗値が、消耗電極あるいは溶接ワイヤの
移動速度に対応する。
Since the magnets are arranged so as to face each other in the transverse direction of the consumable electrode or the welding wire so as to narrow it, the consumable electrode or the welding wire moves in the direction orthogonal to the magnetic flux generated by those magnets. Due to this movement, an eddy current is generated in the consumable electrode or the welding wire in proportion to its moving speed, and this eddy current generates a magnetic flux. A combined magnetic flux of the magnetic flux generated by the magnet and the magnetic flux generated by the eddy current is added to the magnetoresistive element, and the intensity of the combined magnetic flux corresponds to the moving speed of the consumable electrode or the welding wire. By the way, since the resistance value of the magnetoresistive element corresponds to the magnetic flux density as shown in FIG. 3, for example, the resistance value of the magnetoresistive element corresponds to the moving speed of the consumable electrode or the welding wire.

【0010】測定回路が磁気抵抗素子の電気抵抗を電気
信号レベルに変換し、変換回路が該電気信号レベルを移
動速度に変換し、表示回路がこの移動速度を表示する。
消耗電極あるいは溶接ワイヤのサイズ,材質,温度等に
より、消耗電極あるいは溶接ワイヤの移動速度と、測定
回路が発生する電気信号レベルの相関が異なるが、補正
回路が各相関に対応する変換定数を定めるので、消耗電
極あるいは溶接ワイヤのサイズ,材質,温度等の選択あ
るいは変化がある用途にも適合する。
The measuring circuit converts the electric resistance of the magnetoresistive element into an electric signal level, the converting circuit converts the electric signal level into a moving speed, and the display circuit displays the moving speed.
Depending on the size, material, temperature, etc. of the consumable electrode or welding wire, the correlation between the moving speed of the consumable electrode or welding wire and the electric signal level generated by the measurement circuit differs, but the correction circuit determines the conversion constant corresponding to each correlation. Therefore, it is suitable for applications in which the size, material, temperature, etc. of the consumable electrode or welding wire are selected or changed.

【0011】このように消耗電極あるいは溶接ワイヤと
は非接触でその移動速度を検出するので、スリップなど
による測定誤差を生じない。また機械的な摩耗や変形に
よる経時的な誤差の増大がなく、消耗電極あるいは溶接
ワイヤの移動速度が、正確にかつ安定して得られる。本
発明の他の目的および特徴は、図面を参照した以下の実
施例の説明より明らかになろう。
As described above, since the moving speed of the consumable electrode or the welding wire is detected without making contact with the consumable electrode or the welding wire, a measurement error due to a slip or the like does not occur. In addition, the moving speed of the consumable electrode or the welding wire can be accurately and stably obtained without increasing the error with time due to mechanical wear or deformation. Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0012】[0012]

【実施例】図1の(a)に本発明の一実施例を示し、図
1の(b)に、(a)に示す速度検出センサ周りの拡大
斜視図を示す。図1(a,b)に示す非接触式溶接ワイ
ヤ送給速度測定装置は、磁気抵抗素子1a,1c,1
b,1d、磁気抵抗素子1a〜1dの電気抵抗を測定す
る測定回路2、速度信号変換回路3、速度表示回路4、
定数補正回路5、および、励磁用磁石6a,6b、によ
り構成される。励磁用磁石6a,6bは、消耗電極7
(又は溶接ワイヤ、以下同様)の移動中心線を挟んでそ
れに直交する方向に相対向しており、磁気抵抗素子1
a,1cは、消耗電極7の移動中心線と磁石6aの間
に、また磁気抵抗素子1b,1dは、消耗電極7の移動
中心線と磁石6bの間に、配置されている。
1A shows an embodiment of the present invention, and FIG. 1B shows an enlarged perspective view around the speed detection sensor shown in FIG. The non-contact welding wire feeding speed measuring device shown in FIGS. 1 (a, b) is composed of magnetoresistive elements 1a, 1c, 1
b, 1d, a measurement circuit 2 for measuring the electric resistance of the magnetoresistive elements 1a to 1d, a speed signal conversion circuit 3, a speed display circuit 4,
It is composed of a constant correction circuit 5 and exciting magnets 6a and 6b. The magnets 6a and 6b for excitation are the consumable electrodes 7
(Or welding wire, the same applies to the following), the magnetoresistive element 1 is opposed to each other in a direction orthogonal to the moving centerline.
a and 1c are arranged between the moving center line of the consumable electrode 7 and the magnet 6a, and the magnetoresistive elements 1b and 1d are arranged between the moving center line of the consumable electrode 7 and the magnet 6b.

【0013】磁気抵抗素子1a〜1dは、以下に述べる
原理によって消耗電極7の移動速度に対応する電気抵抗
を示す。即ち既に知られているところであるが、導体
(消耗電極7)が磁界を横切る相対運動によって該導体
に、該導体の移動方向と磁界の方向に直交する方向に流
れる誘導電流即ち渦電流i(図1のb)が生じる。この
渦電流iの大きさは、導体がV(m/s)の速度あるい
は周波数fで磁束密度B(Wb/m2)の磁界を横切る
場合、導体に次の起電圧eが発生することによる。 e=α・B・V または e=β・B・f(α,βは比
例定数)。
The magnetoresistive elements 1a to 1d exhibit an electric resistance corresponding to the moving speed of the consumable electrode 7 according to the principle described below. That is, as is already known, an induced current, that is, an eddy current i (FIG. 1) that flows through the conductor (consumable electrode 7) in a direction orthogonal to the moving direction of the conductor and the magnetic field due to the relative movement across the magnetic field. 1 b) occurs. The magnitude of this eddy current i depends on the fact that the following electromotive force e is generated in the conductor when the conductor traverses the magnetic field of the magnetic flux density B (Wb / m 2 ) at the velocity of V (m / s) or frequency f. .. e = α · B · V or e = β · B · f (α and β are proportional constants).

【0014】導体の電気抵抗をrとすれば、渦電流i
は、 i=α・B・V/r または i=β・B・f/r で表わす事ができる。すなわち渦電流iは速度Vに比例
する。
If the electric resistance of the conductor is r, the eddy current i
Can be expressed as i = α · B · V / r or i = β · B · f / r. That is, the eddy current i is proportional to the speed V.

【0015】この、速度Vに比例する渦電流iにより、
消耗電極7の中心線と直交する方向の磁束が発生しその
方向は、消耗電極7の移動方向(図1のb)の上流側で
は磁石6a,6bが発生する磁束とは逆方向であり下流
側では同方向である。磁気抵抗素子1a〜1dには、磁
石6a,6bが発生する磁束と渦電流iが発生する磁束
の合成磁束による磁界(合成磁界)が加わる。この合成
磁界の強度は、渦電流iに対応する。すなわち速度Vに
対応する。磁気抵抗素子1a〜1dの電気抵抗は、図3
に示すがごとくそれらに加わる磁束密度に対応する。つ
まり、磁気抵抗素子1a〜1dの電気抵抗は、速度Vに
対応し、前式の渦電流i=α・B・V/rの中のVが大
となれば渦電流iは大となり、これによって磁気抵抗素
子1a,1b周りの磁界は小さく、磁気抵抗素子1c,
1d周りの磁界は大きくなって、速度Vが大きくなれば
なるほど磁気抵抗素子1a,1bの電気抵抗は小さくな
り磁気抵抗素子1c,1dの電気抵抗は大きくなる。従
って磁気抵抗素子1a〜1dの少くとも1つの電気抵抗
を測定する事によって、消耗電極7と磁気抵抗素子1a
〜1d間における相対速度Vすなわち消耗電極7の移動
速度を非接触で測定する事が可能である。
Due to the eddy current i proportional to the speed V,
A magnetic flux is generated in a direction orthogonal to the center line of the consumable electrode 7, and the direction is opposite to the magnetic flux generated by the magnets 6a and 6b on the upstream side in the moving direction of the consumable electrode 7 (b in FIG. 1) and is on the downstream side. The direction is the same on the side. A magnetic field (composite magnetic field) based on a combined magnetic flux of the magnetic flux generated by the magnets 6a and 6b and the magnetic flux generated by the eddy current i is applied to the magnetoresistive elements 1a to 1d. The strength of this composite magnetic field corresponds to the eddy current i. That is, it corresponds to the speed V. The electric resistance of the magnetoresistive elements 1a to 1d is shown in FIG.
It corresponds to the magnetic flux density applied to them as shown in. That is, the electric resistances of the magnetoresistive elements 1a to 1d correspond to the speed V, and if V in the eddy current i = α · B · V / r in the above equation becomes large, the eddy current i becomes large. Therefore, the magnetic field around the magnetoresistive elements 1a and 1b is small,
As the magnetic field around 1d increases and the velocity V increases, the electric resistance of the magnetoresistive elements 1a and 1b decreases and the electric resistance of the magnetoresistive elements 1c and 1d increases. Therefore, by measuring the electrical resistance of at least one of the magnetoresistive elements 1a to 1d, the consumable electrode 7 and the magnetoresistive element 1a can be measured.
It is possible to measure the relative speed V between 1d, that is, the moving speed of the consumable electrode 7 without contact.

【0016】図2の(a)に、磁気抵抗素子1a〜1d
が接続された測定回路2の構成を示す。この例では、磁
気抵抗素子1a〜1dを各辺とするブリッジを構成して
いる。例えば磁気抵抗素子1a〜1dが、磁界が零のと
きの抵抗値が同一であってしかも同一磁界強度で同一抵
抗値を示すものであると仮定すると、消耗電極7の移動
速度が零のとき、ブリッジ各辺の抵抗値が同一であるの
で、a点の電位とb点の電位が同一であり、増幅器2a
の出力レベルは基底値(例えば零)である。消耗電極7
が図1の(b)に矢印で示す方向に速度Vで移動する
と、速度Vに対応する大きさの渦電流iが消耗電極7に
流れて、磁気抵抗素子1a,1bの抵抗値は速度Vに対
応する値に低下し、磁気抵抗素子1c,1dの抵抗値は
速度Vに対応する値に上昇する。これによりa点(図2
のa)の電位が低下しb点の電位が上昇し、増幅器2a
の出力レベルが速度Vに対応するレベルに上昇する。
In FIG. 2A, magnetoresistive elements 1a to 1d are provided.
The structure of the measurement circuit 2 to which is connected is shown. In this example, a bridge having the magnetoresistive elements 1a to 1d as each side is configured. For example, assuming that the magnetoresistive elements 1a to 1d have the same resistance value when the magnetic field is zero and also show the same resistance value at the same magnetic field strength, when the moving speed of the consumable electrode 7 is zero, Since the resistance values of the respective sides of the bridge are the same, the potential at the point a and the potential at the point b are the same, and the amplifier 2a
The output level of is a base value (for example, zero). Consumable electrode 7
1 moves at the speed V in the direction indicated by the arrow in FIG. 1B, an eddy current i having a magnitude corresponding to the speed V flows through the consumable electrode 7, and the resistance value of the magnetoresistive elements 1a and 1b becomes the speed V. The resistance value of the magnetoresistive elements 1c and 1d rises to a value corresponding to the speed V. This allows point a (Fig. 2
Of the amplifier 2a.
Output level rises to a level corresponding to the speed V.

【0017】消耗電極7の速度Vが増すと磁気抵抗素子
1a,1bの抵抗値が更に低下してa点の電位が更に低
下し、磁気抵抗素子1c,1dの抵抗値が更に上昇して
b点の電位が更に上昇し、増幅器2aの出力レベルが更
に高くなる。このように、消耗電極7の速度Vに正対応
する電圧を、増幅器2aが出力する。
When the speed V of the consumable electrode 7 increases, the resistance values of the magnetoresistive elements 1a and 1b further decrease, the potential at the point a further decreases, and the resistance values of the magnetoresistive elements 1c and 1d further increase and b The potential at the point further rises, and the output level of the amplifier 2a further rises. In this way, the amplifier 2a outputs a voltage that directly corresponds to the speed V of the consumable electrode 7.

【0018】磁気抵抗素子用抵抗値測定回路2の増幅器
2aは可変増幅率であり、定数補正回路5が、消耗電極
7の種類(材質:抵抗値)および周囲温度に対応して、
それらの違いによる誤差を補正するために、増幅率を指
示する信号を増幅器2aに与える。これにより増幅器2
aは、消耗電極7の種類(材質)および周囲温度の変化
による誤差を実質上含まない信号を出力する。
The amplifier 2a of the resistance measuring circuit 2 for the magnetoresistive element has a variable amplification factor, and the constant correction circuit 5 corresponds to the kind (material: resistance value) of the consumable electrode 7 and the ambient temperature.
In order to correct the error due to these differences, a signal indicating the amplification factor is given to the amplifier 2a. This allows the amplifier 2
The a outputs a signal that does not substantially include an error due to the type (material) of the consumable electrode 7 and the change in ambient temperature.

【0019】この信号は速度変換回路3に与えられる。
増幅器2aが出力する信号のレベルは磁気抵抗素子1
a,1bの抵抗値に実質上逆比例し磁気抵抗素子1c,
1dの抵抗値に実質上正比例するが、消耗電極7の移動
速度Vに対して非線形関数であるので、速度変換回路3
が、増幅器2aが出力する信号を、レベル(デジタル処
理の場合はデ−タ)が速度に比例する速度信号に変換す
る。速度変換回路3は例えば、増幅器2aの出力信号を
デジタル変換するA/Dコンバ−タ,そのデジタルデ−
タを速度デ−タに変換する、消耗電極7の種類(サイ
ズ:径)別の入出力変換関数をもったメモリ、および、
速度デ−タをアナログ信号に変換するD/Aコンバ−タ
を含む。定数補正回路5が、消耗電極7の種類(サイ
ズ:径)に対応して、その違いによる誤差を補正するた
めに、消耗電極7の種類(サイズ:径)を指定する信号
を速度変換回路3に与える。これにより速度変換回路3
は、消耗電極7の種類(サイズ:径)に対応する入出力
変換関数を選択して、増幅器2aが出力する信号を速度
信号に変換する。
This signal is given to the speed conversion circuit 3.
The level of the signal output by the amplifier 2a is the magnetoresistive element 1
The magnetic resistance element 1c, which is substantially inversely proportional to the resistance values of a and 1b,
Although it is substantially directly proportional to the resistance value of 1d, since it is a non-linear function with respect to the moving speed V of the consumable electrode 7, the speed conversion circuit 3
Converts the signal output from the amplifier 2a into a speed signal whose level (data in the case of digital processing) is proportional to the speed. The speed conversion circuit 3 is, for example, an A / D converter for converting the output signal of the amplifier 2a into a digital signal and its digital data.
A memory having an input / output conversion function for converting the data into speed data for each type (size: diameter) of the consumable electrode 7, and
It includes a D / A converter for converting speed data into an analog signal. The constant correction circuit 5 responds to the type (size: diameter) of the consumable electrode 7 and, in order to correct the error due to the difference, outputs a signal designating the type (size: diameter) of the consumable electrode 7 to the speed conversion circuit 3. Give to. As a result, the speed conversion circuit 3
Selects an input / output conversion function corresponding to the type (size: diameter) of the consumable electrode 7 and converts the signal output from the amplifier 2a into a speed signal.

【0020】速度変換回路3は速度信号を表示回路4に
出力し、表示回路4が該速度信号が示す速度Vを表示す
る。速度表示回路4では溶接用ワイヤの速度を例えば電
圧計等を用いたアナグロ表示、あるいは直接数値で表示
するデジタル表示するための回路で必要に応じて増幅
器,A−Dコンバータなどの回路により構成され速度が
表示される。
The speed conversion circuit 3 outputs a speed signal to the display circuit 4, and the display circuit 4 displays the speed V indicated by the speed signal. The speed display circuit 4 is a circuit for displaying the speed of the welding wire by, for example, an analog display using a voltmeter, or a digital display for directly displaying a numerical value, and is constituted by circuits such as an amplifier and an AD converter as necessary. The speed is displayed.

【0021】図1中、励磁用磁石6a,6bは、単に磁
石としたが例えば電磁石を用い、透磁率の良好なコアで
磁気抵抗素子6a,6bおよび消耗電極7を磁束が通過
するような閉磁気回路とした構成でもかまわない。
In FIG. 1, the magnets 6a and 6b for excitation are simply magnets, but for example, electromagnets are used, and the magnetic fluxes pass through the magnetoresistive elements 6a and 6b and the consumable electrode 7 with a core having a good magnetic permeability. A magnetic circuit may be used.

【0022】また、磁気抵抗素子を1a〜1dと4個用
いて、測定回路2は図2の(a)に示すように磁気抵抗
素子1a〜1dをブリッジ回路の各辺としたが、磁気抵
抗素子を2個(例えば1a,1b)のみとし、測定回路
2を例えば図2の(b)に示すように、それらをブリッ
ジ回路の2辺とし他の2辺を抵抗値が固定の抵抗器R
a,Rbとしてもよい。更には、磁気抵抗素子を1個
(例えば1c)のみとして、測定回路2を例えば図2の
(c)に示すように、1個の磁気抵抗素子1cの電圧を
検出する回路としてもよい。要は磁気抵抗素子が、消耗
電極7(あるいは溶接用ワイヤ)と交差する磁界との相
対移動で発生する渦電流による磁界を検出することがで
きれば、ブリッジ状に組み合わせなくとも磁気抵抗素子
1つでもかまわない。
Further, although four magnetoresistive elements 1a to 1d are used and the measuring circuit 2 uses the magnetoresistive elements 1a to 1d as the respective sides of the bridge circuit as shown in FIG. As shown in FIG. 2B, for example, only two elements (for example, 1a and 1b) are used as the measuring circuit 2 and two resistors are used as two sides of the bridge circuit, and the other two sides have a fixed resistance value R.
It may be a or Rb. Further, only one magnetoresistive element (for example, 1c) may be provided, and the measurement circuit 2 may be a circuit for detecting the voltage of one magnetoresistive element 1c, for example, as shown in (c) of FIG. In short, if the magnetoresistive element can detect the magnetic field due to the eddy current generated by the relative movement between the consumable electrode 7 (or the welding wire) and the magnetic field intersecting, even one magnetoresistive element need not be combined in a bridge shape. I don't care.

【0023】−実験例− 消耗電極式のガスシールド溶接装置に、図1(および図
2のb)に示す装置を装着し、溶接用ワイヤ(7対応
物)の移動速度を測定した。磁気抵抗素子1a,1bは
磁場の無い所に於いて100Ωを有する素子であり、図
2の(b)の抵抗器2a,2bは100Ωの既知抵抗を
用いた。図2の(b)に示すブリッジ回路には印加電圧
として、5Vの直流電圧を回路加え測定を実施した。溶
接ワイヤは線径1.2mmのJIS Z 3312 Y
GW12相当品を用いた。
-Experimental Example- The apparatus shown in FIG. 1 (and FIG. 2b) was attached to a consumable electrode type gas shield welding apparatus, and the moving speed of the welding wire (7 counterpart) was measured. The magnetoresistive elements 1a and 1b are elements having 100Ω in the absence of a magnetic field, and the resistors 2a and 2b in FIG. 2B used known resistors of 100Ω. A DC voltage of 5 V was applied to the bridge circuit shown in FIG. 2B as an applied voltage and measurement was performed. The welding wire is JIS Z 3312 Y with a wire diameter of 1.2 mm.
A GW12 equivalent product was used.

【0024】比較例として、手持ち式のロータリーエン
コーダを用いた溶接用ワイヤ送給速度測定器を該送給ワ
イヤに押し付ける方法で溶接用ワイヤの速度を測定し
た。その結果は、溶接用ワイヤ送給機出口で1.0m/
min,15.0m/min,及び30.0m/min
を示す速度であった。これらのワイヤ送給において、本
発明の装置(図1)によれば、溶接用ワイヤ送給速度が
1.0m/minの場合は同一値を示したが、15.0
m/min及び30.0m/minの場合にはそれぞれ
15.55m/min,31.08m/minと表示し
た。
As a comparative example, the speed of the welding wire was measured by a method of pressing a welding wire feed rate measuring device using a hand-held rotary encoder against the feed wire. The result was 1.0 m / at the exit of the welding wire feeder.
min, 15.0 m / min, and 30.0 m / min
Was a speed indicating. In these wire feeds, according to the device of the present invention (FIG. 1), the same value was shown when the welding wire feed speed was 1.0 m / min, but 15.0.
In the case of m / min and 30.0 m / min, it was displayed as 15.55 m / min and 31.08 m / min, respectively.

【0025】そこで本発明者等は、前記同様方法で測定
し溶接用ワイヤを15秒間送給し、送給された該溶接用
ワイヤを50mの巻き尺を用いて実測した。1.0m/
minの場合は実測長0.25mであり、15.0m/
minの場合には3.89mであり、30.0m/mi
nの場合には7.77mであった。従って1分間当たり
に換算すると、それぞれ1.0m/min,15.56
m/min,31.08m/minとなり送給速度が高
速になるに従って比較例の方が誤差が大きいことが分か
った。
Therefore, the inventors of the present invention measured the same method as above and fed the welding wire for 15 seconds, and measured the fed welding wire with a tape measure of 50 m. 1.0m /
In the case of min, the measured length is 0.25 m and 15.0 m /
In the case of min, it is 3.89 m and 30.0 m / mi
In the case of n, it was 7.77 m. Therefore, when converted per minute, 1.0 m / min and 15.56, respectively.
It was found that the error was larger in the comparative example as the feeding speed became higher, with m / min and 31.08 m / min.

【0026】次に、本発明装置(図1&図2のb)を用
い、その速度信号を、溶接装置のワイヤ送給制御装置に
フィ−ドバック信号として与えて定速度ワイヤ送給を行
なわせて溶接を実施した。消耗電極としてJIS Z
3312 YGW12に相当品の、線径1.6mmφ、
シールドガスとして炭酸ガスを用い、板厚4.5mm、
1開先、開先ギャップ2mm、溶接長1m下向き突き合
わせ溶接を溶接速度80cm/minで実施した。この
時の消耗電極送給速度は9.0m/minで、溶接電流
は280A、電圧は29Vで安定していた。溶接終了の
後、溶接継ぎ手表面には目視観察によって確認できる溶
接欠陥は認められず、また余盛高さも平均1.2mmで
安定していた。非破壊試験としてX線透過試験を実施し
たが、内部欠陥は溶接長全線にわたり認められず健全な
溶接継ぎ手であることが確認できた。
Next, using the device of the present invention (b in FIGS. 1 and 2), the speed signal is given as a feedback signal to the wire feeding control device of the welding device to perform constant speed wire feeding. Welding was performed. JIS Z as a consumable electrode
3312 YGW12 equivalent, wire diameter 1.6 mmφ,
Carbon dioxide gas is used as a shield gas, and the plate thickness is 4.5 mm,
One groove, groove gap 2 mm, welding length 1 m, downward butt welding was performed at a welding speed of 80 cm / min. At this time, the consumable electrode feed rate was 9.0 m / min, the welding current was 280 A, and the voltage was 29 V, which was stable. After the completion of welding, no welding defects that could be confirmed by visual observation were observed on the surface of the weld joint, and the surplus height was 1.2 mm on average and stable. An X-ray transmission test was carried out as a non-destructive test, and no internal defects were observed over the entire weld length line, confirming that the weld joint was sound.

【0027】上述のように比較例では溶接用ワイヤ送給
速度がおよそ15m/secの場合に0.56m/mi
nの誤差があり、該送給速度の誤差で溶接電流に換算す
ると前記実施例に記載の溶接用ワイヤで、およそ15A
電流値の違いが有ることが明らかとなった。従って溶接
入熱、あるいは溶着金属量を管理するうえで大きな違い
が有ることが解る。即ち従来例では真の溶接用ワイヤ送
給速度が速い分だけ溶接電流が大きく入熱は高くなる。
従って入熱制限を有する、特に高張力鋼等では、衝撃値
抵下等のような機械的性質が劣換してしまう恐れがあ
る。あるいは溶接用ワイヤの送給速度が速い分だけ溶着
金属量も多く余盛高さが高くなり、溶接品質を均一に保
つことが難しくなる。そこで本発明による溶接用ワイヤ
送給速度測定装置を用いて溶接を行えば健全な溶接継ぎ
手を簡便かつ安価に作成することができ溶接品質の向上
及び均一換を図ることができるものである。
As described above, in the comparative example, 0.56 m / mi when the welding wire feeding speed is about 15 m / sec.
There is an error of n, and when converted into a welding current by an error of the feeding speed, the welding wire described in the above embodiment has about 15 A.
It became clear that there was a difference in the current value. Therefore, it is understood that there is a big difference in managing the heat input of welding or the amount of deposited metal. That is, in the conventional example, the welding current is large and the heat input is high as the true welding wire feeding speed is high.
Therefore, there is a possibility that mechanical properties such as impact resistance may be deteriorated, especially in high-strength steel having heat input restriction. Alternatively, as the feeding speed of the welding wire is higher, the amount of deposited metal is larger and the surplus height is higher, which makes it difficult to keep the welding quality uniform. Therefore, if welding is performed using the welding wire feed rate measuring device according to the present invention, a sound welding joint can be produced easily and inexpensively, and the welding quality can be improved and evenly changed.

【0028】また本発明を応用し図1中速度変換回路3
からの信号を用い、ある一定の時間の平均値を求められ
る構成とすれば、例えば非消耗電極溶接を行う場合に用
いる添加ワイヤを送給方法の一つとして間欠送給のよう
な場合にでも時間当たりあるいは、溶接長さ当たりの溶
接ワイヤ平均送給量を容易に知ることができる。
Further, the present invention is applied to the speed conversion circuit 3 in FIG.
If the configuration is such that the average value of a certain period of time can be obtained using the signal from, even in the case of intermittent feeding as one of the feeding methods of the additive wire used when performing non-consumable electrode welding, for example. It is possible to easily know the average feed amount of the welding wire per time or per welding length.

【0029】このように本発明は極めて工業的価値の高
い溶接用ワイヤ送給速度測定装置を提供するものであ
る。
As described above, the present invention provides a wire feeding speed measuring device for welding which has an extremely high industrial value.

【0030】[0030]

【効果】以上のように本発明は、消耗電極あるいは溶接
ワイヤとは非接触でその移動速度を検出するので、スリ
ップなどによる測定誤差を生じない。また機械的な摩耗
や変形による経時的な誤差の増大がなく、消耗電極ある
いは溶接ワイヤの移動速度が、正確にかつ安定して得ら
れる。
As described above, according to the present invention, since the moving speed of the consumable electrode or the welding wire is detected without making contact with the consumable electrode or the welding wire, a measurement error due to slip or the like does not occur. In addition, the moving speed of the consumable electrode or the welding wire can be accurately and stably obtained without increasing the error with time due to mechanical wear or deformation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)は本発明の一実施例を示すブロック図
であり、(b)は(a)に示す速度検出センサ周りの拡
大斜視図である。
FIG. 1A is a block diagram showing an embodiment of the present invention, and FIG. 1B is an enlarged perspective view around a speed detection sensor shown in FIG.

【図2】 (a)は図1の(a)に示す測定回路2の構
成を示すブロック図、(b)は測定回路2のもう1つの
構成を示すブロック図、(c)は更にもう1つの構成を
示すブロック図である。
2A is a block diagram showing the configuration of the measurement circuit 2 shown in FIG. 1A, FIG. 2B is a block diagram showing another configuration of the measurement circuit 2, and FIG. It is a block diagram which shows one structure.

【図3】 図1に示す磁気抵抗素子の、磁束密度に対す
る抵抗値を示すグラフである。
FIG. 3 is a graph showing the resistance value of the magnetoresistive element shown in FIG. 1 with respect to the magnetic flux density.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d:磁気抵抗素子 2:磁気抵抗
素子用抵抗値測定回路 2a,2b:可変増幅率の増幅器 3:速度信号
変換回路 4:速度表示回路 5:定数補正
回路 6a,6b:磁石 7:消耗電極
あるいは溶接用ワイヤ Ra,Rb:固定抵抗値の抵抗器
1a, 1b, 1c, 1d: Magnetoresistive element 2: Resistance value measuring circuit for magnetoresistive element 2a, 2b: Amplifier of variable amplification factor 3: Speed signal conversion circuit 4: Speed display circuit 5: Constant correction circuit 6a, 6b: Magnet 7: Consumable electrode or welding wire Ra, Rb: Resistor with fixed resistance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】消耗電極あるいは溶接用ワイヤの移動速度
を渦電流を用いて非接触で測定する装置において、消耗
電極あるいは溶接ワイヤの横断面方向にそれを狭む形で
磁石を対向配置し、少くとも一方の磁石と消耗電極ある
いは溶接ワイヤの間に磁気抵抗素子を設置して、該磁気
抵抗素子の電気抵抗を電気信号レベルに変換する測定回
路,該電気信号レベルを移動速度に変換する変換回路,
該移動速度を表示する表示回路、及び、前記電気抵抗か
ら移動速度までの変換定数を補正する補正回路を具備す
る事を特徴とする非接触式接ワイヤ送給速度測定装置。
1. A device for measuring the moving speed of a consumable electrode or a welding wire in a non-contact manner by using an eddy current, wherein magnets are arranged so as to face each other in a cross-sectional direction of the consumable electrode or the welding wire. A measuring circuit that installs a magnetoresistive element between at least one magnet and a consumable electrode or welding wire to convert the electric resistance of the magnetoresistive element into an electric signal level, and a conversion circuit that converts the electric signal level into a moving speed. circuit,
A non-contact type wire feeding speed measuring device comprising a display circuit for displaying the moving speed and a correction circuit for correcting a conversion constant from the electric resistance to the moving speed.
JP29285091A 1991-11-08 1991-11-08 Contactless type instrument for measuring feed speed of welding wire Withdrawn JPH05131271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29285091A JPH05131271A (en) 1991-11-08 1991-11-08 Contactless type instrument for measuring feed speed of welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29285091A JPH05131271A (en) 1991-11-08 1991-11-08 Contactless type instrument for measuring feed speed of welding wire

Publications (1)

Publication Number Publication Date
JPH05131271A true JPH05131271A (en) 1993-05-28

Family

ID=17787179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29285091A Withdrawn JPH05131271A (en) 1991-11-08 1991-11-08 Contactless type instrument for measuring feed speed of welding wire

Country Status (1)

Country Link
JP (1) JPH05131271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095275A2 (en) * 2005-03-11 2006-09-14 Illinois Tool Works Inc. Wire feeder, controller and welding system for determining wire feed speed using a contact less sensor
CN114047351A (en) * 2021-10-26 2022-02-15 南昌大学 Wire feeding speed detection method based on distortion signal adaptive algorithm

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095275A2 (en) * 2005-03-11 2006-09-14 Illinois Tool Works Inc. Wire feeder, controller and welding system for determining wire feed speed using a contact less sensor
WO2006095275A3 (en) * 2005-03-11 2007-03-15 Illinois Tool Works Wire feeder, controller and welding system for determining wire feed speed using a contact less sensor
US7335854B2 (en) 2005-03-11 2008-02-26 Illinois Tool Works Inc. Method and system of determining wire feed speed
CN114047351A (en) * 2021-10-26 2022-02-15 南昌大学 Wire feeding speed detection method based on distortion signal adaptive algorithm
CN114047351B (en) * 2021-10-26 2022-08-09 南昌大学 Wire feeding speed detection method based on distortion signal adaptive algorithm

Similar Documents

Publication Publication Date Title
WO2002045899A1 (en) Control method of arc welding and arc welder
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
JP2010164306A (en) Method and device for hardened depth
JP2009047664A (en) Method and apparatus for nondestructive measurement
JPH05131271A (en) Contactless type instrument for measuring feed speed of welding wire
JP2003232776A (en) Eddy current flaw detecting apparatus and method
JPH0356848A (en) Method and device for surface cracking measurement
US3899651A (en) Method and apparatus for control of weld temperature in a high frequency electric resistance welded pipe mill
JP6959585B2 (en) Non-magnetic metal wall thickness measuring method and wall thickness measuring device
US20200361023A1 (en) Welding management system
JP2523379B2 (en) Metal foreign layer detector
JP6189395B2 (en) Film thickness measuring device
JP2607772B2 (en) Flux filling rate detection method for flux cored welding wire
JP3549059B2 (en) Metal tube longitudinal scratch detector
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JPH0470561A (en) Method and apparatus for detecting heterogeneous layer in metal
JPH0481278A (en) Welding equipment
JPH06341806A (en) Method and device for measuring plating thickness
US7049810B1 (en) Apparatus to measure fill
US4876432A (en) Method for controlling a penetration bead
JP4212950B2 (en) Particulate filling rate detector for powder filling tube
JPH071167A (en) Seam profile control method for combined heat source welding
KR910004281B1 (en) Resistance melting current measuring system using convert of ring
JPS6228604A (en) Noncontact type profile measuring instrument
JPH0732146A (en) Method and device for detecting arc blow in arc welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204