JPH05129724A - Multiple quantum well type semiconductor laser - Google Patents

Multiple quantum well type semiconductor laser

Info

Publication number
JPH05129724A
JPH05129724A JP3317322A JP31732291A JPH05129724A JP H05129724 A JPH05129724 A JP H05129724A JP 3317322 A JP3317322 A JP 3317322A JP 31732291 A JP31732291 A JP 31732291A JP H05129724 A JPH05129724 A JP H05129724A
Authority
JP
Japan
Prior art keywords
semiconductor laser
thickness
well layers
well
angstrom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3317322A
Other languages
Japanese (ja)
Other versions
JP3191363B2 (en
Inventor
Koji Tamamura
好司 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31732291A priority Critical patent/JP3191363B2/en
Publication of JPH05129724A publication Critical patent/JPH05129724A/en
Application granted granted Critical
Publication of JP3191363B2 publication Critical patent/JP3191363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a multi-longitudinal mode which is controlled accurately and having low quantum noise level by a method wherein at least two well layers are provided and the difference between the maximum thickness and the minimum thickness is brought to a fixed value. CONSTITUTION:An active layer region has three well layers, and the these well layers are formed in LZ1=120 angstrom, LZ2=125 angstrom and LZ3=130 angstrom in thickness. To be more precise, the difference between the maximum thickness and the minimum thickness of the well layers is 10 angstrom. The thickness of a barrier layer is LB1=LB2=LB3=LB4=60 angstrom. The well layers consists of Al0.12Ga0.88As, and the barrier layers consists of Al0.30Ga0.70As. As the well layers have different thicknesses, their energy levels are also different with each other, and the main oscillation is generated in the lowest energy level. However, as there is an energy level directly above, the longitudinal mode is brought to a multimode state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多モード化された縦モ
ードを得ることができる多重量子井戸型半導体レーザに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-quantum well semiconductor laser capable of obtaining multimode longitudinal modes.

【0002】[0002]

【従来の技術】近年、量子井戸型半導体レーザの研究、
開発が盛んである。量子井戸型半導体レーザとは、活性
層の厚さを電子の波動関数の広がり程度まで薄くして、
利得及び光損失特性に量子サイズ効果を持たせた半導体
レーザである。量子井戸型半導体レーザは、例えば、低
い閾値電流密度、高い微分量子効率、低い温度依存性と
いった特徴を有し、狭いスペクトル線幅を得ることがで
きる。量子井戸型半導体レーザは、単一量子井戸型半導
体レーザと多重量子井戸型(以下、MQWともいう)半
導体レーザに分類される。従来、MQW半導体レーザは
活性層領域中に複数のポテンシャル井戸層及び障壁層を
有し、井戸層の厚さは一定である。即ち、単一縦モード
を有するMQW半導体レーザの開発、研究が専ら進めら
れている。
2. Description of the Related Art In recent years, research on quantum well semiconductor lasers,
Development is active. Quantum well type semiconductor laser is the thickness of the active layer is reduced to the extent of the spread of the electron wave function,
It is a semiconductor laser in which gain and optical loss characteristics have a quantum size effect. The quantum well semiconductor laser has features such as low threshold current density, high differential quantum efficiency, and low temperature dependence, and can obtain a narrow spectral line width. Quantum well type semiconductor lasers are classified into single quantum well type semiconductor lasers and multiple quantum well type (hereinafter also referred to as MQW) semiconductor lasers. Conventionally, the MQW semiconductor laser has a plurality of potential well layers and barrier layers in the active layer region, and the thickness of the well layers is constant. That is, the development and research of MQW semiconductor lasers having a single longitudinal mode are being carried out exclusively.

【0003】光ディスク用の半導体レーザにおいて比較
的低周波領域で観察されるモードホッピング雑音は、例
えばビデオディスクの画質を劣化させる。モードホッピ
ング雑音とは、半導体レーザの縦モードが次のモードへ
飛び移るとき、即ちモードホッピング時に、複数個のモ
ードが競合するために発生する雑音である。特に、この
モードホッピング雑音が光ディスクからの戻り光に起因
した戻り光誘起雑音と複合した場合、画質を著しく劣化
させるという悪影響が生じる。
Mode hopping noise observed in a relatively low frequency region in a semiconductor laser for an optical disk deteriorates the image quality of a video disk, for example. Mode hopping noise is noise generated when a longitudinal mode of a semiconductor laser jumps to the next mode, that is, mode hopping, because a plurality of modes compete with each other. In particular, when this mode hopping noise is combined with the return light induced noise caused by the return light from the optical disc, the image quality is significantly deteriorated.

【0004】モードホッピング雑音を低減させる方法に
は、例えば回折格子や複合共振器による縦モードの単一
モード化、あるいは縦モードの多モード化がある。ま
た、戻り光誘起雑音を低減するには、縦モードを多モー
ド化し、レーザ光の可干渉性を低下させることが効果的
であることが知られている。
Methods for reducing the mode hopping noise include, for example, making a longitudinal mode into a single mode by using a diffraction grating or a compound resonator, or making a longitudinal mode into a multimode. Further, in order to reduce the return light induced noise, it is known that it is effective to make the longitudinal mode multimode and reduce the coherence of the laser light.

【0005】[0005]

【発明が解決しようとする課題】縦モードを多モード化
する方法として、利得導波による多モード化を図る方
法、パルセーション発生あるいは高周波重畳といった過
渡特性による多モード化を図る方法が知られている。
As a method of making the longitudinal mode multi-mode, there are known a method of making the multi-mode by gain guiding and a method of making the multi-mode by transient characteristics such as pulsation generation or high frequency superposition. There is.

【0006】しかしながら、縦モードを多モード化する
これらの方法においては、量子雑音レベルが単一縦モー
ド時の量子雑音レベルより1桁以上高いという問題があ
る。また、これらの方法では、多モード化された縦モー
ドを正確に制御された状態で得ることが困難であるとい
う問題もある。
However, in these methods of increasing the longitudinal mode into multiple modes, there is a problem that the quantum noise level is higher by one digit or more than the quantum noise level in the single longitudinal mode. In addition, these methods also have a problem that it is difficult to obtain the multimode longitudinal mode in an accurately controlled state.

【0007】従って、本発明の目的は、正確に制御さ
れ、量子雑音レベルの低い多モード化された縦モードを
得ることができる半導体レーザを提供することにある。
Therefore, it is an object of the present invention to provide a semiconductor laser which can be controlled accurately and which can obtain a multimode longitudinal mode having a low quantum noise level.

【0008】[0008]

【課題を解決するための手段】上記の目的は、少なくと
も2つの井戸層を有し、井戸層の最大厚さと最小厚さの
差が一定の値以上であることを特徴とする多重量子井戸
型半導体レーザによって達成することができる。
The above object has at least two well layers, and the difference between the maximum thickness and the minimum thickness of the well layers is equal to or more than a certain value. This can be achieved with a semiconductor laser.

【0009】[0009]

【作用】活性層領域を構成する井戸層及び障壁層の組成
が一定の場合、井戸層の厚さが厚くなるに従い半導体レ
ーザの発光波長は長くなる。本発明の量子井戸型半導体
レーザは、少なくとも2つの井戸層を有する多重量子井
戸型であり、しかも井戸層の最大厚さと井戸層の最小厚
さの差が一定の値以上である。従って、本発明の量子井
戸型半導体レーザは、少なくとも井戸層の最大厚さ及び
最小厚さに相当するエネルギー準位を有し、その結果、
縦モードは多モードとなる。
When the composition of the well layer and the barrier layer forming the active layer region is constant, the emission wavelength of the semiconductor laser becomes longer as the thickness of the well layer becomes thicker. The quantum well type semiconductor laser of the present invention is a multiple quantum well type having at least two well layers, and the difference between the maximum thickness of the well layers and the minimum thickness of the well layers is a certain value or more. Therefore, the quantum well semiconductor laser of the present invention has an energy level corresponding to at least the maximum thickness and the minimum thickness of the well layer, and as a result,
The vertical mode is multimode.

【0010】尚、本明細書において、多モードとは、発
光強度の内最大強度を有するメインピークの強度を10
0%とした場合、50%以上の発光強度を有するサブピ
ークが1本以上存在する状態をいう。従って、「井戸層
の最大厚さと最小厚さの差が一定の値以上である」と
は、MQW半導体レーザにおいて発光強度のサブピーク
が1本以上存在する状態となるように、それぞれの井戸
層の厚さの間に差が存在することを指す。
In the present specification, the term "multimode" refers to the intensity of the main peak having the maximum intensity among the emission intensities of 10.
When it is 0%, it means a state in which one or more subpeaks having an emission intensity of 50% or more are present. Therefore, "the difference between the maximum thickness and the minimum thickness of the well layer is equal to or more than a certain value" means that in the MQW semiconductor laser, one or more subpeaks of the emission intensity are present in each well layer. Refers to the existence of differences between thicknesses.

【0011】かかる一定の値は、井戸層の最小厚さが1
00オングストローム以上の場合には10オングストロ
ームであることが望ましい。一定の値が10オングスト
ローム程度の場合、活性層を構成する化合物半導体の組
成にも依るが、メインピークの発光波長とサブピークの
発光波長の差は例えば1.5nm程度となる。10オン
グストローム未満の場合、縦モードは単一モードとなる
傾向にある。尚、かかる一定の値が余り大き過ぎると、
MQW半導体レーザは2つの発光波長ピークを有するよ
うになる。井戸層の最小厚さが100オングストローム
未満の場合には、一定の値は8オングストローム程度で
あることが望ましい。
The constant value is such that the minimum thickness of the well layer is 1.
In the case of 00 angstrom or more, it is desirable that it is 10 angstrom. When the constant value is about 10 Å, the difference between the emission wavelength of the main peak and the emission wavelength of the sub-peak is, for example, about 1.5 nm, although it depends on the composition of the compound semiconductor forming the active layer. Below 10 Å, the longitudinal mode tends to be single mode. If this fixed value is too large,
The MQW semiconductor laser has two emission wavelength peaks. If the minimum thickness of the well layer is less than 100 Å, the constant value is preferably about 8 Å.

【0012】[0012]

【実施例】例えばMOCVDにて、図2に模式図を示す
ような多重量子井戸型半導体レーザを作製した。かかる
半導体レーザは、n+GaAs基板10、0.5μm厚さ
のGaAsバッファ層12、Al0.47Ga0.53Asから
成り1.5μm厚のn型クラッド層14、活性層領域1
6、Al0.47Ga0.53Asから成り1.5μm厚のp型
クラッド層18、及びGaAsから成り0.5μm厚の
p+型キャップ層20から構成されている。図2に示すM
QW半導体レーザは、Zn拡散によるMQW構造の無秩
序化を利用した屈折率導波型の半導体レーザである。2
2はZn拡散領域、24はSiO2層、26は下部電
極、28は上部電極である。
EXAMPLE A multiple quantum well type semiconductor laser as shown in the schematic view of FIG. 2 was produced by MOCVD, for example. This semiconductor laser comprises an n + GaAs substrate 10, a 0.5 μm thick GaAs buffer layer 12, an Al 0.47 Ga 0.53 As n-type cladding layer 14 of 1.5 μm thick, and an active layer region 1.
6, a p-type cladding layer 18 made of Al 0.47 Ga 0.53 As and having a thickness of 1.5 μm, and made of GaAs and having a thickness of 0.5 μm.
It is composed of the p + type cap layer 20. M shown in FIG.
The QW semiconductor laser is a refractive index guided semiconductor laser that utilizes the disordering of the MQW structure due to Zn diffusion. Two
2 is a Zn diffusion region, 24 is a SiO 2 layer, 26 is a lower electrode, and 28 is an upper electrode.

【0013】従来の多重量子井戸型半導体レーザにおい
ては、活性層領域は、例えば120オングストローム厚
さの3つの井戸層、及び60オングストローム厚さの4
つの障壁層から成る。即ち、井戸層の厚さは一定であ
り、MQW半導体レーザは単一縦モードを有する。これ
に対して、本発明のMQW半導体レーザにおいては、図
1に示すように、活性層領域は3つの井戸層を有し、こ
れらの井戸層の厚さはLZ1=120オングストローム、
Z2=125オングストローム、LZ3=130オングス
トロームである。即ち、井戸層の最大厚さと最小厚さの
差は10オングストロームである。障壁層の厚さは、L
B1=LB2=LB3=LB4=60オングストロームである。
井戸層はAl0.12Ga0.88Asから成り、障壁層はAl
0.30Ga0. 70Asから成る。尚、井戸層の厚さは、半導
体レーザ断面のTEM観察によって調べることができ
る。
In the conventional multiple quantum well type semiconductor laser, the active layer region has, for example, three well layers each having a thickness of 120 Å and four well layers each having a thickness of 60 Å.
It consists of two barrier layers. That is, the thickness of the well layer is constant, and the MQW semiconductor laser has a single longitudinal mode. On the other hand, in the MQW semiconductor laser of the present invention, as shown in FIG. 1, the active layer region has three well layers, and the thickness of these well layers is L Z1 = 120 Å,
L Z2 = 125 Å and L Z3 = 130 Å. That is, the difference between the maximum thickness and the minimum thickness of the well layer is 10 Å. The thickness of the barrier layer is L
B1 = LB2 = LB3 = LB4 = 60 angstroms.
The well layer is made of Al 0.12 Ga 0.88 As, and the barrier layer is made of Al.
Consisting 0.30 Ga 0. 70 As. The thickness of the well layer can be examined by TEM observation of the cross section of the semiconductor laser.

【0014】井戸層の厚さが相違する結果、エネルギー
準位がそれぞれの井戸層で異なり、最も低いエネルギー
準位において主な発振を引き起こす。しかしながら、す
ぐ上のエネルギー準位が存在するので、縦モードは多モ
ードとなる。
As a result of the different thicknesses of the well layers, the energy levels are different in each well layer, causing a major oscillation at the lowest energy level. However, since there is an energy level just above, the longitudinal mode becomes multimode.

【0015】上述の実施例においては、最大強度ピーク
の発振波長は780nmであり、50%以上の強度を有
するサブピークの発振波長は779.5nm及び78
0.5nmである。
In the above-mentioned embodiment, the oscillation wavelength of the maximum intensity peak is 780 nm, and the oscillation wavelengths of the sub-peaks having the intensity of 50% or more are 779.5 nm and 78.
It is 0.5 nm.

【0016】MOCVDにてMQW半導体レーザを製造
する場合、井戸層の厚さは数原子オーダーで正確に制御
することができる。従って、井戸層の最大厚さと最小厚
さの差を正確に且つ容易に制御することができる。
When the MQW semiconductor laser is manufactured by MOCVD, the thickness of the well layer can be accurately controlled on the order of several atoms. Therefore, the difference between the maximum thickness and the minimum thickness of the well layer can be accurately and easily controlled.

【0017】以上、好ましい1実施例に基づき本発明の
MQW半導体レーザを説明したが、本発明はかかる実施
例に限定されるものではない。
Although the MQW semiconductor laser of the present invention has been described based on the preferred embodiment, the present invention is not limited to this embodiment.

【0018】本発明の量子井戸型半導体レーザは、Al
GaAs系のみならず、AlGaInP系あるいはAl
GaInAs系の化合物半導体から構成することができ
る。
The quantum well semiconductor laser of the present invention is made of Al
Not only GaAs type, but also AlGaInP type or Al
It can be composed of a GaInAs-based compound semiconductor.

【0019】本発明における多重量子井戸型半導体レー
ザには、1次元量子井戸構造だけでなく、2次元及び3
次元量子井戸構造を有する半導体レーザ(量子細線及び
量子箱レーザ)を含むことができ、更に、面発光半導体
レーザ、GRIN−SCH半導体レーザ、横方向電流注
入MQW半導体レーザ、多重ストライプ形半導体レーザ
等を含むことができる。また、本発明のMQW半導体レ
ーザは超格子バッファを有することができる。
The multi-quantum well type semiconductor laser of the present invention includes not only a one-dimensional quantum well structure but also two-dimensional and three-dimensional quantum well structures.
A semiconductor laser having a three-dimensional quantum well structure (quantum wire and quantum box laser) can be included, and further a surface emitting semiconductor laser, a GRIN-SCH semiconductor laser, a lateral current injection MQW semiconductor laser, a multi-stripe semiconductor laser, etc. Can be included. Further, the MQW semiconductor laser of the present invention can have a superlattice buffer.

【0020】図1に模式的に図示した井戸層の厚さ
Z1、LZ2、LZ3・・・は、 LZ1<LZ2<LZ3 の条件を満たす場合だけでなく、例えば、 LZ1=LZ2<LZ3Z2<LZ1<LZ3 等、種々の条件とすることができる。ともかく、井戸層
の最大厚さと最小厚さの差が一定の値(例えば10オン
グストローム)以上あればよい。
[0020] The thickness of the schematically illustrated well layer in FIG. 1 L Z1, L Z2, L Z3 ··· not only satisfies the conditions of L Z1 <L Z2 <L Z3 , for example, L Z1 It is possible to set various conditions such as = L Z2 <L Z3 L Z2 <L Z1 <L Z3 . In any case, the difference between the maximum thickness and the minimum thickness of the well layer may be a certain value (for example, 10 angstrom) or more.

【0021】[0021]

【発明の効果】本発明においては、正確に且つ容易に井
戸層の厚さを制御することができる。従って、量子井戸
型半導体レーザの特徴を生かしつつ、正確な発振波長を
有する多モード化された縦モードを有する低雑音の多重
量子井戸型半導体レーザを得ることができる。その結
果、例えばモードポッピング雑音や戻り光誘起雑音を効
果的に低減することができ、光ディスク用の有力な光源
となり得る。
According to the present invention, the thickness of the well layer can be accurately and easily controlled. Therefore, it is possible to obtain a low-noise multi-quantum well semiconductor laser having a multimode longitudinal mode having an accurate oscillation wavelength while taking advantage of the characteristics of the quantum well semiconductor laser. As a result, for example, mode popping noise and return light induced noise can be effectively reduced, and it can be an effective light source for an optical disc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多重量子井戸型半導体レーザの活性層
領域の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an active layer region of a multiple quantum well type semiconductor laser of the present invention.

【図2】本発明の多重量子井戸型半導体レーザの模式図
である。
FIG. 2 is a schematic view of a multiple quantum well type semiconductor laser of the present invention.

【符号の説明】[Explanation of symbols]

10 n+GaAs基板10 12 GaAsバッファ層 14 n型クラッド層 16 活性層領域 18 p型クラッド層 20 p+型キャップ層 22 Zn拡散領域 24 SiO2層 26 下部電極 28 上部電極10 n + GaAs substrate 10 12 GaAs buffer layer 14 n-type clad layer 16 active layer region 18 p-type clad layer 20 p + type cap layer 22 Zn diffusion region 24 SiO 2 layer 26 lower electrode 28 upper electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2つの井戸層を有し、井戸層の
最大厚さと最小厚さの差が一定の値以上であることを特
徴とする多重量子井戸型半導体レーザ。
1. A multi-quantum well type semiconductor laser having at least two well layers, wherein the difference between the maximum thickness and the minimum thickness of the well layers is a certain value or more.
【請求項2】前記一定の値が10オングストロームであ
ることを特徴とする請求項1に記載の多重量子井戸型半
導体レーザ。
2. The multi-quantum well semiconductor laser according to claim 1, wherein the constant value is 10 Å.
JP31732291A 1991-11-06 1991-11-06 Multiple quantum well semiconductor laser Expired - Lifetime JP3191363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31732291A JP3191363B2 (en) 1991-11-06 1991-11-06 Multiple quantum well semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31732291A JP3191363B2 (en) 1991-11-06 1991-11-06 Multiple quantum well semiconductor laser

Publications (2)

Publication Number Publication Date
JPH05129724A true JPH05129724A (en) 1993-05-25
JP3191363B2 JP3191363B2 (en) 2001-07-23

Family

ID=18086921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31732291A Expired - Lifetime JP3191363B2 (en) 1991-11-06 1991-11-06 Multiple quantum well semiconductor laser

Country Status (1)

Country Link
JP (1) JP3191363B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062119A3 (en) * 2008-11-27 2010-08-19 우리엘에스티 주식회사 Semiconductor light emitting element
JP2011054834A (en) * 2009-09-03 2011-03-17 Sharp Corp Nitride semiconductor laser element
KR101299996B1 (en) * 2005-09-13 2013-08-26 소니 가부시끼가이샤 GaN-BASE SEMICONDUCTOR LIGHT EMITTING ELEMENT, LUMINESCENT DEVICE, IMAGE DISPLAY DEVICE, PLANAR LIGHT SOURCE DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE ASSEMBLY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299996B1 (en) * 2005-09-13 2013-08-26 소니 가부시끼가이샤 GaN-BASE SEMICONDUCTOR LIGHT EMITTING ELEMENT, LUMINESCENT DEVICE, IMAGE DISPLAY DEVICE, PLANAR LIGHT SOURCE DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE ASSEMBLY
WO2010062119A3 (en) * 2008-11-27 2010-08-19 우리엘에스티 주식회사 Semiconductor light emitting element
KR101012636B1 (en) * 2008-11-27 2011-02-09 우리엘에스티 주식회사 Light generating device
JP2011054834A (en) * 2009-09-03 2011-03-17 Sharp Corp Nitride semiconductor laser element

Also Published As

Publication number Publication date
JP3191363B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
US6184542B1 (en) Superluminescent diode and optical amplifier with extended bandwidth
JP2001308451A (en) Semiconductor light emitting element
US5982799A (en) Multiple-wavelength laser diode array using quantum well band filling
JP2007273690A (en) Optical semiconductor element and variable-wavelength light source equipped with the same
JP3842976B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
US7362788B2 (en) Semiconductor laser and fabricating method thereof
JPH0656906B2 (en) Semiconductor laser device
US5369658A (en) Semiconductor laser
JPH11298086A (en) Semiconductor laser device
JP2622143B2 (en) Distributed feedback semiconductor laser and method of manufacturing distributed feedback semiconductor laser
JP4047358B2 (en) Self-excited semiconductor laser device
JPH05129724A (en) Multiple quantum well type semiconductor laser
DE102012110613A1 (en) Optoelectronic semiconductor component e.g. superluminescent LED laser light source for Pico projection application, has recess that is formed in main surface transversely to radiation direction side of bar-shaped structure
JPS62173786A (en) Distributed feedback type semiconductor laser
JP2002111136A (en) Semiconductor laser device
JP2002368335A (en) Semiconductor laser element, its manufacturing method, semiconductor laser array, optical communication system, optical interconnection system, optical pickup system, and electrophotographic system
US6795469B2 (en) Semiconductor laser element
JP4362873B2 (en) Semiconductor laser and optical disk apparatus
US7050472B2 (en) Semiconductor laser device and method for manufacturing the same
JP2024004295A (en) Semiconductor laser element and method of manufacturing the same
JPH1154834A (en) Semiconductor laser element
JPS63211786A (en) Semiconductor laser element
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JP2000138419A (en) Semiconductor laser element and its manufacture
JPH06237043A (en) Semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11