JPH05129909A - Variable delay circuit with very small delay - Google Patents

Variable delay circuit with very small delay

Info

Publication number
JPH05129909A
JPH05129909A JP3293231A JP29323191A JPH05129909A JP H05129909 A JPH05129909 A JP H05129909A JP 3293231 A JP3293231 A JP 3293231A JP 29323191 A JP29323191 A JP 29323191A JP H05129909 A JPH05129909 A JP H05129909A
Authority
JP
Japan
Prior art keywords
delay
output
gate
selection signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3293231A
Other languages
Japanese (ja)
Other versions
JP3183471B2 (en
Inventor
Katsumi Ochiai
克己 落合
Hiroshi Tsukahara
寛 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP29323191A priority Critical patent/JP3183471B2/en
Priority to KR1019920014496A priority patent/KR970005124B1/en
Publication of JPH05129909A publication Critical patent/JPH05129909A/en
Priority to US08/253,216 priority patent/US5440260A/en
Priority to US08/394,249 priority patent/US5495197A/en
Priority to US08/850,816 priority patent/US5764093A/en
Application granted granted Critical
Publication of JP3183471B2 publication Critical patent/JP3183471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a variable delay quantity with high resolution. CONSTITUTION:One input of 1st and 2nd exclusive OR (EXOR) gates 17, 18 is connected to a delay input terminal 15, and both outputs are connected together through a capacitor 21. Moreover, the other input terminal of the 1st EXOR gate 17 connects to ground, the other input terminal of the 2nd EXOR gate 18 is connected to a selection signal input terminal 19 and an output of the 1st EXOR gate 17 is connected to a delay output terminal 16 through a logic buffer 22. When a level of a selection signal is '0', potentials across the capacitor 21 are always at an equi-potential and no current flows to the capacitor 21, and when the level of the selection signal is '1', a current flows to the capacitor 21 and the current is delayed by a prescribed quantity with respect to an output of the output terminal 16 when the level of the selection signal is '0'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は遅延分解能が例えば1
0pSオーダの微小遅延を可能とする微小可変遅延回路
に関する。
This invention has a delay resolution of, for example, 1
The present invention relates to a minute variable delay circuit that enables minute delay on the order of 0 pS.

【0002】[0002]

【従来の技術】図4に従来の微小可変遅延回路を示す。
遅延段111 ,112 ,113 が縦続接続され、遅延段
111 は遅延量がAのバッファ12の通路と遅延量がB
(B=2A)のバッファ13の通路との何れかがマルチ
プレクサ14で選択され、その選択された通路を信号が
通過するようにされ、遅延段112 は遅延量なしの通路
と遅延量Bのバッファ13の通路との何れかがマルチプ
レクサ14で選択され、遅延段113 は遅延量なしの通
路と遅延量Bのバッファ13が二つ直列接続された通路
との何れかがマルチプレクサ14で選択される。各マル
チプレクサ14の選択入力側Sに与える選択信号を制御
することにより、遅延入力端子15と遅延出力端子16
との間の信号が通る経路が切替えられ、その経路に応じ
た遅延量の遅延が遅延出力端子16の出力信号に生じ
る。経路の選択により遅延量の差が(B−A)、2(B
−A)、3(B−A)、4(B−A)…の各種の値とす
ることができる。つまり分解能が(B−A)の可変遅延
回路が得られる。
2. Description of the Related Art FIG. 4 shows a conventional minute variable delay circuit.
The delay stages 11 1 , 11 2 , and 11 3 are cascade-connected, and the delay stage 11 1 has a path of the buffer 12 with a delay amount A and a delay amount of B.
(B = 2A) or the passage of the buffer 13 is selected by the multiplexer 14 is the selected channel to signal passes, the delay stage 11 2 of the delay B and passage without delay One of the paths of the buffer 13 is selected by the multiplexer 14, and the delay stage 11 3 is selected by the multiplexer 14 of either the path with no delay amount or the path in which two buffers 13 with the delay amount B are connected in series. It By controlling the selection signal applied to the selection input side S of each multiplexer 14, the delay input terminal 15 and the delay output terminal 16 are controlled.
The path through which the signal between and is passed is switched, and a delay of the delay amount corresponding to the path is generated in the output signal of the delay output terminal 16. Depending on the route selection, the difference in delay amount is (B−A), 2 (B
-A), 3 (BA), 4 (BA) ... That is, a variable delay circuit having a resolution of (BA) can be obtained.

【0003】[0003]

【発明が解決しようとする課題】遅延量A,Bはそれぞ
れバッファ12,13における伝搬遅延量Tpdにより得
ている。このバッファ12,13をゲートアレイなどで
実現しようとすると、ゲートの配置を自由に選択できな
いため配線による遅延量も考慮する必要があり、2A=
Bの関係を満すように設計することが困難となり、微小
分解能が悪い。つまり(B−A)を小さくすることが困
難であり、かつ隣接遅延量の差(B−A)のばらつきが
大きい。
The delay amounts A and B are obtained from the propagation delay amounts T pd in the buffers 12 and 13, respectively. If the buffers 12 and 13 are to be realized by a gate array or the like, it is necessary to consider the delay amount due to the wiring because the arrangement of the gates cannot be freely selected.
It becomes difficult to design so as to satisfy the relationship of B, and the minute resolution is poor. That is, it is difficult to reduce (B-A), and the difference (B-A) in the amount of adjacent delay varies widely.

【0004】[0004]

【課題を解決するための手段】この発明によれば、第
1、第2排他的論理和ゲートが用いられ、これら第1、
第2排他的論理和ゲートの各一方の入力側は共通の遅延
入力端子に接続され、第1排他的論理和ゲートの他方の
入力側は接地され、その出力側と第2排他的論理和ゲー
トの出力側との間にコンデンサが接続され、第2排他的
論理和ゲートの他方の入力側は選択信号入力端子に接続
され、第1排他的論理和ゲートの出力側に論理レベルを
出力するバッファの入力側が接続され、そのバッファの
出力側は遅延出力端子に接続される。
According to the present invention, first and second exclusive OR gates are used.
One input side of the second exclusive OR gate is connected to a common delay input terminal, the other input side of the first exclusive OR gate is grounded, and its output side and the second exclusive OR gate are connected. Of the second exclusive OR gate, the other input side of which is connected to the selection signal input terminal and which outputs a logic level to the output side of the first exclusive OR gate. Is connected to the output side of the buffer and the output side of the buffer is connected to the delay output terminal.

【0005】[0005]

【実施例】図1Aにこの発明の実施例を示す。第1、第
2排他的論理和ゲート(以下、EXORゲートと記す)
17,18が設けられ、第1、第2EXORゲート1
7,18の各一方の入力側は遅延入力端子15に共通に
接続され、第1EXORゲート17の他方の入力側は接
地され、第2EXORゲート18の他方の入力側は選択
信号入力端子19に接続される。第1EXORゲート1
7の出力側と第2EXORゲート18の出力側との間に
コンデンサ21が接続され、第1EXORゲート17の
出力側は論理レベルを出力するバッファ22を通じて遅
延出力端子16に接続される。バッファ22はしきい値
をもち、入力がしきい値以上か以下かに応じて2値の論
理レベルの一方か他方を出力するものである。
1A shows an embodiment of the present invention. First and second exclusive OR gates (hereinafter referred to as EXOR gates)
17, 18 are provided, and the first and second EXOR gates 1 are provided.
One input side of each of 7 and 18 is commonly connected to the delay input terminal 15, the other input side of the first EXOR gate 17 is grounded, and the other input side of the second EXOR gate 18 is connected to the selection signal input terminal 19. To be done. First EXOR gate 1
A capacitor 21 is connected between the output side of 7 and the output side of the second EXOR gate 18, and the output side of the first EXOR gate 17 is connected to the delay output terminal 16 through a buffer 22 that outputs a logic level. The buffer 22 has a threshold value and outputs one or the other of binary logic levels according to whether the input is above or below the threshold value.

【0006】この構成において選択信号入力端子19の
選択信号が“0”の状態では第2EXORゲート18は
非反転のゲートとなり、図1Aは図1Bに示す回路とな
り、その入力端子15に図1Caに示す波形の信号が入
力されると、第1、第2EXORゲート17,18の各
出力側にはそれぞれ図1Cのb,cに示すように同一の
波形の信号が同時に現われる。従ってコンデンサ21の
両側の電位は常に同一であり、コンデンサ21に電流が
流れず、コンデンサ21のインピーダンスは無限大と見
なせる。従って第2EXORゲート18はないものとみ
なせ、図1Aの等価回路は図1Dに示すように書ける。
In this configuration, when the selection signal at the selection signal input terminal 19 is "0", the second EXOR gate 18 becomes a non-inverting gate, and the circuit shown in FIG. 1A becomes the circuit shown in FIG. 1B. When the signals of the waveforms shown are input, the signals of the same waveform appear simultaneously on the output sides of the first and second EXOR gates 17 and 18, respectively, as shown by b and c in FIG. 1C. Therefore, the potentials on both sides of the capacitor 21 are always the same, no current flows through the capacitor 21, and the impedance of the capacitor 21 can be regarded as infinite. Therefore, it can be considered that there is no second EXOR gate 18, and the equivalent circuit of FIG. 1A can be written as shown in FIG. 1D.

【0007】一方選択信号入力端子19の選択信号が
“1”の場合は第2EXORゲート18は反転ゲートと
して作用し、図1Aの回路は図2Aに示すように書け
る。入力端子15に図2Baに示す波形の信号が入力さ
れると、第2EXORゲート18がないと仮定した時の
第1EXORゲート17の出力は図2Bbに示すように
入力波形と同極性であり、第2EXORゲート18の出
力は図2Bcに示すように図2Bbと逆極性の波形とな
る。第1、第2EXORゲート17,18を、それぞれ
電圧源23,24と出力抵抗器(ゲートのオン抵抗)2
5,26とで表わすと、図2Aの回路は図2Cに示す等
価回路となる。電圧源23,24から下記の逆相の電圧
が出力される。
On the other hand, when the selection signal at the selection signal input terminal 19 is "1", the second EXOR gate 18 acts as an inverting gate, and the circuit of FIG. 1A can be written as shown in FIG. 2A. When the signal having the waveform shown in FIG. 2Ba is input to the input terminal 15, the output of the first EXOR gate 17 assuming that the second EXOR gate 18 is not present has the same polarity as the input waveform as shown in FIG. 2Bb. As shown in FIG. 2Bc, the output of the 2EXOR gate 18 has a waveform having a polarity opposite to that of FIG. 2Bb. The first and second EXOR gates 17 and 18 are connected to the voltage sources 23 and 24 and the output resistor (gate on-resistance) 2 respectively.
5 and 26, the circuit of FIG. 2A becomes the equivalent circuit shown in FIG. 2C. The voltage sources 23 and 24 output the following reverse-phase voltages.

【0008】 v1 (t) =v0 f(t) ,v2(t)=v0 (1−f(t) ) f(t) はt≦0で0、t←∞で1、0≦f(t) ≦1 第1EXORゲート17及びコンデンサ21の接続点2
7の電圧Vout (s) は次式となる。 Vout (s) =V0 ・F(s) −〔V0 F(s) −{V0 (1/s−F(s) ) −V0 /s}・R〕/(2R+1/sC) =V0 ・F(s) (1/2CR)/(s+1/(2CR)) Rは出力抵抗器25,26の各抵抗値、Cはコンデンサ
21の容量 f(t) =u(t) (ユニットステップパルス)とすると、
V 1 (t) = v 0 f (t), v 2 (t) = v 0 (1-f (t)) f (t) is 0 when t ≦ 0, and 1 when t ← ∞. ≤f (t) ≤1 Connection point 2 of the first EXOR gate 17 and the capacitor 21
The voltage V out (s) of 7 is given by the following equation. V out (s) = V 0 · F (s) − [V 0 F (s) − {V 0 (1 / s−F (s)) −V 0 / s} · R] / (2R + 1 / sC) = V 0 · F (s) (1 / 2CR) / (s + 1 / (2CR)) R is the resistance value of each of the output resistors 25 and 26, and C is the capacitance of the capacitor 21 f (t) = u (t) ( Unit step pulse)

【0009】[0009]

【数1】 となる。vout (t) がV0 /2となる時間tは2CR l
og2となる。この接続点27の出力信号の波形は図2B
dに示すように立上りがなまった波形となる。従って図
1Aの遅延入力端子15に図2Daに示す波形の信号を
入力すると、選択信号が“0”の場合は、接続点27の
信号は図2Dbの実線28に示すように入力信号と同一
波形となるが、選択信号が“1”の場合は接続点27の
信号は図2Dbの点線29で示すように立上り立下りが
だらけたものとなる。バッファ22のしきい値レベルV
t が図2Dbに示すように低レベルと高レベルとの中央
であると、バッファ22の出力は図2Dcに示すよう
に、選択信号“0”の場合は実線出力31となり、これ
に対し、選択信号“1”の場合は点線出力32のように
Δt=2CR log2だけ遅延したものとなる。
[Equation 1] Becomes v time t out (t) is the V 0/2 is 2CR l
It will be og2. The waveform of the output signal of this connection point 27 is shown in FIG. 2B.
The waveform has a blunt rising, as shown in d. Therefore, when the signal of the waveform shown in FIG. 2Da is input to the delay input terminal 15 of FIG. 1A, when the selection signal is “0”, the signal of the connection point 27 has the same waveform as the input signal as shown by the solid line 28 of FIG. 2Db. However, when the selection signal is "1", the signal at the connection point 27 has rising and falling edges as shown by a dotted line 29 in FIG. 2Db. Threshold level V of buffer 22
When t is at the center between the low level and the high level as shown in FIG. 2Db, the output of the buffer 22 becomes the solid line output 31 when the selection signal is “0” as shown in FIG. In the case of the signal “1”, it is delayed by Δt = 2CR log2 like the dotted line output 32.

【0010】図1Aに示した回路の全体をIC化し、か
つその時の配線の影響を小にすることは容易であり、目
的の遅延量差Δtのものを容易に作ることができる。こ
の遅延量差Δtは例えば20pS〜40pS程度のもの
とすることは容易である。図1Aに示した可変遅延回路
を複数縦続接続し、各可変遅延回路に対する選択信号の
組合せを変えて、入力信号に対し、各種の経路をとらせ
ることにより、遅延時間差がΔt,2Δt,3Δt,4
Δt…をもって複数の遅延量の何れかに選択的に設定す
ることができる。
It is easy to make the entire circuit shown in FIG. 1A into an IC and reduce the influence of the wiring at that time, and it is possible to easily make a target delay difference Δt. It is easy to set the delay amount difference Δt to be, for example, about 20 pS to 40 pS. By connecting a plurality of the variable delay circuits shown in FIG. 1A in cascade and changing the combination of the selection signals for each variable delay circuit to take various paths for the input signal, the delay time differences Δt, 2Δt, 3Δt, Four
It is possible to selectively set any of a plurality of delay amounts with Δt.

【0011】図3Aに示すように複数の第2EXOR1
1 ,182 ,183 …を設け、その各一方の入力側を
遅延入力端子15に共通に接続し、各他方の入力側をそ
れぞれ各別の選択信号入力端子191 ,192 ,193
…に接続し、各出力側をそれぞれ各別のコンデンサ21
1 ,212 ,213 …を通じて第1EXOR17の出力
側に接続してもよい。コンデンサ211 ,212 ,21
3 …の各容量が同一値Cであるとすると、選択信号入力
端子191 ,192 ,193 …中のn個の選択信号が
“1”の場合は図3Aの回路は図2の場合と同様に図3
Bに示す等価回路で表わせる。この時接続点27の電圧
out (s)は次式となる。
As shown in FIG. 3A, a plurality of second EXOR1s are provided.
8 1 , 18 2 , 18 3 ... Are provided, one input side of each of which is commonly connected to the delay input terminal 15, and the other input side of each selection signal input terminal 19 1 , 19 2 , 19 respectively. 3
... and connect each output side to a separate capacitor 21
It may be connected to the output side of the first EXOR 17 through 1 , 21 2 , 21 3 ... Capacitors 21 1 , 21 2 , 21
3 has the same value C, when the n selection signals in the selection signal input terminals 19 1 , 19 2 , 19 3 are “1”, the circuit of FIG. Similar to Figure 3
This can be represented by the equivalent circuit shown in B. At this time, the voltage V out (s) at the connection point 27 is given by the following equation.

【0012】 Vout (s) =V0 ・F(s) −〔V0 F(s) −{V0 (1/s−F(s) ) −V0 /s}・R〕/(R+R/n+1/(nsC)) V1 (s) =V0 ・F(s) 、V2 (s) =V0 (1/S−F
(s) )、V2 (0)=V0 F(s) =1/S(ユニットステップパルス)を代入する
と、
V out (s) = V 0 · F (s) − [V 0 F (s) − {V 0 (1 / s−F (s)) −V 0 / s} · R] / (R + R / N + 1 / (nsC)) V 1 (s) = V 0 · F (s), V 2 (s) = V 0 (1 / SF)
(s)), V 2 ( 0 ) = V 0 F (s) = 1 / S (unit step pulse)

【0013】[0013]

【数2】 となる。V0 /2となる時間はt=−(n+1)CR l
og(n+1)/4nとなり、nの値に応じて遅延量を単
調に変化させることができる。図3Aで第2EXORゲ
ート18を4個とすれば、図4に示した従来の回路では
遅延段の2段分と同一作用をする。上述で第1、第2E
XORゲート17,18、バッファ22は例えばCMO
Sで構成される。
[Equation 2] Becomes The time when it becomes V 0/2 is t =-(n + 1) CR l
It becomes og (n + 1) / 4n, and the delay amount can be monotonously changed according to the value of n. If the number of the second EXOR gates 18 is four in FIG. 3A, the conventional circuit shown in FIG. 4 has the same function as two delay stages. In the above, the first and second E
The XOR gates 17 and 18 and the buffer 22 are, for example, CMOs.
It is composed of S.

【0014】[0014]

【発明の効果】以上述べたようにこの発明によれば第1
EXORゲートに対し、少くとも1つの第2EXORゲ
ートをその出力側にコンデンサを介して並列に接続し、
第2EXORゲートの他方の入力側に選択信号を与え、
その選択信号を“0”にするか“1”にするかにより、
入力信号の遅延量を変化させることができる。その遅延
量の変化の差を例えば20〜40pS程度のものを容易
に作ることができ、微小かつ高分解能の可変遅延回路を
得ることができる。
As described above, according to the present invention, the first
At least one second EXOR gate is connected in parallel to the output side of the EXOR gate via a capacitor,
The selection signal is applied to the other input side of the second EXOR gate,
Depending on whether the selection signal is "0" or "1",
The delay amount of the input signal can be changed. It is possible to easily make a difference in the change in the delay amount of, for example, about 20 to 40 pS, and to obtain a minute and high resolution variable delay circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはこの発明の実施例を示す論理回路図、B,
Dは選択信号が“0”の場合の等価回路図、Cはその動
作説明図である。
FIG. 1A is a logic circuit diagram showing an embodiment of the present invention, B,
D is an equivalent circuit diagram when the selection signal is "0", and C is an operation explanatory diagram thereof.

【図2】A,Cはそれぞれ選択信号が“1”の場合は図
1Aの等価回路図、Bはその動作波形図、Dは図1Aの
動作波形図である。
2A and 2B are equivalent circuit diagrams of FIG. 1A when a selection signal is "1", B is an operation waveform diagram thereof, and D is an operation waveform diagram of FIG. 1A.

【図3】Aはこの発明の他の実施例を示す論理回路図、
Bはその等価回路図である。
FIG. 3A is a logic circuit diagram showing another embodiment of the present invention,
B is an equivalent circuit diagram thereof.

【図4】従来の微小可変遅延回路を示すブロック図。FIG. 4 is a block diagram showing a conventional minute variable delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の入力側を接地し、他方の入力側を
遅延入力端子に接続した第1排他的論理和ゲートと、 一方の入力側を選択信号入力端子に接続し、他方の入力
側を上記遅延入力端子に接続した第2排他的論理和ゲー
トと、 上記第1排他的論理和ゲートの出力側と上記第2排他的
論理和ゲートの出力側との間に接続されたコンデンサ
と、 そのコンデンサ及び上記第1排他的論理和ゲートの出力
側の接続点に入力側が接続され、出力側が遅延出力端子
に接続され、論理レベルを出力するバッファと、 を具備する微小可変遅延回路。
1. A first exclusive OR gate in which one input side is grounded and the other input side is connected to a delay input terminal, and one input side is connected to a selection signal input terminal, and the other input side is connected. A second exclusive OR gate connected to the delay input terminal, and a capacitor connected between the output side of the first exclusive OR gate and the output side of the second exclusive OR gate. A minute variable delay circuit comprising: a capacitor, the input side of which is connected to a connection point of the output side of the first exclusive OR gate, the output side of which is connected to a delay output terminal, and a buffer which outputs a logic level.
JP29323191A 1981-11-28 1991-11-08 Micro variable delay circuit Expired - Fee Related JP3183471B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29323191A JP3183471B2 (en) 1991-11-08 1991-11-08 Micro variable delay circuit
KR1019920014496A KR970005124B1 (en) 1991-08-14 1992-08-12 Variable delayed circuit
US08/253,216 US5440260A (en) 1991-08-14 1994-06-02 Variable delay circuit
US08/394,249 US5495197A (en) 1991-08-14 1995-02-24 Variable delay circuit
US08/850,816 US5764093A (en) 1981-11-28 1997-05-02 Variable delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29323191A JP3183471B2 (en) 1991-11-08 1991-11-08 Micro variable delay circuit

Publications (2)

Publication Number Publication Date
JPH05129909A true JPH05129909A (en) 1993-05-25
JP3183471B2 JP3183471B2 (en) 2001-07-09

Family

ID=17792128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29323191A Expired - Fee Related JP3183471B2 (en) 1981-11-28 1991-11-08 Micro variable delay circuit

Country Status (1)

Country Link
JP (1) JP3183471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967516B2 (en) 1999-07-07 2005-11-22 Advantest Corporation Semiconductor testing apparatus with a variable delay circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967516B2 (en) 1999-07-07 2005-11-22 Advantest Corporation Semiconductor testing apparatus with a variable delay circuit

Also Published As

Publication number Publication date
JP3183471B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US5495197A (en) Variable delay circuit
JPH06195483A (en) Multiplication circuit
JPH098621A (en) Fet switch circuit
JPH0613859A (en) Method and device for supplying delayed output signal
US9525402B1 (en) Voltage mode transmitter
US6169436B1 (en) Variable delay circuit
JPH05136664A (en) Variable delay circuit
EP0485973B1 (en) Switching constant current source circuit
US5227671A (en) Circuit providing equalized duty cycle output
JPH11205268A (en) Signal multiplexing circuit
JP3183471B2 (en) Micro variable delay circuit
KR101017853B1 (en) Constant delay zero standby differential logic receiver and method
US6025747A (en) Logic signal selection circuit
US3725790A (en) Shift register clock pulse distribution system
US7276942B2 (en) Method for configurably enabling pulse clock generation for multiple signaling modes
JPH05110396A (en) Signal delay circuit
JPH08116224A (en) Gain variable amplifier
JPH0946231A (en) Matched filter circuit
JP3158282B2 (en) Pulse signal generation circuit
JP3815437B2 (en) Interface circuit
US5424965A (en) Multiplication circuit for multiplying analog values
JP3077815B2 (en) Pulse signal generation circuit
JPH04172811A (en) Variable pulse width circuit
JP2768014B2 (en) Three voltage output circuit
KR100248613B1 (en) Audio signal multiplexing circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees