JPH05129649A - Solid-state image sensing element - Google Patents

Solid-state image sensing element

Info

Publication number
JPH05129649A
JPH05129649A JP3290157A JP29015791A JPH05129649A JP H05129649 A JPH05129649 A JP H05129649A JP 3290157 A JP3290157 A JP 3290157A JP 29015791 A JP29015791 A JP 29015791A JP H05129649 A JPH05129649 A JP H05129649A
Authority
JP
Japan
Prior art keywords
guard ring
pixel electrodes
layer
electrode
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3290157A
Other languages
Japanese (ja)
Inventor
Tadamori Ko
忠守 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP3290157A priority Critical patent/JPH05129649A/en
Publication of JPH05129649A publication Critical patent/JPH05129649A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enable an improvement in dielectric strength and to prevent effective breakdown by providing an edge of a pixel electrode with an insulative guard ring and by preventing a carrier block layer over it from thinning off at this part to interpose a guard ring under it even by thinning off. CONSTITUTION:An imager substrate 1 such as of MOS type or CCD type is overlaid with a plurality of pixel electrodes 2 in a matrix font, and a gap between pixel electrodes 2 is provided with a guard ring 7 which covers an edge of a pixel electrode 2. An electrode injection block layer 3, a photoreception layer 4, a hole injection block layer 5, and a transparent electrode 6 are formed one after another. The guard ring 7 is constituted of an insulating material such as polyimide to prevent the pixel electrode 2 from breaking down at corners. Thus, insulation breakdown does not occur even when such a high bias as to generate avalanche amplification is impressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は増幅型の固体撮像素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amplification type solid state image pickup device.

【0002】[0002]

【従来の技術】増幅型の固体撮像素子として、積層型A
MI(Amplified MOSImager)が知
られ、その一例がテレビジョン学会技術報告Vol.1
4,No.74,PP.7〜11(1990.12.1
8)や、昭和63年電子情報通信学会秋季全国大会報告
集に開示されている。
2. Description of the Related Art As an amplification type solid-state image pickup device, a laminated type A
MI (Amplified MOS Imager) is known, and an example thereof is the Technical Report of the Institute of Television Engineers of Japan, Vol. 1
4, No. 74, PP. 7-11 (1990.12.1
8) and the 1988 IEICE Autumn National Convention report collection.

【0003】図3は、その構造を模式的に示し、同図
(a)は断面図、同図(b)は上面図である。図示の通
り、増幅回路、走査回路などが形成された基板1上に
は、マトリクスに複数の画素電極2が配設され、この上
面には、電子注入阻止層3、アバランシェ増倍作用を有
するa−Seの受光層4、ホール注入阻止層5およびI
TOなどの透明電極6が設けられている。このような固
体撮像素子おいて、光入力があると受光層4でキャリア
が生成され、アバランシェ増倍作用が生じる。この増倍
キャリアは画素電極2に注入され、検出されて走査回路
によって転送されていく。
FIG. 3 schematically shows the structure. FIG. 3A is a sectional view and FIG. 3B is a top view. As shown in the figure, a plurality of pixel electrodes 2 are arranged in a matrix on a substrate 1 on which an amplifier circuit, a scanning circuit, etc. are formed, and an electron injection blocking layer 3 and an avalanche multiplication function a are provided on the upper surface of the pixel electrode 2. -Se light receiving layer 4, hole injection blocking layer 5 and I
A transparent electrode 6 such as TO is provided. In such a solid-state imaging device, when light is input, carriers are generated in the light-receiving layer 4 and an avalanche multiplication action occurs. This multiplication carrier is injected into the pixel electrode 2, detected, and transferred by the scanning circuit.

【0004】[0004]

【発明が解決しようとする課題】ところで、受光層4は
一般的には2μm程度の厚さを必要とし、したがってア
バランシェ増倍作用のためには画素電極2と透明電極6
の間に100〜200V以上の印加電圧を必要とする。
このため、基板1と受光層4の間で絶縁破壊が生じない
ようにするため、基板1表面の厳しい平坦化が必要にな
る。この平坦化の程度は、一般には250オングストロ
ーム程度であり、前述の先行技術では基板1表面の凹部
にOCDを埋め込む技術が提案されている。
By the way, the light-receiving layer 4 generally needs to have a thickness of about 2 μm, and therefore the pixel electrode 2 and the transparent electrode 6 are required for the avalanche multiplication function.
An applied voltage of 100 to 200 V or more is required between the two.
Therefore, in order to prevent dielectric breakdown between the substrate 1 and the light-receiving layer 4, the surface of the substrate 1 needs to be severely flattened. The degree of flattening is generally about 250 angstroms, and the above-mentioned prior art proposes a technique of burying an OCD in a recess on the surface of the substrate 1.

【0005】しかし、上記のような平坦化を実現できた
としても、画素電極2の間の段差は解決されない。この
ため、電子注入阻止層3の膜厚が画素電極2のエッジで
薄くなりやすく、図3(a)で矢印で示す部分の耐圧低
下は避けられなかった。本発明は、このような従来技術
の欠点を解決した固体撮像素子を提供することを目的と
する。
However, even if the above flattening can be realized, the step difference between the pixel electrodes 2 cannot be solved. For this reason, the film thickness of the electron injection blocking layer 3 is likely to be thin at the edge of the pixel electrode 2, and a decrease in breakdown voltage at the portion shown by the arrow in FIG. 3A cannot be avoided. It is an object of the present invention to provide a solid-state image sensor that solves the above-mentioned drawbacks of the conventional technology.

【0006】[0006]

【課題を解決するための手段】本発明は、上面に複数の
画素電極が配設された信号読み出し用の基板上に、第1
導電型キャリア阻止層、受光層、第2導電型キャリア阻
止層および透光性の導電膜が順次に積層された固体撮像
素子において、基板上には、複数の画素電極間に埋め込
まれて当該画素電極のエッジを覆う絶縁性のガードリン
グが形成され、第1導電型キャリア阻止層は複数の画素
電極およびガードリングを覆うように形成されているこ
とを特徴とする。ここで、受光層はアバランシェ増倍作
用を有し、複数の画素電極と導電膜には受光層でアバラ
ンシェ増倍作用を生じ得るバイアスが印加される。
According to the present invention, a first substrate is provided on a signal reading substrate having a plurality of pixel electrodes arranged on an upper surface thereof.
In a solid-state imaging device in which a conductive type carrier blocking layer, a light receiving layer, a second conductive type carrier blocking layer, and a translucent conductive film are sequentially stacked, a pixel is embedded on a substrate between a plurality of pixel electrodes. An insulating guard ring that covers the edge of the electrode is formed, and the first conductivity type carrier blocking layer is formed so as to cover the plurality of pixel electrodes and the guard ring. Here, the light receiving layer has an avalanche multiplication function, and a bias that can cause the avalanche multiplication function in the light receiving layer is applied to the plurality of pixel electrodes and the conductive film.

【0007】[0007]

【作用】本発明の構成によれば、画素電極2のエッジ部
には絶縁性のガードリングが設けられるので、その上の
キャリア阻止層がこの部分で薄層化せず、また薄層化し
ても下側にガードリングが介在しているので、絶縁耐圧
の大幅な向上が可能になる。
According to the structure of the present invention, since the insulating guard ring is provided at the edge portion of the pixel electrode 2, the carrier blocking layer thereabove does not become thin at this portion, and is made thin. Also, since the guard ring is provided on the lower side, the withstand voltage can be significantly improved.

【0008】[0008]

【実施例】以下、添付図面により本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0009】図1は本発明に係る固体撮像素子の基本構
造を示し、同図(a)は断面図、同図(b)は上面図で
ある。MOS形、CCD形などのイメージャー基板1上
には複数の画素電極2がマトリクス状に配設され、この
画素電極2の間隙部分には、画素電極2のエッジ部を覆
うガードリング7が設けられている。そして、全面に電
子注入阻止層3、受光層4、ホール注入阻止層5および
透明電極6が順次に形成されている。ここで、ガードリ
ング7は例えばポリイミドなどの絶縁材料で構成され、
画素電極2のコーナーにおけるブレークダウンを防止し
ている。このため、アバランシェ増倍作用を生じ得る程
度の高バイアスを印加したときにも、絶縁破壊が生じる
ことはない。
FIG. 1 shows a basic structure of a solid-state image pickup device according to the present invention. FIG. 1 (a) is a sectional view and FIG. 1 (b) is a top view. A plurality of pixel electrodes 2 are arranged in a matrix on an imager substrate 1 of MOS type, CCD type or the like, and a guard ring 7 for covering an edge portion of the pixel electrode 2 is provided in a gap between the pixel electrodes 2. Has been. Then, an electron injection blocking layer 3, a light receiving layer 4, a hole injection blocking layer 5, and a transparent electrode 6 are sequentially formed on the entire surface. Here, the guard ring 7 is made of an insulating material such as polyimide,
Breakdown at the corner of the pixel electrode 2 is prevented. Therefore, dielectric breakdown does not occur even when a high bias to the extent that an avalanche multiplication effect is generated is applied.

【0010】図2は実施例に係る固体撮像素子の詳細な
構成を示す断面図である。p型シリコン基板11にはn
+ 型層12が形成され、熱酸化によるゲート絶縁膜13
を介してp型シリコン基板11上にポリシリコンのゲー
ト電極14が形成され、更にn+ 型層12にオーミック
接触するAlなどの第1層金属電極15が形成されるこ
とで、MOS構造のスイッチが構成されている。なお、
ゲート電極14はポリシリコンの熱酸化膜16でカバー
されている。さらに、これらの全面を覆うように、ポリ
イミド等からなる層間絶縁膜17が形成されている。
FIG. 2 is a sectional view showing the detailed structure of the solid-state image pickup device according to the embodiment. The p-type silicon substrate 11 has n
The + type layer 12 is formed, and the gate insulating film 13 by thermal oxidation is formed.
A gate electrode 14 made of polysilicon is formed on the p-type silicon substrate 11 via the via, and a first-layer metal electrode 15 such as Al that is in ohmic contact with the n + -type layer 12 is formed, thereby forming a switch having a MOS structure. Is configured. In addition,
The gate electrode 14 is covered with a thermal oxide film 16 of polysilicon. Further, an interlayer insulating film 17 made of polyimide or the like is formed so as to cover these entire surfaces.

【0011】層間絶縁膜17の上面には、複数の画素ご
とに第2層金属電極18が形成されるが、これらは、層
間絶縁膜17に形成されたスルーホールを介して第1層
金属電極15に接続されている。さらに、全面にOCD
あるいはPSGなどからなる絶縁膜19が形成され、M
OS形イメージャー基板10が構成されている。
A second layer metal electrode 18 is formed on the upper surface of the interlayer insulating film 17 for each of a plurality of pixels, and these are formed through the through holes formed in the interlayer insulating film 17 to form the first layer metal electrode. It is connected to 15. Furthermore, OCD on the whole surface
Alternatively, an insulating film 19 made of PSG or the like is formed, and M
An OS type imager substrate 10 is configured.

【0012】画素電極2は絶縁膜19上に形成され、ス
ルーホールを介して対応する第2層金属電極18に接続
されている。そして、画素電極2の各々の間隙部分には
ガードリング7が設けられ、これらの上面には、電子注
入阻止層3、受光層4、ホール注入阻止層5および透明
電極6が順次に堆積されている。なお、電子注入阻止層
3としては、受光層4がa−SeのときにAs2 Se3
が用いられ、ホール注入阻止層5としては、受光層4が
a−SeのときにCeOが用いられる。但し、受光層4
がa−Siのときには、下側のキャリア阻止層3はホー
ル注入阻止層となってa−SiC:Hが用いられ、上側
のキャリア阻止層5は電子注入阻止層はa−SiN又は
a−SiC:Hが用いられる。
The pixel electrode 2 is formed on the insulating film 19 and is connected to the corresponding second layer metal electrode 18 via a through hole. A guard ring 7 is provided in each gap between the pixel electrodes 2, and an electron injection blocking layer 3, a light receiving layer 4, a hole injection blocking layer 5 and a transparent electrode 6 are sequentially deposited on the upper surfaces of the guard rings 7. There is. The electron injection blocking layer 3 is As 2 Se 3 when the light receiving layer 4 is a-Se.
As the hole injection blocking layer 5, CeO is used when the light receiving layer 4 is a-Se. However, the light receiving layer 4
Is a-Si, the lower carrier blocking layer 3 serves as a hole injection blocking layer and a-SiC: H is used, and the upper carrier blocking layer 5 has an electron injection blocking layer of a-SiN or a-SiC. : H is used.

【0013】この実施例によれば、画素電極2のエッジ
部を完全に保護できるのでブレークダウンを効果的に防
止できる。また、製造プロセスが容易であって、画素電
極2の膜厚に対する制約も少なくできる。
According to this embodiment, since the edge portion of the pixel electrode 2 can be completely protected, breakdown can be effectively prevented. Further, the manufacturing process is easy, and restrictions on the film thickness of the pixel electrode 2 can be reduced.

【0014】[0014]

【発明の効果】以上の通り、本発明の固体撮像素子によ
れば、画素電極2のエッジ部は絶縁性のガードリングが
設けられるので、その上のキャリア阻止層がこの部分で
薄層化せず、また薄層化しても下側にガードリングが介
在しているので、絶縁耐圧の大幅な向上が可能になる。
このため、アバランシェ増倍型の固体撮像素子におい
て、平坦化に格別の配慮をすることなく、効果的なブレ
ークダウン防止を図ることができる。
As described above, according to the solid-state image pickup device of the present invention, since the insulating guard ring is provided at the edge portion of the pixel electrode 2, the carrier blocking layer on it is thinned at this portion. In addition, since the guard ring is provided on the lower side even if the layer is thinned, the withstand voltage can be significantly improved.
Therefore, in the avalanche multiplication type solid-state imaging device, effective breakdown prevention can be achieved without special consideration for flattening.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固体撮像素子の基本構造を示す図
である。
FIG. 1 is a diagram showing a basic structure of a solid-state image sensor according to the present invention.

【図2】実施例に係る固体撮像素子の詳細な断面図であ
る。
FIG. 2 is a detailed cross-sectional view of a solid-state image sensor according to an example.

【図3】従来の固体撮像素子を示す図である。FIG. 3 is a diagram showing a conventional solid-state image sensor.

【符号の説明】[Explanation of symbols]

1…基板、10…MOS形イメージャー基板、11…p
型シリコン基板、12…n+ 型層、13…ゲート絶縁
膜、14…ゲート電極、15…第1層金属電極、16…
絶縁膜、17…層間絶縁膜、18…第2層金属電極、1
9…絶縁膜、2…画素電極、3…電子注入阻止層、4…
受光層、5…ホール注入阻止層、6…透明電極、7…ガ
ードリング
1 ... substrate, 10 ... MOS type imager substrate, 11 ... p
Type silicon substrate, 12 ... N + type layer, 13 ... Gate insulating film, 14 ... Gate electrode, 15 ... First layer metal electrode, 16 ...
Insulating film, 17 ... Interlayer insulating film, 18 ... Second layer metal electrode, 1
9 ... Insulating film, 2 ... Pixel electrode, 3 ... Electron injection blocking layer, 4 ...
Light-receiving layer, 5 ... Hole injection blocking layer, 6 ... Transparent electrode, 7 ... Guard ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上面に複数の画素電極が配設された信号
読み出し用の基板上に、第1導電型キャリア阻止層、受
光層、第2導電型キャリア阻止層および透光性の導電膜
が順次に積層された固体撮像素子において、 前記基板上には、前記複数の画素電極間に埋め込まれて
当該画素電極のエッジを覆う絶縁性のガードリングが形
成され、前記第1導電型キャリア阻止層は前記複数の画
素電極および前記ガードリングを覆うように形成されて
いることを特徴とする固体撮像素子。
1. A first conductivity type carrier blocking layer, a light receiving layer, a second conductivity type carrier blocking layer and a translucent conductive film are provided on a signal reading substrate having a plurality of pixel electrodes disposed on an upper surface thereof. In the sequentially stacked solid-state imaging device, an insulating guard ring embedded between the plurality of pixel electrodes and covering edges of the pixel electrodes is formed on the substrate, and the first conductivity type carrier blocking layer is formed. Is formed so as to cover the plurality of pixel electrodes and the guard ring.
【請求項2】 前記受光層はアバランシェ増倍作用を有
し、前記複数の画素電極と前記導電膜には前記受光層で
アバランシェ増倍作用を生じ得るバイアスが印加される
請求項1記載の固体撮像素子。
2. The solid according to claim 1, wherein the light receiving layer has an avalanche multiplication function, and a bias that can cause an avalanche multiplication function in the light receiving layer is applied to the plurality of pixel electrodes and the conductive film. Image sensor.
JP3290157A 1991-11-06 1991-11-06 Solid-state image sensing element Pending JPH05129649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290157A JPH05129649A (en) 1991-11-06 1991-11-06 Solid-state image sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290157A JPH05129649A (en) 1991-11-06 1991-11-06 Solid-state image sensing element

Publications (1)

Publication Number Publication Date
JPH05129649A true JPH05129649A (en) 1993-05-25

Family

ID=17752508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290157A Pending JPH05129649A (en) 1991-11-06 1991-11-06 Solid-state image sensing element

Country Status (1)

Country Link
JP (1) JPH05129649A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307239B1 (en) * 2000-04-19 2001-10-23 United Microelectronics Corp. CMOS sense structure having silicon dioxide outer ring around sense region
JP2005019543A (en) * 2003-06-24 2005-01-20 Shimadzu Corp Two-dimensional semiconductor detector and two-dimensional imaging apparatus
JP2007142283A (en) * 2005-11-21 2007-06-07 Fujifilm Corp Radiation image detector, and method for manufacturing radiation image detector
JP2007273555A (en) * 2006-03-30 2007-10-18 Fujifilm Corp Photoelectric conversion device and solid state imaging device
JP2011159781A (en) * 2010-02-01 2011-08-18 Epson Imaging Devices Corp Photoelectric conversion device, x-ray imaging device, and method of manufacturing photoelectric conversion device
JP2016033972A (en) * 2014-07-31 2016-03-10 キヤノン株式会社 Imaging apparatus and imaging system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268077A (en) * 1985-05-23 1986-11-27 Mitsubishi Electric Corp Photoelectric conversion element
JPH0366178A (en) * 1989-08-04 1991-03-20 Canon Inc Optoelectric transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268077A (en) * 1985-05-23 1986-11-27 Mitsubishi Electric Corp Photoelectric conversion element
JPH0366178A (en) * 1989-08-04 1991-03-20 Canon Inc Optoelectric transducer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307239B1 (en) * 2000-04-19 2001-10-23 United Microelectronics Corp. CMOS sense structure having silicon dioxide outer ring around sense region
JP2005019543A (en) * 2003-06-24 2005-01-20 Shimadzu Corp Two-dimensional semiconductor detector and two-dimensional imaging apparatus
JP2007142283A (en) * 2005-11-21 2007-06-07 Fujifilm Corp Radiation image detector, and method for manufacturing radiation image detector
JP4762692B2 (en) * 2005-11-21 2011-08-31 富士フイルム株式会社 Radiation image detector and method for manufacturing radiation image detector
JP2007273555A (en) * 2006-03-30 2007-10-18 Fujifilm Corp Photoelectric conversion device and solid state imaging device
JP2011159781A (en) * 2010-02-01 2011-08-18 Epson Imaging Devices Corp Photoelectric conversion device, x-ray imaging device, and method of manufacturing photoelectric conversion device
JP2016033972A (en) * 2014-07-31 2016-03-10 キヤノン株式会社 Imaging apparatus and imaging system
US9991305B2 (en) 2014-07-31 2018-06-05 Canon Kabushiki Kaisha Stacked type solid state imaging apparatus and imaging system

Similar Documents

Publication Publication Date Title
US5859450A (en) Dark current reducing guard ring
US6774453B2 (en) Semiconductor device, image pickup device using the same, and photoelectric conversion device
KR100245245B1 (en) Amplifying type photoelectric converter, and charge coupled device using that
US5101255A (en) Amorphous photoelectric conversion device with avalanche
US8030724B2 (en) Solid-state imaging device and method for fabricating the same
JP2797993B2 (en) Solid-state imaging device and method of manufacturing the same
JP3049015B2 (en) Active pixel cell with bandgap design
JPS62126667A (en) Solid-state image pickup element
JP2866328B2 (en) Solid-state imaging device
JPH05129649A (en) Solid-state image sensing element
JP5030323B2 (en) Solid-state image sensor
US5066994A (en) Image sensor
US20010040210A1 (en) Solid-state image sensor with reduced smear and noise
US5155362A (en) Infra-red radiation imaging device arrangements
JP3048011B2 (en) Charge-coupled device
JPH0821704B2 (en) Solid-state imaging device
JP2922688B2 (en) Infrared solid-state image sensor
JP2757583B2 (en) Semiconductor integrated circuit
JP2870467B2 (en) Charge coupled device
JPS6320385B2 (en)
JPS5866471A (en) Solid-state image pickup element
JPH0897391A (en) Infrared solid-state imaging device
JP2870048B2 (en) Solid-state imaging device
JP2611634B2 (en) Charge transfer element
JPH04239171A (en) Semiconductor device