JPH05129396A - Foreign matter tester - Google Patents

Foreign matter tester

Info

Publication number
JPH05129396A
JPH05129396A JP3285963A JP28596391A JPH05129396A JP H05129396 A JPH05129396 A JP H05129396A JP 3285963 A JP3285963 A JP 3285963A JP 28596391 A JP28596391 A JP 28596391A JP H05129396 A JPH05129396 A JP H05129396A
Authority
JP
Japan
Prior art keywords
light
foreign matter
incident
light receiving
receiving surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285963A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Hagiwara
恒幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3285963A priority Critical patent/JPH05129396A/en
Publication of JPH05129396A publication Critical patent/JPH05129396A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to discriminate a foreign matter effectively from a fine circuit pattern irrespective of the layout position of a light receiving device. CONSTITUTION:Light from a light source 6 enters a board 1 equipped with a fine circuit pattern at a specified incident angle and aperture angle by way of a lens 5, a mirror 4 and an f-theta lens 3. An incident luminous flux I and the board 1 are designed to move in the directions of X and Y in a relative manner, and the whole surface of the board 1 can be illuminated with the incident luminous flux I. The light receiving device 2 has a light receiving surfaces 2A and 2B respectively which share a longitudinal direction and a shorter direction. The distance between the light receiving surfaces 2A and 2B is determined in such a fashion that the distance between orthogonal projections C1 and C2 may be virtually identical to the orthogonal projection width i1 of the incident luminous flux I. A discrete diffraction light is generated from the incident point O. When a foreign matter exists, continuous scattered light is generated. A logical product of each photo-electric signal transmitted from the two planes is determined by a control system 8, which makes it possible to discriminate the foreign matter from the circuit pattern from the result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異物検査装置に関し、
特に半導体製造装置で使用される回路パターンが形成さ
れているレチクルやフォトマスク等の基板上に付着した
異物を検出する際に好適な異物検査装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter inspection device,
In particular, the present invention relates to a foreign matter inspection apparatus suitable for detecting foreign matter attached to a substrate such as a reticle or a photomask on which a circuit pattern used in a semiconductor manufacturing apparatus is formed.

【0002】[0002]

【従来の技術】一般に、IC製造工程においては、レチク
ル又はフォトマスク等の基板上に形成された露光用の回
路パターンを半導体焼付け装置(ステッパー又はアライ
ナー)によりレジストが塗布されたウェハ面上に転写す
ることが行われている。この際、基板面上にゴミ等の異
物が存在すると回路パターンと共に異物も転写され、IC
製造の歩留りを低下させる原因となる。
2. Description of the Related Art Generally, in an IC manufacturing process, an exposure circuit pattern formed on a substrate such as a reticle or a photomask is transferred onto a wafer surface coated with a resist by a semiconductor printing apparatus (stepper or aligner). Is being done. At this time, if foreign matter such as dust is present on the substrate surface, the foreign matter is transferred together with the circuit pattern, and the IC
This causes a decrease in manufacturing yield.

【0003】この為、IC製造過程において基板上の異物
の存在を検出することが不可欠となっており、従来より
種々の検査方法が提案されている。図18は、従来の異
物検査装置の一例を示す斜視図である。同図において、
レーザ161 から射出された光束はビームエキスパンダー
162 等により平行拡大された後、走査用ミラー163 、走
査レンズ164 を介して、基板165 の表面に入射する。走
査用ミラー163 は回転若しくは振動可能に構成されてお
り、走査ミラー163は基板165 の表面への入射光束を基
板165 上で走査している。そして、基板からの正反射光
及び正透過光の光路から離れた位置に、複数の受光手段
166 、167、168 を設け、これら複数の受光手段166 、1
67 、168 からの出力信号に基づいて、基板165 上の異
物の存在を検出している。異物の存在の検出は例えば受
光手段166 、167 、168 からの出力信号の論理積をとる
ことにより行われる。即ち、回路パターンからの回折光
は指向性が強い為受光器各々の出力値は相異るが、異物
からの散乱光はほとんど指向性を持たないため受光器各
々の出力信号は等しくなる。従って適当な閾値以上の受
光器各々の出力値の論理積をとることにより異物と回路
パターンの弁別が可能である。
Therefore, it is indispensable to detect the presence of foreign matter on the substrate in the IC manufacturing process, and various inspection methods have been proposed conventionally. FIG. 18 is a perspective view showing an example of a conventional foreign matter inspection device. In the figure,
The beam emitted from the laser 161 is a beam expander.
After being magnified in parallel by 162 or the like, it is incident on the surface of the substrate 165 via the scanning mirror 163 and the scanning lens 164. The scanning mirror 163 is configured to be rotatable or vibrable, and the scanning mirror 163 scans the light flux incident on the surface of the substrate 165 on the substrate 165. Then, a plurality of light receiving means are provided at positions apart from the optical paths of the regular reflection light and the regular transmission light from the substrate.
166, 167, 168 are provided, and these plurality of light receiving means 166, 1
The presence of foreign matter on the substrate 165 is detected based on the output signals from 67 and 168. The presence of foreign matter is detected by, for example, taking the logical product of the output signals from the light receiving means 166 1, 167, 168. That is, since the diffracted light from the circuit pattern has a strong directivity, the output values of the photodetectors are different from each other, but the scattered light from the foreign matter has almost no directivity, and therefore the output signals of the photodetectors are equal. Therefore, it is possible to discriminate between the foreign matter and the circuit pattern by taking the logical product of the output values of the photodetectors each having an appropriate threshold or more.

【0004】次に図16、図17を参照にして、範囲H
の光を受光器により受光し、異物とパターンとを弁別す
ることを考える。図16、図17は正反射光束の方向に
対し90度以上の角度をなす光軸を持つ受光器を各々配
置した例を示しており、縦軸は回折光の強度を表し、横
軸は回折光の基板上への正射影図上における分布位置を
表しているものとする。また図16、図17で、O1
正反射光の位置、I0 は正反射光の強度、v0 は回折光
の間隔を示している。図16は微細度の低いパターンの
場合を示しており、パターンからの回折光強度は点線で
示した異物からの散乱光強度と比較して小さくなってい
る。図16において強度:Dなる異物散乱光を、範囲H
で受光することを考える。異物散乱光の強度を点線で示
してある。この場合受光器に入射する光量Sdは次式に
て示される。
Next, referring to FIGS. 16 and 17, the range H
It is considered that the above light is received by the light receiver and the foreign matter and the pattern are discriminated. 16 and 17 show examples in which light receivers each having an optical axis forming an angle of 90 degrees or more with respect to the direction of the specularly reflected light flux are arranged, the vertical axis represents the intensity of diffracted light, and the horizontal axis represents the diffraction. It is assumed that the distribution position of light on the orthographic diagram on the substrate is represented. 16 and 17, O 1 represents the position of specularly reflected light, I 0 represents the intensity of specularly reflected light, and v 0 represents the interval of diffracted light. FIG. 16 shows the case of a pattern having a low degree of fineness, and the intensity of diffracted light from the pattern is smaller than the intensity of scattered light from foreign matter shown by the dotted line. In FIG. 16, the intensity: D of the scattered light of the foreign matter is represented by the range H.
Consider receiving light at. The intensity of the foreign substance scattered light is shown by a dotted line. In this case, the light amount Sd incident on the light receiver is expressed by the following equation.

【0005】Sd=N×H (1) 従って、受光量Sd以下に、閾値を設けることにより、
異物検出が可能となる。これに対して回折光が発生して
いる場合、受光されるパターン回折光の光量は、同図の
斜線で示した回折光16−1の積分値と16−2の積分
値との和に等しくなる。図16に示す場合は、パターン
回折光の光量は、異物散乱光量Sdより小さいので、閾
値により弁別することが可能である。
Sd = N × H (1) Therefore, by setting a threshold value below the received light amount Sd,
Foreign matter can be detected. On the other hand, when the diffracted light is generated, the light amount of the pattern diffracted light received is equal to the sum of the integrated value of the diffracted light 16-1 and the integrated value of 16-2 indicated by the diagonal lines in the figure. Become. In the case shown in FIG. 16, the light amount of the pattern diffracted light is smaller than the foreign substance scattered light amount Sd, and therefore it is possible to discriminate by the threshold value.

【0006】ところが、パターン微細度が高くなると、
図17に示すように回折光の強度分布が等方的となる。
図16の場合と同様に受光器を配置した場合、パターン
回折光の光量は図17の斜線部分17−1の積分値であ
り、回折光の光量が異物散乱光の光量Sdを超えるため
閾値による弁別は不可能となる。以上のように、近年、
IC回路パターンの微細化に伴い、レチクル又はフォト
マスク等の基板上の回路パターンも微細化し、回折光の
分布する空間的離散度も大きくなるとともに、離散的に
現われる回折光の強度分布が等方的になってきた。この
ため、異物からの散乱光と回路パターンからの回折光と
の弁別が困難になってきた。
However, as the pattern fineness increases,
As shown in FIG. 17, the intensity distribution of the diffracted light becomes isotropic.
When the light receiver is arranged as in the case of FIG. 16, the light amount of the pattern diffracted light is the integrated value of the shaded portion 17-1 in FIG. 17, and the light amount of the diffracted light exceeds the light amount Sd of the foreign substance scattered light. Discrimination becomes impossible. As mentioned above,
Along with the miniaturization of IC circuit patterns, the circuit patterns on the substrate such as a reticle or a photomask are also miniaturized, the spatial discreteness of diffracted light distribution is increased, and the intensity distribution of diffracted light that appears discretely is isotropic. It has become a target. For this reason, it has become difficult to distinguish scattered light from foreign matter and diffracted light from a circuit pattern.

【0007】[0007]

【発明が解決しようとする課題】本発明は前述のような
従来の問題点に鑑みてなされたもので、微細な回路パタ
ーンを有する基板上の異物検査においても高い分離検出
率をもって検査可能な異物検査装置を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to inspect foreign matters on a substrate having a fine circuit pattern with a high separation detection rate. An object is to provide an inspection device.

【0008】[0008]

【課題を解決するための手段】表面に回路パターンが形
成された被検査物にコヒーレント光束を照射する光源
(6)と、光源から射出された光束を被検査物(1)上
に所定の開口角(γ)で検査点(O)に集光させる集光
手段(3)と、所定の開口角で集光された入射光束と前
記被検査物とを相対移動させる移動手段(4)と、集光
された光束が被検査物上に入射することにより発生する
散乱光束を受光する検出手段(2)とを備え、検出手段
からの出力信号に基づいて、被検査物上の異物を検出す
る異物検査装置において、検出手段は長手方向と短手方
向とを有する少なくとも2つの受光面(2A、2B)を
備え、2つの受光面は、検査点を中心とし基板を赤道面
とする任意半径の仮想的な球体(S)による曲断面の基
板への正写影図での受光面に対する正射影の間隔が基板
への入射光束の正射影の幅とほぼ等しくなるように設け
られていることを特徴とする異物検査装置。
A light source (6) for irradiating an inspected object having a circuit pattern formed on its surface with a coherent light beam, and a light beam emitted from the light source on the inspected object (1) at a predetermined opening. A light collecting means (3) for collecting light at an inspection point (O) at an angle (γ), and a moving means (4) for relatively moving the incident light beam condensed at a predetermined opening angle and the inspection object. A detection means (2) for receiving a scattered light flux generated when the condensed light flux is incident on the inspection object, and detects a foreign matter on the inspection object based on an output signal from the detection means. In the foreign matter inspection apparatus, the detection means is provided with at least two light receiving surfaces (2A, 2B) having a longitudinal direction and a lateral direction, and the two light receiving surfaces have an arbitrary radius centered on the inspection point and having the substrate as an equatorial plane. In the orthographic projection diagram of the curved section by the virtual sphere (S) onto the substrate Particle inspection apparatus characterized by spacing orthogonal projection with respect to the light plane is provided so as to be substantially equal to the orthogonal projection of the width of the light beam incident on the substrate.

【0009】[0009]

【作用】本発明では、入射光束の集光点を中心とし基板
を赤道面とする任意半径の仮想的な球体による曲断面の
正射影と回折光の曲断面の正射影がほぼ等しい形状にな
ることに着目し、受光面を長手方向と短手方向とを持つ
ように構成し、受光面に入射する光束の前記球体による
曲断面の基板への正射影の短手方向の間隔を前述の入射
光束の基板への正射影の短手方向の間隔とほぼ等しくし
たので、高分解能、高SN比で回路パターンと異物との
弁別が可能となる。
According to the present invention, the orthographic projection of the curved cross section of the phantom sphere having an arbitrary radius centered on the condensing point of the incident light beam and having the substrate as the equatorial plane and the orthographic projection of the curved cross section of the diffracted light are substantially equal. Focusing on that, the light receiving surface is configured to have a longitudinal direction and a lateral direction, and the interval in the lateral direction of the orthogonal projection of the light beam incident on the light receiving surface on the substrate of the curved cross section by the sphere is set to the above-mentioned incidence. Since the distance between the light flux and the orthogonal projection of the light flux on the substrate is made substantially equal, the circuit pattern and the foreign matter can be discriminated with high resolution and high SN ratio.

【0010】[0010]

【実施例】図1は、本発明の第1実施例の構成を示す斜
視図である。図1でレーザ光源6から射出された光束
は、ビームエキスパンダ5を経て基板1(レチクル、ウ
ェハ等)とを相対移動させる移動手段の一部を構成する
f−θレンズ3を介して基板1に集光する。集光された
入射光束Iは、振動ミラー4により基板1上でX方向に
沿って光走査される。f−θレンズ4は焦点距離の大き
いレンズ系であり、入射光束Iの基板1への入射方向は
Y方向とほぼ等しくなっている。基板1はY方向に移動
可能なステージ(不図示)上に載置されており、振動ミ
ラー4とステージとにより、基板1上を全面に渡って検
査することが可能となる。基板1上には微細な回路パタ
ーンが設けられており、入射光束Iの照射により回路パ
ターンからは離散的な回折光が発生する。受光器2は、
各々独立した光電信号を出力する受光面2A、2Bを持
ち、各々の受光面は長手方向と短手方向とを有する。
1 is a perspective view showing the structure of a first embodiment of the present invention. The light beam emitted from the laser light source 6 in FIG. 1 is passed through the beam expander 5 and the substrate 1 via the f-θ lens 3 which constitutes a part of the moving means for relatively moving the substrate 1 (reticle, wafer, etc.). Focus on. The condensed incident light flux I is optically scanned on the substrate 1 by the vibrating mirror 4 along the X direction. The f-θ lens 4 is a lens system having a large focal length, and the incident direction of the incident light flux I on the substrate 1 is substantially the same as the Y direction. The substrate 1 is placed on a stage (not shown) that can move in the Y direction, and the vibration mirror 4 and the stage enable the entire surface of the substrate 1 to be inspected. A fine circuit pattern is provided on the substrate 1, and when the incident light flux I is irradiated, discrete diffracted light is generated from the circuit pattern. The light receiver 2 is
It has light-receiving surfaces 2A and 2B for outputting respective independent photoelectric signals, and each light-receiving surface has a longitudinal direction and a lateral direction.

【0011】ここで、入射光束Iの入射点Oを中心とし
て模式的に描いた任意半径の球体Sを考える。受光面2
A、2B(斜線部分)による球体S上の曲断面は図中の
曲断面2A1、2B1(斜線部分)となり、曲断面2A
1、2B1の基板1上の基板検査面(XY平面)への正
射影C1 、C2 はX方向に平行な長手方向をそれぞれ有
し、正射影C1 、C2 の短手方向の間隔Mvがv0 だけ
離れている。ここで、v0 は入射光束Iによる曲断面i
の正射影図i1 のV方向の長さであり、曲断面2A1、
2B1は受光面2A、2Bが回折光を受光したと仮定し
たとき、回折光が球体S上を貫通する領域をいう。同様
に、曲断面iは入射光束Iが球体Sを貫通する領域をい
う。
Now, let us consider a sphere S having an arbitrary radius which is schematically drawn with the incident point O of the incident light beam I as the center. Light receiving surface 2
The curved cross section on the sphere S by A, 2B (hatched portion) becomes the curved cross section 2A1, 2B1 (hatched portion) in the figure, and the curved cross section 2A
Orthogonal projections C 1 and C 2 of 1 and 2B1 onto the substrate inspection surface (XY plane) on the substrate 1 have longitudinal directions parallel to the X direction, respectively, and the space between the orthogonal projections C 1 and C 2 in the lateral direction. Mv are separated by v 0 . Here, v 0 is the curved section i due to the incident light beam I
Is the length in the V direction of the orthogonal projection diagram i 1 of the curved section 2A1,
2B1 is a region where the diffracted light penetrates the sphere S, assuming that the light receiving surfaces 2A and 2B receive the diffracted light. Similarly, the curved cross section i refers to a region where the incident light flux I penetrates the sphere S.

【0012】また受光面2A、2Bの短手方向の長さ
は、正射影C1 、C2 のY方向の長さD1 、D2
1 、v2 となるように設けられている。受光面2A、
2Bの短手方向の幅は、パターンと異物との弁別能力を
考慮すると短いほうが好ましい。この結果、減少する受
光面2A、2Bの面積は長手方向を長くすることにより
補うことができ、受光光量を補い、電気的なSN比の低
下を防止できる。尚、図1で受光器2は入射点Oよりf
−θレンズ3側に設けてあるが、これに限るものでな
い。また、受光面2A、2Bは任意の半径の球体S1
に設けられているものとし、受光面2A、2Bの間隔、
形状、並設方向等についての詳細は後述する。
The lengths of the light receiving surfaces 2A and 2B in the lateral direction are set so that the lengths D 1 and D 2 of the orthogonal projections C 1 and C 2 in the Y direction are v 1 and v 2 , respectively. .. Light receiving surface 2A,
It is preferable that the width of 2B in the lateral direction is shorter in consideration of the ability to discriminate the pattern from the foreign matter. As a result, the decreasing areas of the light receiving surfaces 2A and 2B can be compensated by lengthening the longitudinal direction, the amount of received light can be compensated, and the electrical SN ratio can be prevented from lowering. It should be noted that in FIG.
Although it is provided on the −θ lens 3 side, it is not limited to this. The light receiving surfaces 2A and 2B are provided on a sphere S 1 having an arbitrary radius, and the distance between the light receiving surfaces 2A and 2B is
Details of the shape, the arrangement direction, and the like will be described later.

【0013】受光器2から出力された光電信号の各々は
制御部8に入力する。さて、図2を参照にして信号処理
系について説明する。受光面2A、2Bからの各光電信
号は、夫々増幅器101,102に入力する。そして増
幅された信号e1,e2は夫々比較器105,106に
入力する。比較器の入力の他方にはスライスレベル発生
器111からのスライス電圧Vsが印加される。比較器
105,106では信号e1,e2の電圧値とスライス
電圧Vsとの比較が行われ、比較器105,106は、
信号e1,e2の電圧値がスライス電圧Vsよりも大き
いときアンド回路109に、信号e3,e4の夫々を出
力する。信号e1,e2の電圧値がスライス電圧Vsよ
りも小さいときは比較器105,106からアンド回路
109へ信号は出力されない。このスライス電圧Vsを
スライスレベル発生器111によって調整することによ
り、検出すべき異物の大きさを設定することができる。
アンド回路109で信号e3,e4の論理積をとること
によって、回路パターンと異物を弁別することができ
る。受光面2A、2Bを所定の条件(詳細後述)で配置
することにより、受光面2A、2Bは回路パターンから
の空間的に離散的な回折光を同時に受光せず、演算結果
は0となる。これに対して、異物からの空間的に連続的
な散乱光は各受光面に同時に入力し、演算結果は1とな
る。以上より、容易に回路パターンと異物の弁別を行う
ことができる。以上の回路は装置を総括的に制御する制
御部8内に設けられている。
Each of the photoelectric signals output from the light receiver 2 is input to the control unit 8. Now, the signal processing system will be described with reference to FIG. The photoelectric signals from the light receiving surfaces 2A and 2B are input to the amplifiers 101 and 102, respectively. Then, the amplified signals e1 and e2 are input to the comparators 105 and 106, respectively. The slice voltage Vs from the slice level generator 111 is applied to the other input of the comparator. The comparators 105 and 106 compare the voltage values of the signals e1 and e2 with the slice voltage Vs.
When the voltage values of the signals e1 and e2 are larger than the slice voltage Vs, the signals e3 and e4 are output to the AND circuit 109, respectively. When the voltage values of the signals e1 and e2 are smaller than the slice voltage Vs, the signals are not output from the comparators 105 and 106 to the AND circuit 109. By adjusting the slice voltage Vs by the slice level generator 111, the size of the foreign matter to be detected can be set.
By ANDing the signals e3 and e4 with the AND circuit 109, the circuit pattern and the foreign matter can be discriminated. By arranging the light receiving surfaces 2A and 2B under a predetermined condition (details will be described later), the light receiving surfaces 2A and 2B do not simultaneously receive the spatially discrete diffracted light from the circuit pattern, and the calculation result becomes 0. On the other hand, spatially continuous scattered light from a foreign substance is simultaneously input to each light receiving surface, and the calculation result is 1. As described above, the circuit pattern and the foreign matter can be easily discriminated. The above circuits are provided in the control unit 8 which controls the apparatus as a whole.

【0014】さて、基板1上に設けられている比較的微
細度の高いパターニングで製作されるDRAM等のメモ
リICの回路パターンは、2次元の周期パターンを多く
含み、基板1のX方向、Y方向に周期を持つものや、X
或いはY方向に線対称の周期を持つパターンが殆んどで
ある。ここでは、基板のX方向、Y方向と図1のX方向
とY方向とは一致しているものとし、以下単に「X方
向、Y方向」という。本実施例では、基板1上に設けら
れている微細な2次元周期パターンは、素子分離パター
ン、キャパシタ、コンタクトホール等であるものとす
る。
The circuit pattern of a memory IC such as a DRAM, which is formed on the substrate 1 by patterning with a relatively high degree of fineness, includes many two-dimensional periodic patterns. X with a cycle in the direction
Alternatively, most of the patterns have a line symmetrical period in the Y direction. Here, it is assumed that the X direction and the Y direction of the substrate coincide with the X direction and the Y direction in FIG. 1, and are simply referred to as “X direction and Y direction” below. In this embodiment, the fine two-dimensional periodic pattern provided on the substrate 1 is an element isolation pattern, a capacitor, a contact hole or the like.

【0015】以下、この2次元の周期パターンにより発
生する回折光について説明する。図3は2次元周期パタ
ーンより発生する回折光の様子を示すために、図1の一
部を概略的に示す図である。図3で、入射光束Iは、点
Oを中心とした所定の開口角(f−θレンズ3の開口数
で決まる角度)γを有する円錐状の光束であり、球体S
の曲面の一部分を慣通している。この慣通部分を図中で
は曲断面iとして示す。また曲断面iのXY平面への正
射影を正射影i1 として図示している。同様に、正反射
光束Irについても、球体Sの貫通部分を曲断面r、曲
断面rのXY平面への正射影を正射影r1 として図示し
ている。入射光束Iのフォーカス点に点Oが一致してい
るので正射影r1 は正射影i1 と合同な形状となる。
The diffracted light generated by this two-dimensional periodic pattern will be described below. FIG. 3 is a diagram schematically showing a part of FIG. 1 in order to show a state of diffracted light generated from a two-dimensional periodic pattern. In FIG. 3, the incident light flux I is a conical light flux having a predetermined aperture angle (angle determined by the numerical aperture of the f-θ lens 3) γ centered on the point O, and is a sphere S.
I am accustomed to a part of the curved surface. This common portion is shown as a curved section i in the figure. Further, the orthogonal projection of the curved cross section i on the XY plane is shown as the orthogonal projection i 1 . Similarly, for the regular reflection light flux Ir, the penetrating portion of the sphere S is shown as a curved cross section r, and the orthogonal projection of the curved cross section r on the XY plane is shown as the orthogonal projection r 1 . Since the point O coincides with the focus point of the incident light flux I, the orthographic projection r 1 has a congruent shape with the orthographic projection i 1 .

【0016】正射影i1 と正射影r1 との形状は入射光
束Iの開口角γと入射角θにより決定される。いま、球
体Sの半径は1/λ(λ=入射光束Iの波長)であり、
正射影i1 (或いは正射影r1 )のV方向の長さv0
U方向の長さu0 は式(2)、(3)で示される。 v0 =2/λ・ sinγ・ cosθ (2) u0 =2/λ・ sinγ (3) ここで、入射ビームIの照射領域が回路パターンよりも
小さいため複数の回路パターンが照射領域に入らない場
合は、回折光の発生は単純であり、図18に示すような
従来の異物検査装置で対応可能であった。しかし、パタ
ーンが微細化し、図4に示すように照射領域Is中に複
数の回路パターンが存在すると回折光は離散的に発生す
るとともに、マクロ的には等方的な回折光分布となる。
このため、前述の如く異物と回路パターンとの弁別が困
難となった。図4はX、Y両方向にピッチ2Pで配列さ
れた2次元パターンを示している。本実施例では入射光
束Iは入射角θで回路パターンに入射するため、照射領
域Isは楕円状となる。従って、X、Y方向に同じピッ
チで配列されたパターンからの回折光であっても、正射
影の形状はY方向に短手方向を持つものとなり、Y方向
の回折光間の間隔は広がる。
The shapes of the orthographic projection i 1 and the orthographic projection r 1 are determined by the aperture angle γ and the incident angle θ of the incident light beam I. Now, the radius of the sphere S is 1 / λ (λ = wavelength of the incident light beam I),
The length v 0 in the V direction and the length u 0 in the U direction of the orthographic projection i 1 (or the orthographic projection r 1 ) are expressed by equations (2) and (3). v 0 = 2 / λ · sinγ · cos θ (2) u 0 = 2 / λ · sinγ (3) Here, since the irradiation area of the incident beam I is smaller than the circuit pattern, a plurality of circuit patterns do not enter the irradiation area. In this case, the generation of diffracted light was simple, and a conventional foreign matter inspection apparatus as shown in FIG. 18 could be used. However, if the pattern is miniaturized and a plurality of circuit patterns exist in the irradiation region Is as shown in FIG. 4, diffracted light is generated discretely and has a macroscopically isotropic diffracted light distribution.
Therefore, as described above, it is difficult to distinguish the foreign matter from the circuit pattern. FIG. 4 shows a two-dimensional pattern arranged at a pitch 2P in both X and Y directions. In this embodiment, since the incident light flux I is incident on the circuit pattern at the incident angle θ, the irradiation area Is has an elliptical shape. Therefore, even if the diffracted light is from the patterns arranged at the same pitch in the X and Y directions, the shape of the orthogonal projection has the lateral direction in the Y direction, and the interval between the diffracted lights in the Y direction is widened.

【0017】次に、微細な2次元周期パターンの周期性
に着目して回折光の分布状態を説明する。まず、図5
(a)に示すようなX、Y直交座標に沿った微細な2次
元周期パターンからの回折光の分布状態を考える。図5
(a)のような2次元周期パターンは、DRAMでは、
キャパシタ、コンタクトホール等に多く用いられる。図
5(b)は、図3の正射影r1 (i1 )と同様の作図手
順で、回路パターンからの回折光が球体Sを貫通する曲
断面の正射影を示す図であり、X方向のピッチはPx、
Y方向のピッチはPyである。図5(b)で座標軸U、
Vは正反射光Irの正射影r1 の中心を原点O1とした
新たな座標軸であり、XY座標が実在平面を示し、単位
は長さであるのに対し、UV座標は回折光の方向余弦を
表示するためのフーリエ平面であり単位は空間周波数で
ある。微細な回路パターンからの回折光は空間的に離散
度を持って発生し、図5(b)に示すように回折光の正
射影も離散的となる。また離散的な回折光各々の正射影
は正反射光の正射影r1 と合同な形状となっている。さ
らに、回折光の正射影のピッチはパターンルールに逆比
例しており、U方向のピッチは1/Px、V方向のピッ
チは1/Pyとなる。
Next, focusing on the periodicity of the fine two-dimensional periodic pattern, the distribution state of the diffracted light will be described. First, FIG.
Consider the distribution state of diffracted light from a fine two-dimensional periodic pattern along the X and Y orthogonal coordinates as shown in (a). Figure 5
In the DRAM, the two-dimensional periodic pattern as shown in FIG.
It is often used for capacitors and contact holes. FIG. 5B is a diagram showing the orthogonal projection of the curved cross section in which the diffracted light from the circuit pattern penetrates the sphere S in the same drawing procedure as the orthogonal projection r 1 (i 1 ) of FIG. The pitch is Px,
The pitch in the Y direction is Py. In FIG. 5B, the coordinate axis U,
V is a new coordinate axis with the center of the orthographic projection r 1 of the regular reflection light Ir as the origin O 1 , and the XY coordinate indicates the real plane and the unit is the length, whereas the UV coordinate is the direction of the diffracted light. It is a Fourier plane for displaying the cosine, and its unit is the spatial frequency. Diffracted light from a fine circuit pattern is spatially generated with a discrete degree, and the orthogonal projection of the diffracted light is also discrete as shown in FIG. 5B. Further, the orthogonal projection of each of the discrete diffracted lights has a shape congruent with the orthogonal projection r 1 of the specular reflection light. Further, the pitch of the orthogonal projection of the diffracted light is inversely proportional to the pattern rule, and the pitch in the U direction is 1 / Px and the pitch in the V direction is 1 / Py.

【0018】図3に、これらの回折光の正射影の1つで
ある正射影E1 とその曲断面Eを示す。ここで、正射影
1 の中心を通りV軸に平行な直線とX軸との交点をO
2 で示し、交点O2 を含みZ軸と平行な直線をn1 で示
し、曲断面Eの中心と交点O 2 とを含む直線をn2 で示
す。直線n1 と直線n2 とのなす角度(V方向に平行な
球体S上の曲線Fでのなす空間的角度)をβとする。ま
た、図9のように曲断面Eの入射点Oを中心としたV方
向に関する空間的角度を2εとする。
FIG. 3 shows one of the orthographic projections of these diffracted lights.
An orthographic projection E1And its curved section E are shown. Where the orthographic projection
E1O at the intersection of the X-axis and a straight line passing through the center of
2, And the intersection O2A straight line parallel to the Z axis including1Indicated by
And the intersection O with the center of the curved section E 2A straight line including and2Indicated by
You Straight line n1And straight line n2Angle formed by and (parallel to V direction
Let β be the spatial angle formed by the curve F on the sphere S. Well
Also, as shown in FIG. 9, the V direction with the incident point O of the curved cross section E as the center
Let the spatial angle with respect to the direction be 2ε.

【0019】図6(a)はa軸、b軸方向に各々ピッチ
Pbで配列された周期パターンを示している。a軸とb
軸とはX軸、及びY軸に対して線対称な関係となってお
り、各々X軸に対してθ1 だけ傾いている。図6(a)
に示すパターンは、DRAMでは素子分離体として多く
用いられる。図6(b)は図6(a)の回路パターンか
らの回折光の正射影を示しており、図6(a)との関係
は図5(a)と図5(b)との関係と同様である。図6
(b)における周期方向a1 は図6(a)の周期方向a
に直交しており、図6(a)の回折光の正射影の周期方
向b1 は図6(b)の周期方向bに直交している。回折
光の正射影の周期方向a1 、又はb1 の各々のピッチは
1/Pbとなり、パターンのピッチPbと逆比例してい
る。
FIG. 6A shows a periodic pattern arranged at the pitch Pb in the a-axis and b-axis directions. a axis and b
The axis has a line-symmetrical relationship with the X-axis and the Y-axis, and each is inclined by θ 1 with respect to the X-axis. Figure 6 (a)
The pattern shown in (1) is often used as an element isolation body in DRAM. FIG. 6B shows the orthogonal projection of the diffracted light from the circuit pattern of FIG. 6A, and the relationship with FIG. 6A is the relationship between FIG. 5A and FIG. It is the same. Figure 6
The periodic direction a 1 in (b) is the periodic direction a in FIG. 6 (a).
6A, the periodic direction b 1 of the orthogonal projection of the diffracted light in FIG. 6A is orthogonal to the periodic direction b in FIG. 6B. The pitch in the periodic direction a 1 or b 1 of the orthogonal projection of the diffracted light is 1 / Pb, which is inversely proportional to the pattern pitch Pb.

【0020】図7(a)は、X軸、及びY軸に対称なc
軸とd軸とに周期方向をもつ一般的なパターンが、各周
期方向に各々にピッチPdで配列された例を示す図であ
る。c軸とd軸とは各々X軸に対してθ2 だけ傾いてい
る。回折光の分布するV軸上の座標はパターン1つずつ
の形状に左右されないため、丸印で存在個所のみ示し
た。図7(b)は図7(a)の回路パターンからの回折
光の正射影を示しており、図7(a)との関係は図5
(a)と図5(b)との関係と同様である。図7(b)
の回折光の正射影はca 軸とd1 軸上に分布する。図6
の場合と同様に、c軸とca 軸、及びd軸とd1 軸は直
交し、回折光の正射影の周期方向のピッチ1/Pdはパ
ターンのピッチPdに逆比例する。
FIG. 7A shows c which is symmetrical with respect to the X axis and the Y axis.
It is a figure which shows the example which the general pattern which has a periodic direction in an axis and a d-axis is arranged by the pitch Pd in each periodic direction. The c-axis and the d-axis are each inclined by θ 2 with respect to the X-axis. Since the coordinates on the V-axis where the diffracted light is distributed do not depend on the shape of each pattern, only the existing positions are indicated by circles. FIG. 7B shows the orthogonal projection of the diffracted light from the circuit pattern of FIG. 7A, and the relationship with FIG.
The relationship between (a) and FIG. 5 (b) is the same. Figure 7 (b)
The orthographic projection of the diffracted light of is distributed on the c a axis and the d 1 axis. Figure 6
As in the case of, c-axis and c a-axis, and the d-axis and the d 1 axes are orthogonal and a pitch 1 / Pd orthogonal projection of the period direction of the diffraction light is inversely proportional to the pitch Pd of the pattern.

【0021】次に、本実施例による回路パターンと異物
との弁別について説明する。図8は受光面が2つである
場合の離散性による弁別の原理を示す図であり、縦軸は
回折光の強度、及び異物からの散乱光の強度を示し、横
軸はV軸上での正射影の位置を示している。ここでは、
図5(a)、図6(a)、図7(a)に示すような2次
元周期パターンを考えるものとし、図5(b)、図6
(b)、図7(b)に示す回折光分布のうち、正射影が
V軸と平行方向の一列の回折光の強度分布を考える。前
述の如く、微細なパターンからの回折光は離散的に分布
する。また、前述の如く各回折光の正射影と正反射光束
Irの正射影r1 とはほぼ合同な形状であり、また正反
射光束Irの正射影r1 と図3に示す入射光束Iの正射
影i1 とはほぼ合同な形状である。従って、正射影i1
と各回折光の正射影とはほぼ合同な形状となる。この離
散度と各回折光の正射影の形状とに着目し、図1を用い
て説明すると本実施例では 〔1〕.受光器2の2つの受光面2A、2Bの正射影C
1 とC2との間隔Mvを入射光束Iの正射影iのV方向
の幅v0 以上とする。 〔2〕.受光面2Aの正射影C1 のV方向の幅D1 と受
光面2Bの正射影C2 のV方向の幅D2 と2つの正射影
の間隔Mvとの和がV方向で隣接する回折光間の間隔以
下とする。
Next, the discrimination between the circuit pattern and the foreign matter according to this embodiment will be described. FIG. 8 is a diagram showing the principle of discrimination by the discreteness when there are two light receiving surfaces, the vertical axis shows the intensity of diffracted light and the intensity of light scattered from foreign matter, and the horizontal axis is on the V axis. Shows the position of the orthographic projection of. here,
Assuming a two-dimensional periodic pattern as shown in FIGS. 5A, 6A, and 7A, FIG. 5B and FIG.
Of the diffracted light distributions shown in (b) and FIG. 7 (b), consider the intensity distribution of the diffracted light in a line in which the orthogonal projection is parallel to the V axis. As described above, the diffracted light from the fine pattern is distributed discretely. Further, as described above, the orthographic projection of each diffracted light and the orthographic projection r 1 of the regular reflection light beam Ir are almost congruent with each other, and the orthographic projection r 1 of the regular reflection light beam Ir and the incident light beam I shown in FIG. The shape is almost congruent with the projection i 1 . Therefore, the orthographic projection i 1
And the orthographic projection of each diffracted light have almost the same shape. Paying attention to the discreteness and the shape of the orthogonal projection of each diffracted light, the description will be made with reference to FIG. Orthogonal projection C of the two light receiving surfaces 2A and 2B of the light receiver 2
The distance Mv between 1 and C 2 is set to be not less than the width v 0 of the orthogonal projection i of the incident light beam I in the V direction. [2]. Diffracted light sum of orthogonal projection C 1 between the width D 1 of the V direction and the width D 2 of the positive projection C 2 in the V direction the light-receiving surface 2B and two orthogonal projection interval Mv of the light receiving surface 2A are adjacent in the V direction It should be less than the interval.

【0022】の2つの条件を満たすように受光器2を配
置した。受光器をこのような配置にすることにより、微
細な回路パターンからの空間的に離散した回折光は2つ
の受光面2A、2Bの全てに入射することはなく、一
方、異物からの空間的に連続した散乱光は2つの受光面
2A、2Bの両方に入射する。このため、前述如く、各
々の受光面からの信号の論理積をとることにより異物と
回路パターンとが弁別可能となる。これを以下では“離
散性による弁別”と呼ぶ。このときの解像度Res は
(4)式により求まる。 Res =D1 +Mv+D2 (4) した。図8においては図5(b)の正射影の分布を、
は図6(b)正射影の分布を、は図7(b)の正射
影の分布を示している。従って、δ0 は1/Py、δ1
は1/Pb・sinθ1 、δ3 は1/Pd・sinθ2
となる。〜の各々の場合において、各回折光の正射
影の幅はv0 であり、Mv=v0 とする。そして、〜
各々の場合において、δ≧D1 +v0 +D2 となるよ
うに受光面2Aと2Bとの大きさ(D1 とD2 との大き
さ)を決定する。(4)式より、(D1 、D2)とMv
は小さいほど解像度が向上することがわかり、Mvとv
0 とをほぼ等しくすることが分解能の点で有利である。
The light receiver 2 is arranged so as to satisfy the two conditions. By arranging the light receivers in this way, the spatially discrete diffracted light from the fine circuit pattern does not enter all of the two light-receiving surfaces 2A and 2B, while the light from the foreign matter is spatially separated. The continuous scattered light enters both of the two light receiving surfaces 2A and 2B. Therefore, as described above, the foreign matter and the circuit pattern can be discriminated by taking the logical product of the signals from the respective light receiving surfaces. This is called "discrimination by discreteness" below. The resolution Res at this time is obtained by the equation (4). Res = D 1 + Mv + D 2 (4). In FIG. 8, the distribution of the orthogonal projection of FIG.
6B shows the distribution of the orthogonal projections, and FIG. 7B shows the distribution of the orthogonal projections of FIG. 7B. Therefore, δ 0 is 1 / Py, δ 1
Is 1 / Pb · sin θ 1 and δ 3 is 1 / Pd · sin θ 2
Becomes In each of the cases, the width of the orthogonal projection of each diffracted light is v 0 , and Mv = v 0 . And ~
In each case, the sizes of the light-receiving surfaces 2A and 2B (sizes of D 1 and D 2 ) are determined so that δ ≧ D 1 + v 0 + D 2 . From equation (4), (D 1 , D 2 ) and Mv
It can be seen that the smaller the
It is advantageous in terms of resolution to make 0 substantially equal.

【0023】また、同じ受光器2で〜の全ての場合
に離散性による弁別を行う場合は、(D1 +v0
2 )がδ0 とδ1 とδ2 のうち一番小さな値以下とな
るように受光面2Aと2Bの大きさを決定すればよい。
U方向についても同様に、Mv≧u0 として前述の
〔1〕及び〔2〕の条件を満たすように受光器を配置す
ればよい。
In the case where the same photodetector 2 discriminates by discreteness in all cases of (D), (D 1 + v 0 +
The sizes of the light receiving surfaces 2A and 2B may be determined so that D 2 ) is equal to or smaller than the smallest value of δ 0 , δ 1 and δ 2 .
Similarly in the U direction, Mv ≧ u 0 and the light receivers may be arranged so as to satisfy the above conditions [1] and [2].

【0024】次に図3と図9を参照して正射影と実際の
受光系位置との関係について説明する。図9は図3をQ
方向から見た平面図を示している。図9で曲断面の球体
S上の接線方向の幅をWとすると、Wは次式で表され
る。 W=v0 /cosβ (5) また、図3のεを考慮すると、2/λsinε=Wとな
り、 sinε=λ・W/2 (6) となり、(2)、(5)、(6)式から sinε=λ・v0 /2・cosβ=sinγ・cosθ/cosβ (7) となる。
Next, the relationship between the orthographic projection and the actual position of the light receiving system will be described with reference to FIGS. FIG. 9 shows Q in FIG.
The top view seen from the direction is shown. Assuming that the width of the curved section in the tangential direction on the sphere S in FIG. 9 is W, W is expressed by the following equation. W = v 0 / cos β (5) Further, considering ε in FIG. 3, 2 / λ sin ε = W, sin ε = λ · W / 2 (6), and equations (2), (5), and (6) are obtained. the sinε = λ · v 0/2 · cosβ = sinγ · cosθ / cosβ (7) from.

【0025】従って、入射角θと開口角γと受光器の所
望の配置位置に応じたβとを予め定めておけば(7)式
から曲断面上の受光面の間隔が求まり、正射影図上で前
述の〔1〕、〔2〕の条件を満たすように受光面の間隔
や幅を定めるようにすればよい。ここで、正射影図上で
の条件を用いて、曲断面上での受光面の間隔や幅を定め
る理由について説明する。図3の曲断面i(曲断面r)
付近では曲断面の形状はほぼ一定であり、ここに受光器
を配置する場合は、開口角γから受光面の間隔を求める
ことができる。しかしながら、曲断面i付近以外(曲断
面r付近以外)では曲断面形状が曲断面iとは若干異な
り、開口角γだけでは、受光面の間隔や幅は正確に求め
ることができず、正確に間隔や幅を求めたい場合には実
測等を行う必要がある。これに対して、前述の如く
〔1〕、〔2〕や(7)式の条件から受光面の間隔や幅
を求めることにより、受光器を任意位置に配置しても、
回折光の曲断面形状に合わせて受光面を配置することが
できる。これはU方向についても同様である。
Therefore, if the incident angle θ, the aperture angle γ, and β corresponding to the desired position of the light receiver are determined in advance, the distance between the light receiving surfaces on the curved cross section can be obtained from the equation (7), and the orthogonal projection diagram is obtained. The intervals and widths of the light receiving surfaces may be determined so as to satisfy the above conditions [1] and [2]. Here, the reason for determining the intervals and widths of the light receiving surfaces on the curved cross section using the conditions on the orthogonal projection diagram will be described. Curved section i (curved section r) of FIG.
The shape of the curved cross section is almost constant in the vicinity, and when the light receiver is arranged here, the distance between the light receiving surfaces can be obtained from the opening angle γ. However, the curved cross-section shape is slightly different from the curved cross-section i except near the curved cross-section i (other than near the curved cross-section r), and the gap or width of the light-receiving surface cannot be accurately determined only by the opening angle γ, and thus it is accurate. It is necessary to perform actual measurement, etc., in order to obtain the interval and width. On the other hand, as described above, even if the light receiver is arranged at an arbitrary position by obtaining the distance and width of the light receiving surface from the conditions of [1], [2] and (7),
The light receiving surface can be arranged according to the curved cross-sectional shape of the diffracted light. This also applies to the U direction.

【0026】図10は受光器2の受光面を3つとして分
解能を高めた場合の離散性による弁別の原理を示す図で
あり、縦軸は回折光の強度、及び異物からの散乱光の強
度を示し、横軸はV軸上での正射影の位置を示してい
る。ここでは、図5(a)、図6(a)、図7(a)に
示すような2次元周期パターンの微細度が低くなった場
合とし、回折光分布のうち、正射影がV軸と平行方向の
一列の回折光の強度分布を考える。〜は各々〜
の場合の回路パターンの微細度が低くなった場合の正射
影の分布を示しているものとし、〜各々の正射影の
間隔δ3 、δ4 、δ5 は〜各々の正射影の間隔より
小さくなっている。本実施例では、 〔3〕.受光器2の3つの受光面2A、2B、2Cの正
射影C1 とC2 とC3 とのうち、正射影C1 とC3 との
間隔Mvを入射光束Iの正射影iのV方向の幅v 0 以上
とする。 〔4〕.受光面2A、2B、2Cの正射影C1 、C2
3 のV方向の幅を各々D0 とし、正射影C1 とC2
及び正射影C2 とC3 との間隔を各々Mv1 とし、隣接
する2つの正射影の幅の和2D0 と隣接する2つの正射
影の間隔Mv1 との和がV方向で隣接する回折光間の間
隔以下とする。
In FIG. 10, the light receiving surface of the light receiver 2 is divided into three parts.
It is a figure showing the principle of discrimination by the discreteness when the resolution is increased.
The vertical axis indicates the intensity of diffracted light and the intensity of light scattered from foreign matter.
And the horizontal axis shows the position of the orthographic projection on the V axis.
It Here, in FIG. 5 (a), FIG. 6 (a), and FIG. 7 (a)
When the fineness of the two-dimensional periodic pattern as shown
In the diffracted light distribution, the orthogonal projection is in the direction parallel to the V axis.
Consider the intensity distribution of a line of diffracted light. ~ Is each ~
Orthogonality when the fineness of the circuit pattern becomes low
Assuming the distribution of shadows, ~ of each orthographic projection
Interval δ3, ΔFour, ΔFiveIs the interval of each orthographic projection
It is getting smaller. In the present embodiment, [3]. The three light-receiving surfaces 2A, 2B, 2C of the light receiver 2 are positive.
Projection C1And C2And C3Of the orthographic projection C1And C3With
The interval v is the width v of the orthographic projection i of the incident light flux I in the V direction. 0that's all
And [4]. Orthogonal projection C of the light receiving surfaces 2A, 2B, 2C1, C2,
C3The width in the V direction of D0And the orthographic projection C1And C2,
And orthographic projection C2And C3And Mv1And adjacent
The sum of the widths of the two orthographic projections0Two orthos adjacent to
Shadow interval Mv1Is between the diffracted lights that are adjacent in the V direction.
It should be less than a threshold.

【0027】の2つの条件を満たすように受光器2を配
置した。さらに、n個の受光面を用いて離散性による弁
別を行う場合は、 〔5〕.両端の正射影の間隔Mをv0 以上とし、隣接す
る2つの正射影の幅の和とこの2つの正射影間の幅Mv
1 との和がV方向で隣接する回折光間の間隔以下とする
ように配置する。
The photodetector 2 is arranged so as to satisfy the two conditions. Furthermore, when discriminating by discreteness using n light-receiving surfaces, [5]. The interval M of the orthographic projections at both ends is set to v 0 or more, the sum of the widths of two adjacent orthographic projections, and the width Mv between the two orthographic projections.
The arrangement is such that the sum of 1 and the distance is less than or equal to the distance between adjacent diffracted lights in the V direction.

【0028】の条件を満たすように受光器を配置するこ
とにより、分解能を向上させて離散性による弁別が可能
となる。このようなn個の受光面により離散性による弁
別を行った場合で、受光面の正射影の幅をD0 、Mvと
0 とをほぼ等しくしたときの分解能Res は(8)式に
より求まる。 Res ≧2D0 +〔v0 −(n−2)D0 〕/(n−1) (8) U方向についても同様に、Mu≧u0 として前述の
〔3〕及び〔4〕、〔5〕の条件を満たすように受光器
を配置すればよい。
By arranging the photodetectors so as to satisfy the condition (3), it is possible to improve the resolution and discriminate by the discreteness. When discriminating by the discreteness is performed by such n light-receiving surfaces, the resolution Res when the width of the orthogonal projection of the light-receiving surface is set to D 0 and Mv and v 0 are approximately equal is obtained by the equation (8). .. Res ≧ 2D 0 + [v 0 − (n−2) D 0 ] / (n−1) (8) Similarly for the U direction, Mu ≧ u 0 and the above [3] and [4], [5] The light receiver may be arranged so as to satisfy the condition [].

【0029】次に、図1、図5〜図7、図11〜図13
を参照して2次元的な受光面形状と配置の最適化につい
て説明する。図5(b)、図6(b)、図7(b)で正
射影C1 、C2 は正射影がU方向に長手方向を持つよう
にしてV方向に並設されるように受光器2が配置されて
いる様子を示しており、正射影C1a、C2aは正射影がV
方向に長手方向を持つようにしてU方向に並設されるよ
うに受光器2が配置されている様子を示している。受光
面の正射影が長手方向を持つようにしたのは、受光面積
を大きくしてSN比を大きくするためである。実際の受
光面は半径を考慮して前述の条件〔1〕、〔2〕、
(7)式を満たすように配置すればよい。
Next, FIGS. 1, 5 to 7, and 11 to 13
Optimization of the two-dimensional shape and arrangement of the light-receiving surface will be described with reference to FIG. In FIG. 5B, FIG. 6B, and FIG. 7B, the orthographic projections C 1 and C 2 are light receivers such that the orthographic projections are arranged side by side in the V direction so that the orthographic projections have the longitudinal direction in the U direction. 2 is arranged, and the orthogonal projections C 1a and C 2a have the orthogonal projection V
It shows that the light receivers 2 are arranged so as to be arranged in parallel in the U direction so as to have a longitudinal direction in the direction. The reason why the orthogonal projection of the light receiving surface has the longitudinal direction is to increase the light receiving area and the SN ratio. Considering the radius of the actual light receiving surface, the above conditions [1], [2],
It may be arranged so as to satisfy the expression (7).

【0030】図3に示すような円錐状に集光されたビー
ムを基板1に斜入射する場合、前述の如く照射領域は楕
円状になり、回折光の正射影の形状はu0 >v0 とな
る。従って、受光面の正射影がV方向に並設されるよう
に受光器2を配置することが分解能の点で有利である。
また、u0 >v0 となるから、回折光の正射影が存在し
ない領域はV方向に長くなるので隣接する回折光の正射
影間の間隔が大きくなり正射影C1 、C2 の幅を太くす
ることができSN比向上が可能となる。さらに、入射角
θも大きい方が回折光の正射影のV方向の間隔v0 が小
さくなるとともに回折光の存在しない領域がV方向に長
くなり有利となる。このような受光器の形状、配置によ
りSN比のよい離散性による弁別が可能となる。尚、受
光器の数に制限が無い場合は、正射影(C1 、C2 )と
正射影(C1a、C2a)とを組み合わせてもよい。
When a conical beam as shown in FIG. 3 is obliquely incident on the substrate 1, the irradiation area is elliptical as described above, and the orthogonal projection shape of the diffracted light is u 0 > v 0. Becomes Therefore, it is advantageous in terms of resolution to arrange the light receivers 2 so that the orthogonal projections of the light receiving surfaces are arranged in the V direction.
Further, since u 0 > v 0 , the region where the orthogonal projection of the diffracted light does not exist becomes longer in the V direction, and the interval between the adjacent orthogonal projections of the diffracted light becomes larger, and the width of the orthogonal projections C 1 and C 2 is reduced. The thickness can be increased and the SN ratio can be improved. Further, the larger the incident angle θ, the smaller the interval v 0 of the orthogonal projection of the diffracted light in the V direction and the longer the region in which the diffracted light does not exist in the V direction, which is advantageous. By such a shape and arrangement of the light receivers, it is possible to perform discrimination based on the discreteness with a good SN ratio. If the number of light receivers is not limited, the orthogonal projections (C 1 , C 2 ) and the orthogonal projections (C 1a , C 2a ) may be combined.

【0031】また、受光器の正射影が長手方向を持つこ
とにより、回折光の正射影の分布によっては離散性によ
る弁別ができない受光器の配置が存在する。図6
(b)、図7(b)では回折光の正射影はU方向では整
列して分布しているものの、V方向では整列していない
ため、2つの正射影C1a、C2aが両方とも回折光の正射
影と重なってしまう。このことは、2つの受光面2A、
2Bの両方ともに回路パターンからの回折光が入射する
ことを意味し、離散性による弁別が行えない。従って、
図6(b)、図7(b)の場合でも、V方向に正射影C
1 、C2 が並設するように受光器2を配置すると良い。
また、図5(b)の場合と同様の理由による正射影
1 、C2 のV方向への並設の有利点があるのはいうま
でもない。このような受光器の配置によりパターンノイ
ズに対するSN比のよい離散性による弁別が可能とな
る。
Since the orthographic projection of the light receiver has the longitudinal direction, there is an arrangement of the light receiver that cannot be discriminated by the discreteness depending on the distribution of the orthographic projection of the diffracted light. Figure 6
In (b) and FIG. 7 (b), although the orthogonal projections of the diffracted light are distributed in the U direction, they are not aligned in the V direction, so that the two orthogonal projections C 1a and C 2a are both diffracted. It overlaps with the orthographic projection of light. This means that the two light receiving surfaces 2A,
Both of 2B mean that diffracted light from the circuit pattern is incident, and discrimination based on discreteness cannot be performed. Therefore,
Even in the case of FIG. 6B and FIG. 7B, the orthogonal projection C in the V direction
It is preferable to arrange the light receiver 2 so that 1 and C 2 are arranged in parallel.
It goes without saying that there is an advantage in arranging the orthogonal projections C 1 and C 2 in the V direction for the same reason as in the case of FIG. 5B. By arranging such a photodetector, it is possible to perform discrimination based on the discreteness of the SN ratio with respect to pattern noise.

【0032】次に、受光器2が複数の受光面を有する場
合について説明する。図11は例えば図5(b)の場合
で、U方向に長手方向を持つ3つの正射影C 1 、C2
3 がV方向に並設される様子を示している。間隔M
v、Mv1 、及び幅D0 は前述の〔3〕、〔4〕の条件
を満たしている。実際の受光面の条件(形状、間隔)に
ついては前述の(5)式を満たすように構成すればよ
い。また、この3つの正射影をU方向に並設してもよ
い。
Next, when the light receiver 2 has a plurality of light receiving surfaces,
Will be explained. FIG. 11 shows the case of FIG. 5 (b), for example.
And three orthographic projections C with the longitudinal direction in the U direction 1, C2,
C3Are arranged in parallel in the V direction. Interval M
v, Mv1, And width D0Is the above condition [3], [4]
Meets For actual light receiving surface conditions (shape, spacing)
If it is constructed so as to satisfy the above equation (5),
Yes. In addition, these three orthographic projections may be arranged side by side in the U direction.
Yes.

【0033】図12は例えば図5(b)の場合で、受光
面の正射影9つが配置されている様子を示している。図
12の場合の受光器面はU、V両方向に分解能を有する
ものである。ここでは、間隔Mv、Mv1 、及び幅D0
は前述の〔5〕の条件を満たしている。この場合、V方
向の条件でU方向の条件が決められているものとする。
実際の受光面の条件(形状、間隔)については前述の
(7)式を満たすように構成すればよい。
FIG. 12 shows, for example, the case of FIG. 5B, in which nine orthogonal projections of the light receiving surface are arranged. The light-receiving surface in the case of FIG. 12 has resolution in both U and V directions. Here, the intervals Mv, Mv 1 and the width D 0
Satisfies the above condition [5]. In this case, it is assumed that the condition in the U direction is determined by the condition in the V direction.
The actual conditions (shape, spacing) of the light receiving surface may be configured so as to satisfy the above expression (7).

【0034】さらに、図13は例えば図5(b)の場合
で、受光面の射影図が升目状に49個配置されている様
子を示している。ここでは、間隔Mv、Mv1 、及び幅
0 は前述の〔5〕の条件を満たしている。この場合、
V方向の条件でU方向の条件が決められているものとす
る。このように、枡目状に受光面の正射影を配置するこ
とにより分解能は向上する。実際の受光面の条件(形
状、間隔)については前述の(5)式を満たすように構
成すればよい。
Further, FIG. 13 shows, for example, the case of FIG. 5B, in which 49 projection views of the light receiving surface are arranged in a grid pattern. Here, the intervals Mv, Mv 1 and the width D 0 satisfy the above condition [5]. in this case,
It is assumed that the U-direction condition is determined by the V-direction condition. Thus, the resolution is improved by arranging the orthogonal projections of the light receiving surface in a grid pattern. The actual conditions (shape, interval) of the light receiving surface may be configured so as to satisfy the above expression (5).

【0035】図13のような正射影が得られる受光器2
の受光面近傍に可変スリットを設けて正射影の形状、方
向を規定し、例えば、図5の(C1 、C2 ),(C1a
2a)、又は図11のC1 〜C3 、図12のC1 〜C9
のような正射影を形成するようにしてもよい。また、可
変スリットの代わりに電気的なマスキングにより所望の
形状、方向の正射影に対応する受光面のみからの信号を
処理するようにしてもよい。次に受光器の最適化の手順
を説明する。
A photodetector 2 capable of obtaining an orthogonal projection as shown in FIG.
A variable slit is provided in the vicinity of the light receiving surface to define the shape and direction of the orthogonal projection. For example, (C 1 , C 2 ) and (C 1a in FIG .
C 2a ), or C 1 to C 3 in FIG. 11 and C 1 to C 9 in FIG.
Alternatively, an orthographic projection such as Further, instead of the variable slit, electrical masking may be used to process the signal from only the light receiving surface corresponding to the orthogonal projection of the desired shape and direction. Next, the procedure for optimizing the light receiver will be described.

【0036】 必要検出異物の決定:通常パターンル
ールの1/5程度とされる。これにより前述の図16、
図17で説明した検出閾値が決定する。 離散性による弁別の必要となるパターン回折光ピッ
チの調査:図16のように必要異物の閾値をDと定めた
場合、図15のパターン回折光は離散性による弁別は不
要であり、図17のパターン回折光では必要となる。つ
まり(1)式の、Sdを越えはじめるパターン回折光の
ピッチを特定しなければならない。受光器に入射する回
折光は高次の回折光であり、高次回折光はパターンエッ
ジによるものが支配的である。ここではパターンエッジ
とは、図14に示すようなクロムパターン20の厚み:
d(≒通常の0.1μm)の短辺部分を意味する。高次
回折光量は、ビーム内の総面積が増加するほど、また、
長辺部分が短いほど増加する。実際に使われる回路パタ
ーンについて、実験により離散性の弁別が必要となるパ
ターンルールになるまでパターンルールをせばめて行
き、閾値Sdを超えるときのパターンピッチPdを求め
これに対応するパターン回折光間隔を求め、これを弁別
する受光器の幅と本数を決めればよい。
Determination of required detected foreign matter: Usually set to about 1/5 of the pattern rule. As a result, as shown in FIG.
The detection threshold value described in FIG. 17 is determined. Investigation of pattern diffracted light pitch required for discriminating by discreteness: When the threshold value of necessary foreign matter is set to D as shown in FIG. 16, pattern diffracted light of FIG. 15 does not require discrimination by discreteness, and FIG. Required for pattern diffracted light. That is, the pitch of the pattern diffracted light that starts to exceed Sd in the equation (1) must be specified. The diffracted light incident on the light receiver is a high-order diffracted light, and the high-order diffracted light is dominated by the pattern edge. Here, the pattern edge means the thickness of the chrome pattern 20 as shown in FIG.
It means a short side portion of d (≈normally 0.1 μm). The higher the amount of diffracted light, the greater the total area in the beam,
The longer the long side, the more it increases. With respect to the circuit pattern actually used, the pattern rules are studded until it becomes a pattern rule that requires discrimination of discreteness by experiments, and the pattern pitch Pd when the threshold value Sd is exceeded is obtained, and the pattern diffracted light interval corresponding to this is determined. The width and the number of light receivers for discriminating this can be determined.

【0037】図15は図17を模式的に表した図であ
り、図15に示すような正射影を持つ受光器を適用した
例を示している。ここで受光範囲Hの積分強度Sdとな
る回折光ピッチをPmとすると回折光間隔δをn本の受
光器により離散性弁別するためには前述の(8)式をみ
たせばよい。図15では、積分受光範囲Hが、受光幅h
と違うが便宜的に、3D0 の信号を積分値として用い
て、Sdを決めてもよい。
FIG. 15 is a diagram schematically showing FIG. 17, and shows an example in which a photodetector having an orthogonal projection as shown in FIG. 15 is applied. Here, if the diffracted light pitch that is the integrated intensity Sd of the light receiving range H is Pm, the above equation (8) may be satisfied in order to discriminate the diffracted light interval δ with n light receivers. In FIG. 15, the integrated light receiving range H is the light receiving width h
However, for the sake of convenience, Sd may be determined by using a 3D 0 signal as an integral value.

【0038】さて、振動ミラー4により光走査を行い、
検査点が、点L、Rに移った場合、模式的に検査点を中
心に球体を新たに描き、光電面2A、2B及び射出瞳7
と検査点が形成する光束と、新たに描いた球体との曲断
面とその正射影の関係が前述した関係からなるべく変化
しないようにf−θレンズ3や受光器2を光走査距離に
比べて十分遠くに配置することが望ましく、検査点が、
受光器に最も近づいた状態で、前記の関係を満足するよ
うにしてもよい。
Now, optical scanning is performed by the vibrating mirror 4,
When the inspection point moves to the points L and R, a sphere is schematically newly drawn around the inspection point, and the photocathodes 2A and 2B and the exit pupil 7 are drawn.
The f-θ lens 3 and the light receiver 2 are compared with the optical scanning distance so that the relationship between the light flux formed by the inspection point, the curved cross section of the newly drawn sphere, and the orthogonal projection thereof does not change as much as possible. It is desirable to place it far enough so that the inspection point
The above relationship may be satisfied in the state of being closest to the light receiver.

【0039】上記の実施例では、回折光と散乱光とは直
接受光器2に入射することとしたが、レンズ系を介して
入射するようにしてもよい。受光面は基板1と像共役な
位置であってもよいし、レンズ系の瞳面、もしくはその
共役面位置近傍に配置するようにしてもよい。また、入
射光束Iは入射角θで基板1に斜入射する構成とした
が、入射角を零として垂直入射させるようにしてもよ
い。
In the above embodiment, the diffracted light and the scattered light are directly incident on the light receiver 2, but they may be incident via a lens system. The light receiving surface may be at a position image-conjugated to the substrate 1, or may be arranged at the pupil plane of the lens system or near the conjugate plane position thereof. Further, although the incident light flux I is obliquely incident on the substrate 1 at the incident angle θ, it may be vertically incident at an incident angle of zero.

【0040】又、周期パターンに多く用いられる位相シ
フターつきレチクルも検査可能である。また、データ比
較よりもスループットが上である。またペリクル付きレ
チクルを検査する際に、入射光によりペリクルフレーム
の散乱光が発生する場合が特にペリクルフレーム付近の
レチクル面を検査する際に多く、受光器の配置に制約が
生じ、入射光の入射面に対し、直角方向に光軸を持つよ
うに、受光器配置をしなくてはならなくなる。本発明に
よればこのような受光器配置をとっても、効率よく、異
物とパターンとの弁別が可能である。
It is also possible to inspect a reticle with a phase shifter that is often used for periodic patterns. Also, the throughput is higher than the data comparison. Also, when inspecting a reticle with a pellicle, scattered light from the pellicle frame is often generated by the incident light, especially when inspecting the reticle surface near the pellicle frame. The receiver must be arranged so that it has an optical axis in a direction perpendicular to the plane. According to the present invention, even if such a light receiver arrangement is adopted, it is possible to efficiently discriminate a foreign matter from a pattern.

【0041】[0041]

【発明の効果】以上の様に本発明によれば、受光器の配
置位置にかかわらず微細な周期パターンと異物とを効率
よく弁別可能である。また、受光面の数や形状、方向、
配置を回路パターン、或いは光束の入射角に応じて可変
とできるため、最適な受光面条件で弁別可能となり弁別
精度が向上する。
As described above, according to the present invention, it is possible to efficiently discriminate a fine periodic pattern from a foreign matter regardless of the arrangement position of the light receiver. In addition, the number and shape of the light receiving surface, the direction,
Since the arrangement can be changed according to the circuit pattern or the incident angle of the light flux, the discrimination can be performed under the optimum light receiving surface condition, and the discrimination accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による異物検査装置の概略構
成を示す斜視図、
FIG. 1 is a perspective view showing a schematic configuration of a foreign matter inspection apparatus according to an embodiment of the present invention,

【図2】本発明の一実施例による回路パターンからの回
折光の光電信号と異物からの散乱光の光電信号とを弁別
する信号処理系を示す図、
FIG. 2 is a diagram showing a signal processing system for discriminating a photoelectric signal of diffracted light from a circuit pattern and a photoelectric signal of scattered light from a foreign matter according to an embodiment of the present invention;

【図3】図1の一部を概略的に示す図、FIG. 3 is a diagram schematically showing a part of FIG. 1;

【図4】本発明の一実施例によるビーム照射領域とパタ
ーンとの関係を示す図、
FIG. 4 is a diagram showing a relationship between a beam irradiation area and a pattern according to an embodiment of the present invention;

【図5】、[FIG. 5]

【図6】、FIG.

【図7】(a)本発明の一実施例による回路パターンを
示す図、(b)(a)のパターンからの回折光の強度分
布を示す図、
7A is a diagram showing a circuit pattern according to an embodiment of the present invention, FIG. 7B is a diagram showing an intensity distribution of diffracted light from the pattern of FIG. 7A,

【図8】本発明による回路パターンと異物との弁別の原
理を説明する図、
FIG. 8 is a diagram for explaining the principle of discriminating between a circuit pattern and foreign matter according to the present invention;

【図9】図3をQ方向からみた平面図、9 is a plan view of FIG. 3 viewed from the Q direction,

【図10】本発明による回路パターンと異物との弁別の
原理を説明する図、
FIG. 10 is a diagram for explaining the principle of discriminating between a circuit pattern and foreign matter according to the present invention;

【図11】、FIG. 11

【図12】、FIG. 12

【図13】本発明の一実施例による受光面の形状の変形
例を示す図、
FIG. 13 is a view showing a modification of the shape of the light receiving surface according to the embodiment of the present invention,

【図14】本発明の一実施例によるクロムパターンの説
明図、
FIG. 14 is an explanatory view of a chrome pattern according to an embodiment of the present invention,

【図15】図17を模式的に示す図、15 is a diagram schematically showing FIG. 17,

【図16】微細度の低い回路パターンからの回折光の強
度分布を示す図、
FIG. 16 is a diagram showing an intensity distribution of diffracted light from a circuit pattern of low fineness,

【図17】微細度の高い回路パターンからの回折光の強
度分布を示す図、
FIG. 17 is a diagram showing an intensity distribution of diffracted light from a circuit pattern with high fineness;

【図18】従来の異物検査装置を示す図である。FIG. 18 is a diagram showing a conventional foreign matter inspection device.

【符号の説明】[Explanation of symbols]

1…基板 2…受光器 3…f−θレンズ 4…振動ミラー 5…コリメータレンズ 6…光源 8…制御系 S、S1 …仮想的な球体 I…入射光束 2A、2B…受光面 2A1、2B1…受光面の曲断面 C1 、C2 …2A1、2B1の正射影 i…入射光束Iの曲断面 i1 …iの正射影 v0 …i1 のV方向の幅 D1 、D2 …C1 、C2 の幅 Mv…C1 、C2 の間隔 O…入射点 θ…入射角 γ…入射光束Iの開口角(f−θレンズ3の開口角) O1 …UV座標系の原点 E1 …回折光の正射影の1つ E…Eの曲断面 O2 …E1 を通るV軸と平行な直線とX軸との交点 n1 …O2 を含みZ軸と平行な直線 n2 …O2 と曲断面Eの中心Ceとを含み直線 β…n1 とn2 とのなすV方向の空間的角度1 ... substrate 2 ... light receiver 3 ... f-theta lens 4 ... vibrating mirror 5 ... collimator lens 6 ... light source 8 ... control system S, S 1 ... virtual sphere I ... incident beam 2A, 2B ... receiving surface 2A1,2B1 … Curved cross section of light receiving surface C 1 , C 2 … Orthogonal projection of 2A1, 2B1 i… Curved cross section of incident luminous flux I i 1 … Orthogonal projection of i v 0 … Width of V 1 in the V direction D 1 , D 2 … C 1 , width of C 2 Mv ... interval of C 1 , C 2 O ... incident point θ ... incident angle γ ... aperture angle of incident light flux I (aperture angle of f-θ lens 3) O 1 ... origin of UV coordinate system E 1 ... one E ... E orthogonal projection of the diffracted light curved cross-section O 2 ... Z-axis parallel to the straight line n 2 include intersection n 1 ... O 2 of the V-axis and a straight line parallel to the X axis through the E 1 A straight line β including O 2 and the center Ce of the curved cross section E, and the spatial angle in the V direction formed by n 1 and n 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/00 F 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01S 3/00 F 8934-4M

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に回路パターンが形成された被検査
物にコヒーレント光束を照射する光源と;前記光源から
射出された光束を前記被検査物上に所定の開口角で検査
点に集光させる集光手段と;前記所定の開口角で集光さ
れた入射光束と前記被検査物とを相対移動させる移動手
段と;前記集光された光束が前記被検査物上に入射する
ことにより発生する散乱光束を受光する検出手段とを備
え、該検出手段からの出力信号に基づいて、前記被検査
物上の異物を検出する異物検査装置において、 前記検出手段は長手方向と短手方向とを有する少なくと
も2つの受光面を備え、該2つの受光面は、前記検査点
を中心とし前記基板を赤道面とする任意半径の仮想的な
球体による曲断面の前記基板への正写影図での該受光面
に対する正射影の間隔が前記基板への入射光束の正射影
の幅とほぼ等しくなるように設けられていることを特徴
とする異物検査装置。
1. A light source for irradiating an inspected object having a circuit pattern formed on its surface with a coherent light beam; a light beam emitted from the light source is converged on the inspected object at an inspection point at a predetermined opening angle. Condensing means; moving means for relatively moving the incident light beam condensed at the predetermined opening angle and the inspection object; generated when the condensed light beam is incident on the inspection object A foreign matter inspecting device, comprising: a detecting means for receiving scattered light flux; and detecting a foreign matter on the inspection object based on an output signal from the detecting means, wherein the detecting means has a longitudinal direction and a lateral direction. At least two light-receiving surfaces are provided, and the two light-receiving surfaces are an orthographic projection diagram of a curved cross section of the virtual sphere centered on the inspection point and having the substrate as an equatorial plane and having an arbitrary radius on the substrate. The orthographic projection distance to the light receiving surface is Particle inspection apparatus characterized by being arranged so as to be substantially equal to the orthogonal projection of the width of the light beam incident on the substrate.
【請求項2】 前記少なくとも2つの受光面の正射影の
長手方向が前記被検査物の基準軸と平行、若しくは垂直
な方向となるように並設されていることを特徴とする請
求項1記載の異物検査装置。
2. The at least two light-receiving surfaces are arranged in parallel so that the longitudinal directions of the orthogonal projections thereof are parallel to or perpendicular to the reference axis of the object to be inspected. Foreign matter inspection device.
【請求項3】 前記少なくとも2つの受光面の全てから
信号が出力される場合は異物であると判断し、前記少な
くとも2つの受光面の全てから信号が出力されない場合
は回路パターンであると判断することを特徴とする請求
項1記載の異物検査装置。
3. When the signals are output from all of the at least two light receiving surfaces, it is determined that it is a foreign substance, and when the signals are not output from all of the at least two light receiving surfaces, it is determined that it is a circuit pattern. The foreign matter inspection device according to claim 1, wherein
【請求項4】 前記少なくとも2つの受光面の個数と方
向と形状との少なくとも1つを変更可能な可変手段を有
することを特徴とする請求項1記載の異物検査装置。
4. The foreign matter inspection apparatus according to claim 1, further comprising variable means capable of changing at least one of the number, direction and shape of the at least two light receiving surfaces.
【請求項5】 前記集光光学系は前記コヒーレント光束
を所定の入射角で前記基板に斜入射させるように配置さ
れていることを特徴とする請求項1記載の異物検査装
置。
5. The foreign matter inspection apparatus according to claim 1, wherein the condensing optical system is arranged so that the coherent light beam is obliquely incident on the substrate at a predetermined incident angle.
JP3285963A 1991-10-31 1991-10-31 Foreign matter tester Pending JPH05129396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285963A JPH05129396A (en) 1991-10-31 1991-10-31 Foreign matter tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285963A JPH05129396A (en) 1991-10-31 1991-10-31 Foreign matter tester

Publications (1)

Publication Number Publication Date
JPH05129396A true JPH05129396A (en) 1993-05-25

Family

ID=17698230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285963A Pending JPH05129396A (en) 1991-10-31 1991-10-31 Foreign matter tester

Country Status (1)

Country Link
JP (1) JPH05129396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078356A (en) * 2005-09-09 2007-03-29 Horiba Ltd Defect inspecting device
JP2010117324A (en) * 2008-11-14 2010-05-27 Nikon Corp Surface inspection method and surface inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078356A (en) * 2005-09-09 2007-03-29 Horiba Ltd Defect inspecting device
JP4594833B2 (en) * 2005-09-09 2010-12-08 株式会社堀場製作所 Defect inspection equipment
JP2010117324A (en) * 2008-11-14 2010-05-27 Nikon Corp Surface inspection method and surface inspection apparatus

Similar Documents

Publication Publication Date Title
JP3158446B2 (en) Surface position detecting device, surface position detecting method, exposure apparatus, exposure method, and semiconductor manufacturing method
KR100669845B1 (en) Scanning method and system for inspecting anomalies on surface
US5270794A (en) Fine structure evaluation apparatus and method
US5363187A (en) Light scanning apparatus for detecting foreign particles on surface having circuit pattern
US5854674A (en) Method of high speed, high detection sensitivity inspection of repetitive and random specimen patterns
JPH0786465B2 (en) Foreign object detection method and apparatus
GB2139753A (en) Sensing relative position of alignment marks
US5767523A (en) Multiple detector alignment system for photolithography
EP0468741B1 (en) Position detecting method
US7061598B1 (en) Darkfield inspection system having photodetector array
US20040027564A1 (en) Laser inspection using diffractive elements for enhancement and suppression of surface features
EP0475748B1 (en) Foreign particle detecting apparatus
JP2000097872A (en) Optical inspection device
JPH05129396A (en) Foreign matter tester
JPH0616480B2 (en) Reduction projection type alignment method and apparatus
JPH0643111A (en) Inspecting apparatus for defect
JP2503919B2 (en) Foreign matter inspection device
JPH0621877B2 (en) Surface condition measuring device
JPH0694633A (en) Inspecting apparatus for defect
WO2022201910A1 (en) Foreign matter inspection device and foreign matter inspection method
JPH05172547A (en) Apparatus and method for inspecting defect
JP2890942B2 (en) Defect inspection equipment
JPH05196580A (en) Defect inspection device
JPH0715366B2 (en) Object position detection optical device
JPH05188005A (en) Defect inspecting device