JPH05130728A - Protective device for power converting apparatus - Google Patents

Protective device for power converting apparatus

Info

Publication number
JPH05130728A
JPH05130728A JP31352191A JP31352191A JPH05130728A JP H05130728 A JPH05130728 A JP H05130728A JP 31352191 A JP31352191 A JP 31352191A JP 31352191 A JP31352191 A JP 31352191A JP H05130728 A JPH05130728 A JP H05130728A
Authority
JP
Japan
Prior art keywords
setter
resistor
snubber
thetarm
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31352191A
Other languages
Japanese (ja)
Inventor
Keisuke Sekiya
恵輔 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31352191A priority Critical patent/JPH05130728A/en
Publication of JPH05130728A publication Critical patent/JPH05130728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To economically execute protecting detections and improve the operational reliability of a thyristor valve by grasping the temperatures of the snubber resistor comprehensively on the basis of the information easily obtainable on the earth potential side. CONSTITUTION:The operation control angle a of a thyristor valve is inputted to operate on 'K1 K' sin<2>alpha' by the use of a sin conversion circuit 11, square-law circuit 12, multiplier 13 and K1XK' constant setter 23. On the other hand, an operation on 'K2 {thetaRM-(theta1+kId)}' is executed by the use of a K gain setter 21, multiplier 22, K, constant setter 23, and thetaRM constant setter 24 after obtaining the valve entrance temperature thetaRM' and direct current Id. The difference between this output and that of the multiplier 13 is inputted into an integrator 31. This integrator is functional only when the entrance is 'positive'. Then, the output of the thetaRM setter is added to the output of this integrator. The result is inputted into a comparator 41 to compare it with the detection level Q3 which is defined in advance by a setter 42. Thus, it becomes unnecessary to directly measure the temperatures of many numbers of snubber circuit resistors on the high potential side of the thyristor valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多数のサイリスタと電力
変換用半導体素子とから構成される電力用変換装置の保
護装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection device for a power conversion device, which is composed of a large number of thyristors and power conversion semiconductor elements.

【0002】[0002]

【従来の技術】電力用変換器のスナバー回路は高電位部
にあって、変換用半導体素子(以下、サイリスタで代表
して説明する)毎に必要である。又、数が多いことから
監視が行ないにくく、スナバー回路故障はサイリスタ素
子故障に結びつくにも拘らず、サイリスタ素子冗長化等
の設計余裕があることなどの理由から、従来はスナバー
回路用抵抗器を対象とした保護検出は行なわれていなか
った。
2. Description of the Related Art A snubber circuit of a power converter is located in a high potential portion and is required for each semiconductor element for conversion (hereinafter referred to as a thyristor). In addition, it is difficult to monitor because of the large number of snubber circuits.Although snubber circuit failure leads to thyristor element failure, there is a design margin such as thyristor element redundancy. No targeted protection detections were performed.

【0003】[0003]

【発明が解決しようとする課題】近年、電力用変換器の
サイリスタ素子故障検出技術の進歩により、多数個使用
されているサイリスタの個別素子故障検出が可能となっ
た。又、保護用避雷器の性能向上から素子直列数の低減
が図られ、冗長素子を少なくして、より経済性の向上を
図る傾向にある。このような状況では素子故障を誘発す
る可能性のあるスナバー回路保護、特にスナバー抵抗の
オーバーストレス保護の重要性が増してきているといえ
る。本発明は上記事情に鑑みてなされたものであり、電
力用変換器のスナバー回路抵抗がオーバーストレス状態
になったことを検出し、信頼性のある電力用変換装置の
保護装置を提供することを目的としている。
In recent years, due to the advancement of the thyristor element failure detection technology for power converters, it has become possible to detect individual element failures of many thyristors used. In addition, the number of elements in series is reduced due to the improved performance of the protective lightning arrestor, and there is a tendency to reduce the number of redundant elements to improve the economic efficiency. In such a situation, it can be said that the importance of the snubber circuit protection, which may cause a device failure, in particular, the overstress protection of the snubber resistance is increasing. The present invention has been made in view of the above circumstances, and detects that the snubber circuit resistance of the power converter is in an overstress state, and provides a reliable power converter protection device. Has a purpose.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明では電力用変換装置のスナバー回路用抵抗器
の異常温度上昇を検出する保護装置において、前記スナ
バー回路用抵抗器の発熱量を変換器運転制御角の函数と
して演算する第1の手段と、前記抵抗器を冷却するため
の冷却媒体の比熱容量と抵抗器の冷却媒体の入口,出口
の温度差から抵抗器の冷却熱量を演算する第2の手段
と、前記第1の手段による発熱量と第2の手段による冷
却熱量との差から抵抗器の温度上昇を算出する第3の手
段と、前記第3の手段による温度上昇値が所定設定値よ
り大であるとき警報出力を発生する第4の手段とから構
成した。
In order to achieve the above object, according to the present invention, in a protection device for detecting an abnormal temperature rise of a snubber circuit resistor of a power conversion device, a heat generation amount of the snubber circuit resistor is provided. Is calculated as a function of the converter operation control angle, and the cooling heat quantity of the resistor is calculated from the specific heat capacity of the cooling medium for cooling the resistor and the temperature difference between the inlet and the outlet of the cooling medium of the resistor. Second means for calculating, third means for calculating the temperature rise of the resistor from the difference between the calorific value by the first means and the cooling heat quantity by the second means, and the temperature rise by the third means And a fourth means for generating an alarm output when the value is larger than a predetermined set value.

【作用】スナバー回路用抵抗器の温度上昇が所定値より
大となれば、第4の手段によって警報出力を発生するた
め、スナバー回路用抵抗器の異常温度上昇が検出でき
る。
When the temperature rise of the snubber circuit resistor becomes larger than the predetermined value, the alarm output is generated by the fourth means, so that the abnormal temperature rise of the snubber circuit resistor can be detected.

【0005】[0005]

【実施例】以下図面を参照して実施例を説明する。図2
は直流送電用交直変換装置であって6相整流ブリッジ1
群の主回路構成例であり、変換用変圧器1と6台のサイ
リスタ変換器(サイリスタバルブと言う)V1 〜V6
及び各サイリスタバルブを保護するバルブ避雷器Arr
接続されている。系統交流電圧E1 は変圧器1にて電圧
2 に変圧してブリッジに与えられ、サイリスタバルブ
1 〜V6 の動作で直流電圧Ed を出力する。サイリス
タバルブV1 〜V6 は全て同じ構成で夫々は通常、複数
のモジュールと呼ばれるユニットを直列に接続して構成
されている。
Embodiments will be described below with reference to the drawings. Figure 2
Is an AC / DC converter for DC power transmission, and is a 6-phase rectifier bridge 1
It is an example of the main circuit configuration of the group, which is a transformer for conversion 1 and six thyristor converters (referred to as thyristor valves) V 1 to V 6 ,
Also, a valve arrester A rr for protecting each thyristor valve is connected. The system AC voltage E 1 is transformed into a voltage E 2 by the transformer 1 and given to the bridge, and a DC voltage E d is output by the operation of the thyristor valves V 1 to V 6 . All of the thyristor valves V 1 to V 6 have the same configuration, and each unit is usually configured by connecting a plurality of units called modules in series.

【0006】図3は4モジュール構成の水冷式サイリス
タバルブの構成を示す。M1 〜M4 がモジュールで各モ
ジュールに対して並列に冷却用純水が絶縁パイプ2を通
して供給され、絶縁パイプ3により排水される。図4は
図3の詳細図であり、各モジュールは通常、電気回路の
“入”“出”側にアノードリアクトル4,5があり、そ
の間に図では1ケで示しているが通常4ケ〜8ケ程度の
サイリスタ6が直列に接続配置され、各サイリスタ6毎
にスナバー回路(図の7,8回路)が並列に接続配置さ
れている。モジュールの内でのスナバー回路の冷却の例
を図5に示す。図においてハッチングした部分は冷却用
純水が通っている。サイリスタは冷却フィン9で挟ま
れ、絶縁パイプ2より供給された純水により冷される。
更にサイリスタ6を冷した後、冷却用純水はスナバー用
水冷抵抗8に送り、抵抗8を冷却した後絶縁パイプ3を
通して排水される。
FIG. 3 shows the structure of a water-cooled thyristor valve having a four-module structure. M 1 to M 4 are modules, and pure water for cooling is supplied in parallel to each module through the insulating pipe 2 and drained by the insulating pipe 3. FIG. 4 is a detailed view of FIG. 3, and each module usually has anode reactors 4 and 5 on the “in” and “out” sides of the electric circuit, and in the meantime, it is shown as one, but normally four About eight thyristors 6 are connected and arranged in series, and snubber circuits (7 and 8 circuits in the figure) are connected and arranged in parallel for each thyristor 6. An example of cooling the snubber circuit inside the module is shown in FIG. Pure water for cooling passes through the hatched portions in the figure. The thyristor is sandwiched by cooling fins 9 and cooled by pure water supplied from the insulating pipe 2.
After further cooling the thyristor 6, pure water for cooling is sent to the snubber water cooling resistor 8, and after cooling the resistor 8, it is drained through the insulating pipe 3.

【0007】以上の説明で判るようにスナバー回路は高
電位部のモジュール内にあってサイリスタの数と同じ数
あり、スナバー抵抗個々の温度を検出し、大地電位側に
出力することは経済的に得策でない。一方、スナバー抵
抗は所定の温度以下で使う必要があり、熱的オーバース
トレスは断線を引き起す原因となる。抵抗器の温度は抵
抗器を流れる電流、即ち、スナバーコンデンサの充放電
電流と冷却水温度の熱バランスに支配される。図6は図
5のスナバー抵抗部分を取り出したもので、この抵抗器
が熱的平衡状態にあるときは(1) 式が成立し、(1) 式を
変形すると(2) 式となる。又、スナバーコンデンサの充
放電電流は(3) 式となる。
As can be seen from the above description, there are as many snubber circuits as there are thyristors in the module of the high potential part, and it is economical to detect the temperature of each snubber resistor and output it to the ground potential side. Not a good idea. On the other hand, the snubber resistance needs to be used at a predetermined temperature or less, and thermal overstress causes a disconnection. The temperature of the resistor is governed by the current flowing through the resistor, that is, the thermal balance between the charging / discharging current of the snubber capacitor and the cooling water temperature. FIG. 6 shows the snubber resistance portion of FIG. 5. When this resistor is in a thermal equilibrium state, equation (1) holds and equation (1) is transformed into equation (2). The charging / discharging current of the snubber capacitor is given by Eq. (3).

【0008】 ここで i:スナバーコンデンサ充放電電流 R:スナバー抵抗器の抵抗値 k:定数 gw:冷却水の単位時間当り流量(比熱の系数を含む) θ1 :冷却水入口温度 θ3 :冷却水出口温度 QR :スナバー抵抗の比熱容量 θ2 :スナバー抵抗の平均温度 K1 =kR/QR 2 =gw/QR K:定数(転流時の過電圧倍数も考慮) E2 ;バルブ入力交流電圧 α:バルブ遅れ制御角[0008] Where i: snubber capacitor charging / discharging current R: snubber resistor resistance value k: constant gw: flow rate of cooling water per unit time (including coefficient of specific heat) θ 1 : cooling water inlet temperature θ 3 : cooling water outlet temperature Q R: snubber specific heat capacity of the resistor theta 2: average snubber resistance temperature K 1 = kR / Q R K 2 = gw / Q R K: constant (considering the overvoltage multiples during commutation) E 2; valve input AC voltage α: Valve delay control angle

【0009】(3) 式はサイリスタバルブがE2 なる交流
入力電圧時に、遅れ制御角αで転流したとき、転流振動
電圧を考慮した過電圧によりスナバーコンデンサ7,抵
抗8に流れる電流を示している。従って(2) 式は(3) 式
を考慮すると以下に示す(4)式となる。(4) 式はスナバ
ー抵抗の冷却水温度θ1 ,θ3 及びサイリスタバルブ入
力交流電圧や運転制御角から、抵抗器の温度が求まるこ
とになる。特に図1に示す変圧器1の2次電圧E2 が一
定保たれるとすると、K・E2 =K′と置いて以下に示
す(5) 式で表わせる。(5) 式において抵抗の入口水温θ
1 は一般には測定できないため、以下に示す(6) 式で代
用する。又、抵抗出口水温は設計上の諸運転パターンに
おける最高値に余裕を加えた値θRMを設定する。この考
え方から(5) 式は以下に示す(7) 式となる。又、サイリ
スタバルブの通常運転中は(7) 式が以下に示す(8) 式の
ように負となるが、これは保護判定上意味がない。
Equation (3) shows the current flowing through the snubber capacitor 7 and the resistor 8 due to overvoltage in consideration of commutation oscillation voltage when commutating at the delay control angle α when the thyristor valve has an AC input voltage of E 2. There is. Therefore, considering equation (3), equation (2) becomes equation (4) below. In equation (4), the temperature of the resistor can be determined from the cooling water temperatures θ 1 and θ 3 of the snubber resistance, the AC voltage input to the thyristor valve, and the operation control angle. In particular, assuming that the secondary voltage E 2 of the transformer 1 shown in FIG. 1 is kept constant, it can be expressed by the following equation (5) with K · E 2 = K ′. In equation (5), the inlet water temperature of resistance θ
Since 1 cannot be measured in general, the following equation (6) is used instead. The resistance outlet water temperature is set to a value θ RM, which is a maximum value in various design operation patterns plus a margin. From this idea, Eq. (5) becomes Eq. (7) shown below. Also, during normal operation of the thyristor valve, equation (7) becomes negative as shown in equation (8) below, but this is meaningless for protection judgment.

【0010】 ここで θ1 ′:バルブ入口水温 Id :直流電流 k:定数[0010] Where θ 1 ′: valve inlet water temperature I d : direct current k: constant

【0011】一方、バルブの運転制御角αが90°方向に
近ずくと(8)式は正となり、時間と共に抵抗器の温度θ
2 が上昇していく。バルブ入口水温θ1 ′が低くなれば
(7)式が正に転じる時点が遅れ、かつスナバー抵抗器温
度θ2 の上昇が鈍くなることが判る。従って、前述の温
度θ2 が設定上望ましくない温度θs に達したかどうか
比較することにより、スナバー抵抗器の保護検出として
利用できることが判る。
On the other hand, when the valve operation control angle α approaches 90 °, the equation (8) becomes positive and the temperature θ of the resistor changes with time.
2 goes up. If the valve inlet water temperature θ 1 ′ becomes low
It can be seen that the time when the equation (7) turns to positive is delayed and the increase in the snubber resistor temperature θ 2 becomes slow. Therefore, by comparing whether or not the above-mentioned temperature θ 2 has reached the temperature θ s which is undesirably set, it can be used as protection detection of the snubber resistor.

【0012】図1は(7) 式をアナログ表現でブロック展
開した本発明による電力用変換装置の保護装置の一実施
例の構成図である。又、これはディジタル演算処理で実
現することも容易である。図1では、サイリスタバルブ
の運転制御角αを入力しsin変換回路11,2乗回路12,
掛算器13及びK1 ×K′の定数設定器14により“K1
K′sin 2 α”を演算する。一方、バルブ入口水温
θ1 ′,直流電流Id を得てkゲイン設定器21,掛算器
22,K2 の定数設定器23,θRMの定数設定器24により
“K2 {θRM−(θ1 ′+kId )}”を演算し、前述
の掛算器13の演算出力との差をとって、積分器31の入力
とする。この積分器は既に(8) 式にて示した通り入口が
“正”の場合のみ機能する。そして、この積分出力にθ
RM設定出力を加算して比較器41に入力し、予め設定器42
で設定された検出レベルQs と比較される。
FIG. 1 is a block diagram of an embodiment of a protection device for a power conversion device according to the present invention, which is a block expansion of the expression (7) in an analog expression. This can also be easily realized by digital arithmetic processing. In FIG. 1, the operation control angle α of the thyristor valve is input and the sin conversion circuit 11, the squaring circuit 12,
The multiplier 13 and K 1 constant setter 14 × K '"K 1 ·
K'sin 2 α ”is calculated. On the other hand, the valve inlet water temperature θ 1 ′ and the DC current I d are obtained to obtain the k gain setter 21 and the multiplier.
22, K 2 constant setter 23 and θ RM constant setter 24 calculate “K 2RM − (θ 1 ′ + kId)}”, and the difference from the calculated output of the multiplier 13 is calculated. As the input of the integrator 31. This integrator works only when the inlet is “positive” as already shown in Eq. (8). Then, the integrated output
Add the RM setting output and input to the comparator 41.
It is compared with the detection level Q s set in.

【0013】[0013]

【発明の効果】以上説明したように、本発明によればサ
イリスタバルブの高電位側の多数のスナバー回路用抵抗
器の温度を直接計測することなく、大地電位側で容易に
得られる情報によりスナバー抵抗の温度を包括的に把握
でき、経済的に保護検出できる有利性があり、サイリス
タバルブの運転信頼度の向上に寄与する。
As described above, according to the present invention, the snubber is obtained from the information easily obtained on the ground potential side without directly measuring the temperatures of the numerous snubber circuit resistors on the high potential side of the thyristor valve. It has the advantage of being able to comprehensively grasp the temperature of the resistance, economically detecting and detecting the protection, and contributes to the improvement of the operational reliability of the thyristor valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電力用変換装置の保護装置の一実
施例の構成図。
FIG. 1 is a configuration diagram of an embodiment of a protection device for a power converter according to the present invention.

【図2】電力用変換装置の例として直流送電用交直変換
6相ブリッジを示した図。
FIG. 2 is a diagram showing an AC / DC conversion 6-phase bridge for DC power transmission as an example of a power conversion device.

【図3】図1で示す変換器の構成の概要図。3 is a schematic diagram of the configuration of the converter shown in FIG.

【図4】図3を電気回路的に表わした図。FIG. 4 is a view showing FIG. 3 as an electric circuit.

【図5】モジュール内のサイリスタ及びスナバー抵抗の
冷却概念図。
FIG. 5 is a conceptual diagram of cooling the thyristor and the snubber resistance in the module.

【図6】モジュール内のスナバー抵抗を示す図。FIG. 6 is a diagram showing a snubber resistance in a module.

【符号の説明】[Explanation of symbols]

11 sin 変換回路 12 2乗回路 13,22 掛算器 14 K1 ・K′の定数設定器 21 kゲイン設定器 23 K2 の定数設定器 24 θRMの定数設定器 31 積分器 41 比較器 42 検出レベルQs の設定器11 Sine conversion circuit 12 Square circuit 13, 22 Multiplier 14 K 1 · K'constant setter 21 k Gain setter 23 K 2 constant setter 24 θ RM constant setter 31 Integrator 41 Comparator 42 Detection Level Q s setter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力用変換装置のスナバー回路用抵抗器
の異常温度上昇を検出する保護装置において、前記スナ
バー回路用抵抗器の発熱量を変換器運転制御角の函数と
して演算する第1の手段と、前記抵抗器を冷却するため
の冷却媒体の比熱容量と抵抗器の冷却媒体の入口,出口
の温度差から抵抗器の冷却熱量を演算する第2の手段
と、前記第1の手段による発熱量と第2の手段による冷
却熱量との差から抵抗器の温度上昇を算出する第3の手
段と、前記第3の手段による温度上昇値が所定設定値よ
り大であるとき警報出力を発生する第4の手段とからな
ることを特徴とする電力用変換装置の保護装置。
1. A protection device for detecting an abnormal temperature rise of a snubber circuit resistor of a power converter, wherein a first means for calculating a heat generation amount of the snubber circuit resistor as a function of a converter operation control angle. Second means for calculating the cooling heat quantity of the resistor from the specific heat capacity of the cooling medium for cooling the resistor and the temperature difference between the inlet and outlet of the cooling medium of the resistor, and the heat generation by the first means. Third means for calculating the temperature rise of the resistor from the difference between the amount of heat and the amount of cooling heat by the second means, and an alarm output is generated when the temperature rise value by the third means is larger than a predetermined set value. A protection device for a power converter, comprising: a fourth means.
JP31352191A 1991-11-01 1991-11-01 Protective device for power converting apparatus Pending JPH05130728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31352191A JPH05130728A (en) 1991-11-01 1991-11-01 Protective device for power converting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31352191A JPH05130728A (en) 1991-11-01 1991-11-01 Protective device for power converting apparatus

Publications (1)

Publication Number Publication Date
JPH05130728A true JPH05130728A (en) 1993-05-25

Family

ID=18042316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31352191A Pending JPH05130728A (en) 1991-11-01 1991-11-01 Protective device for power converting apparatus

Country Status (1)

Country Link
JP (1) JPH05130728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024363A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Power supply system
JP2019022309A (en) * 2017-07-14 2019-02-07 東芝三菱電機産業システム株式会社 Power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024363A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Power supply system
JP2019022309A (en) * 2017-07-14 2019-02-07 東芝三菱電機産業システム株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
EP0209364A2 (en) Generator stator winding diagnostic system
US8971070B2 (en) Interface arrangement between AC and DC systems for reliable opening of the circuit breaker in time
US4117527A (en) Solid state valve thermal protection for hvdc power converters
US20230396143A1 (en) Method For Solving For Converter Valve States And Valve Currents Based On Valve-Side Current Timing Characteristics
JP2010239723A (en) Power conversion equipment
JPH05130728A (en) Protective device for power converting apparatus
CN111987705A (en) Direct current energy consumption system, electric power system and energy consumption method
US6998735B2 (en) Controlled rectifier bridge, control system, and method for controlling rectifier bridge by disabling gate control signals
US20020012215A1 (en) Protection of a dynamic voltage restorer
US6084787A (en) Device for supervising in a high voltage converter station
CN205945494U (en) Intelligence power module and contain its converter
JP2002186260A (en) Method and system for detecting zero current level in line rectification converter
EP1222727B1 (en) Control of extinction angle for a line-commutated converter
ES2938992T3 (en) Dynamic trip temperature control for power module
JPS5843176A (en) Malfunction detecting circuit for power converter
CN210380245U (en) Direct current energy consumption system and electric power system
JPH05168238A (en) Water cooled semiconductor power converter
JP3132814B2 (en) Semiconductor power conversion system
RU2738257C1 (en) System and method for frequency-controlled drive of medium voltage without formation of condensate
CA2072296C (en) Switching cirucit protection apparatus and method
Tanabe et al. Study on overvoltage protection in HVDC LTT valve
JP7196347B1 (en) ELECTRICAL CIRCUIT SYSTEM, ELECTRICAL CIRCUIT SYSTEM CONTROL DEVICE, ELECTRICAL CIRCUIT SYSTEM CONTROL METHOD, AND ELECTRICAL CIRCUIT SYSTEM CONTROL PROGRAM
JP3716637B2 (en) Gas turbine output control device
JPS5911774A (en) Power converter
JP2708341B2 (en) Water-cooled thyristor valve