JPH0786465B2 - Foreign object detection method and apparatus - Google Patents

Foreign object detection method and apparatus

Info

Publication number
JPH0786465B2
JPH0786465B2 JP62272958A JP27295887A JPH0786465B2 JP H0786465 B2 JPH0786465 B2 JP H0786465B2 JP 62272958 A JP62272958 A JP 62272958A JP 27295887 A JP27295887 A JP 27295887A JP H0786465 B2 JPH0786465 B2 JP H0786465B2
Authority
JP
Japan
Prior art keywords
foreign matter
straight line
circuit pattern
line group
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62272958A
Other languages
Japanese (ja)
Other versions
JPH01117024A (en
Inventor
俊彦 中田
伸幸 秋山
良彦 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62272958A priority Critical patent/JPH0786465B2/en
Priority to US07/262,573 priority patent/US5046847A/en
Priority to KR1019880014141A priority patent/KR920009713B1/en
Publication of JPH01117024A publication Critical patent/JPH01117024A/en
Publication of JPH0786465B2 publication Critical patent/JPH0786465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料上の微小異物を検出する方法及び装置に
係り、特に製品(パターン付)ウェハ上の異物を検出す
るのに好適な異物検出方法及び装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for detecting minute foreign matter on a sample, and particularly to a foreign matter suitable for detecting foreign matter on a product (patterned) wafer. The present invention relates to a detection method and device.

〔従来の技術〕[Conventional technology]

パターン付ウェハ上異物検査を例にとると、従来の技術
は例えば、特開昭54−57126に代表されるように、ウェ
ハ上の回路パターン及び異物に直線偏光レーザ光を照射
した際の、各々の反射光の偏光解像度の違いに着目した
ものである。すなわち、第5図に示すように、レーザ70
a及び70bから出射したS偏光ビームでウェハ1上を斜方
照明する。一般に、ウェハ上の回路パターン71は概ね規
則的な直線段差パターンで構成されているため、レーザ
光の偏光解消は少なく、パターン71のうち、レーザビー
ム103の光軸と直交する直線エッジからの反射光74には
S偏光成分がそのまま保存される。一方、異物はその形
状に規則性がなく、入斜レーザ光に対して様々な入射角
を有する微小面で構成されていると考えられ、レーザ光
は散乱される。その結果、偏光が解消し、散乱光75には
S偏光及びP偏光成分が混在する。そこで、対物レンズ
7の上方にS偏光成分(実線で示す)を遮断するように
偏光板76を配置すれば、光電変換素子77では異物散乱光
75の中のP偏向成分のみが79のように検出される。
Taking the foreign matter inspection on a patterned wafer as an example, the conventional technique is, for example, as typified by JP-A-54-57126, a circuit pattern on a wafer and a foreign matter when irradiated with linearly polarized laser light, respectively. It focuses on the difference in polarization resolution of the reflected light. That is, as shown in FIG.
The S-polarized beam emitted from a and 70b obliquely illuminates the wafer 1. In general, since the circuit pattern 71 on the wafer is composed of a substantially regular linear step pattern, depolarization of the laser light is small, and reflection from the straight edge of the pattern 71 orthogonal to the optical axis of the laser beam 103 is performed. The S-polarized component is stored in the light 74 as it is. On the other hand, it is considered that the foreign matter has no regularity in its shape and is composed of minute surfaces having various incident angles with respect to the incident laser light, and the laser light is scattered. As a result, the polarized light is eliminated and the S-polarized light component and the P-polarized light component are mixed in the scattered light 75. Therefore, if a polarizing plate 76 is arranged above the objective lens 7 so as to block the S-polarized light component (shown by the solid line), the photoelectric conversion element 77 will allow foreign matter scattered light to be scattered.
Only the P deflection component in 75 is detected as in 79.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第6図(a)は上記従来方式における偏光板通過前の、
また同図(b)は同じく通過後の異物散乱光の偏光状態
を各々示したものである。付から明らかなように、従来
方式においては、偏光板を通過できるP偏光成分は全異
物散乱光のごとく一部であり、最小検出異物は3〜5μ
m程度が限界である。すなわち、従来方式は、試料上の
パターンからの反射光を除去するために、偏光板を用い
ているわけであるが、そのために異物散乱光の多くをも
除去する結果になっている。従って第7図に示すよう
に、さらに微小な1〜2μm異物84の場合は、全散乱光
そのものの光量低下と偏光板による光量低下のため、検
出が極めてむつかしくなる。検出光量を増加させるた
め、レーザ光の強度を増加させると、それまであまり光
らなかったパターン・コーナ部での散乱光が偏光板を通
過してしまい、異物との弁別が困難になる。また、異物
の材質及び形状によっては偏光解消が小さいものがあ
り、その場合は、異物散乱光にP偏光成分がほとんど含
まれず、ますます検出が困難になる。
FIG. 6 (a) shows the above-mentioned conventional method before passing through the polarizing plate.
Further, FIG. 3B also shows the polarization states of the foreign substance scattered light after passing through. As is apparent from the appendix, in the conventional method, the P-polarized light component that can pass through the polarizing plate is a part of the total foreign matter scattered light, and the minimum detectable foreign matter is 3 to 5 μm.
The limit is about m. That is, in the conventional method, the polarizing plate is used to remove the reflected light from the pattern on the sample, and as a result, most of the foreign substance scattered light is also removed. Therefore, as shown in FIG. 7, in the case of a finer 1 to 2 μm foreign substance 84, the detection becomes extremely difficult due to the decrease in the total scattered light itself and the decrease in the light amount due to the polarizing plate. When the intensity of the laser light is increased to increase the amount of detected light, the scattered light at the pattern corners, which has not been shining so far, passes through the polarizing plate, which makes it difficult to discriminate from the foreign matter. In addition, depending on the material and shape of the foreign matter, depolarization may be small, and in that case, the P-polarized light component is hardly included in the scattered light of the foreign matter, which makes detection even more difficult.

本発明の目的は、上記従来技術の問題点に鑑み、偏光特
性に依存することなく、互いにほぼ直交する主要な直線
群と概主要な直線群の各々に対して所定の角度傾斜した
他の直線群とで構成された回路パターン上に存在する1
〜2μm或いはそれ以下の微小異物を高感度で検出でき
るようにした異物検出方法及び装置を提供することにあ
る。
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide another straight line inclined at a predetermined angle with respect to each of the main straight line group and the substantially main straight line group which are substantially orthogonal to each other without depending on the polarization characteristics. Existing on a circuit pattern composed of a group 1
It is an object of the present invention to provide a foreign matter detection method and apparatus capable of detecting a minute foreign matter of ˜2 μm or less with high sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、試料上に本来同
一で、互いにほぼ直交する主要な直線群と該主要な直線
群の各々に対して平面内で所定の角度傾斜した他の直線
群とで構成された回路パターンが形成された各チップに
おいて、指向性の高い照明光を、前記回路パターン上
に、前記照明光の光軸が前記主要な直線群の各々に対し
て回路パターン面上で所定の回転角度を形成した方向
で、且つ垂直に対して傾斜した方向から照明し、この照
明個所において前記主要な直線群のエッジから生じる散
乱反射光を前記回路パターン面に対してほぼ垂直の光軸
と所定のNA(開口数)とを有する検出光学系から逃がし
て前記検出光学系に入射する前記他の直線群のエッジか
ら生じる散乱反射光及び回路パターン上に存在する異物
からの散乱反射光の内、前記他の直線群のエッジから生
じる散乱反射光を前記検出光学系内のフーリエ変換面に
配置された空間フィルタで遮光して該空間フィルタを通
過した散乱反射光を光電変換手段で受光して異物候補信
号に変換してメモリに記憶する異物候補信号検出工程
と、該異物候補信号検出工程によりメモリに記憶された
異物候補信号と光電変換手段か得られる異物候補信号と
チップ単位において同一座標系で比較して共通して検出
された場合には回路パターンの情報として除去して真の
異物情報を検出するチップ比較による真の異物情報検出
工程とを有することを特徴とする異物検出方法である。
In order to achieve the above-mentioned object, the present invention provides a main straight line group which is essentially the same on a sample and is substantially orthogonal to each other, and another straight line group inclined by a predetermined angle in a plane with respect to each of the main straight line groups In each chip formed with a circuit pattern composed of, the illumination light with high directivity is provided on the circuit pattern, and the optical axis of the illumination light is on the circuit pattern surface for each of the main straight line groups. Illuminate from a direction that forms a predetermined rotation angle with a direction inclined with respect to the vertical direction, and at this illumination point, scattered reflected light generated from the edge of the main straight line group is almost perpendicular to the circuit pattern surface. Scattered / reflected light generated from the edge of the other straight line group that enters the detection optical system by escaping from the detection optical system having the optical axis and a predetermined NA (numerical aperture) and scattered reflection from foreign matter existing on the circuit pattern. In the light The scattered reflected light generated from the edge of the other straight line group is shielded by the spatial filter arranged on the Fourier transform surface in the detection optical system, and the scattered reflected light passing through the spatial filter is received by the photoelectric conversion means to be a foreign substance. A foreign matter candidate signal detecting step of converting into a candidate signal and storing it in the memory, and a foreign matter candidate signal stored in the memory by the foreign matter candidate signal detecting step, the foreign matter candidate signal obtained from the photoelectric conversion means, and the same coordinate system in a chip unit. A true foreign matter information detecting step by chip comparison for detecting true foreign matter information by removing as circuit pattern information when detected in common by comparison.

また本発明は、試料上に本来同一で、互いにほぼ直交す
る主要な直線群と該主要な直線群の各々に対して平面内
で所定の角度傾斜した他の直線群とで構成された回路パ
ターンが形成された各チップにおいて、指向性の高い照
明光を、前記回路パターン上に、前記照明光の光軸が前
記主要な直線群の各々に対して回路パターン面上で所定
の回転角度を形成した方向で、且つ垂直に対して傾斜し
た方向から照明する照明光学系と、該照明光学系で照明
された各チップにおける照明個所において前記主要な直
線群のエッジから生じる散乱反射光を逃がして他の直線
群のエッジから生じる散乱反射光及び試料上に存在する
異物からの散乱反射光を入射するように前記回路パター
ン面に対してほぼ垂直の光軸と所定のNA(開口数)とを
有する対物レンズを備え、前記他の直線群のエッジから
生じて前記対物レンズに入射する散乱反射光を遮光する
空間フィルタをフーリエ変換面に配置し、該空間フィル
タを通過した散乱反射光を受光して異物候補信号に変換
する光電変換手段を備えた検出光学系とを備えた異物検
出装置を設け、該検出光学系の光電変換手段から得られ
る異物候補信号を記憶するメモリを設け、該メモリに記
憶された異物候補信号と前記検出光学系の光電変換手段
から得られる異物候補信号とをチップ単位において同一
座標系で比較して共通して検出された場合には回路パタ
ーンの情報として除去して真の異物情報を検出するチッ
プ比較手段を設けたことを特徴とする異物検出装置であ
る。
The present invention also provides a circuit pattern which is essentially the same on the sample and is composed of main straight line groups that are substantially orthogonal to each other and other straight line groups that are inclined at a predetermined angle in the plane with respect to each of the main straight line groups. In each of the chips formed with, the illumination light with high directivity is formed on the circuit pattern, and the optical axis of the illumination light forms a predetermined rotation angle on the circuit pattern surface with respect to each of the main straight line groups. In an inclined direction with respect to the vertical direction, and escapes scattered reflected light generated from the edge of the main straight line group at the illumination point in each chip illuminated by the illumination optical system. Has an optical axis substantially perpendicular to the circuit pattern surface and a predetermined NA (numerical aperture) so that scattered reflected light generated from the edge of the straight line group and scattered reflected light from a foreign substance existing on the sample are incident. Objective lens A spatial filter that shields the scattered reflected light generated from the edge of the other straight line group and incident on the objective lens is arranged on the Fourier transform surface, and the scattered reflected light that has passed through the spatial filter is received to detect the foreign substance candidate signal. A foreign matter detection device provided with a detection optical system having a photoelectric conversion means for converting into a foreign matter, a memory for storing a foreign matter candidate signal obtained from the photoelectric conversion means of the detection optical system, and a foreign matter stored in the memory. If the candidate signal and the foreign matter candidate signal obtained from the photoelectric conversion means of the detection optical system are compared in the same coordinate system on a chip-by-chip basis and detected in common, the foreign matter information is removed as circuit pattern information and true foreign matter information is obtained. The foreign matter detecting device is characterized by further comprising a chip comparing means for detecting.

〔作用〕[Action]

前記構成により、互いにほぼ直交する主要な直線群と概
主要な直線群の各々に対して所定の角度傾斜した他の直
線群とで構成された回路パターン上に存在する1〜2μ
m或いはそれ以下の微小異物からの散乱反射光の光量を
低減することなく、前記主要な直線群および他の直線群
の両方のエッジから生じる散乱反射光を除去すると共
に、フーリエ変換面に配置された空間フィルタでも完全
に除去できない回路パターンのコーナ部のエッジから生
じる散乱反射光による誤検出も2チップ比較により共通
部分として消去して、1〜2μm或いはそれ以下の真の
微小異物情報を高信頼度で検査することができる。
With the above configuration, 1 to 2 μ existing on a circuit pattern formed by a main line group that is substantially orthogonal to each other and another line group that is inclined at a predetermined angle with respect to each of the substantially main line groups.
The scattered reflection light generated from the edges of both the main straight line group and the other straight line group is removed without reducing the light quantity of the scattered reflection light from a minute foreign matter of m or less, and the light is arranged on the Fourier transform plane. Erroneous detection due to scattered reflected light generated from the edge of the corner part of the circuit pattern that cannot be completely removed even with a spatial filter is erased as a common part by comparing two chips, and true minute foreign matter information of 1 to 2 μm or less is highly reliable. Can be inspected in degrees.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS.

まず、本発明の基本原理を、パターン付ウェハ異物検査
を例にとり、第2図により説明する。第2図(a)は異
物検査光学系の原理図を示したものである。ウェハ1
は、対物レンズ7、リレーレンズ9及び12により光電変
換素子13上に結像している。一方、対物レンズ7内の空
間周波数領域、すなわちフーリエ変換面(射出瞳に相当
する)8は、リレーレンズ9により20の位置に結像して
いる。本発明は、同図(b)に示すように、ウェハ上に
形成されている回路パターンが、概ね互いに直交する2
組の直線群と、ごく一部に存在する上記直線群に対して
45゜の角度を成す直線群の、計3組の直線群から構成さ
れていることに着目したものである。今、第2図(a)
に示すように、x軸及びy軸に平行な直線エッジ部から
成るパターン18を想定し、これを斜方照明するレーザ19
のビーム102とx軸とがウェハ平面上で成す回転角を
とする。回転角に応じて、パターン18のうちのy軸方
向の直線エッジ部からの反射回折光、すなわちフーリエ
変換像は、20の位置、すなわち対物レンズ7のフーリエ
変換面(空間周波領域=射出瞳)8の結像位置(21が射
出瞳の像である)において、22のように変化する。すな
わち、回転角がある一定値m以上になると、もはや
パターンの直線エッジ部からの反射回折光は対物レンズ
に入射しないことが判る。例えば、NA(Numerica1 Aper
ture:開口数)0.4の対物レンズの場合、m=20゜であ
る。従って、検出光学系にNA0.4の対物レンズを使う場
合は、斜方照明用レーザビームの回転角をx軸及びy
軸に対して20゜を越える値に設定すれば、x軸及びY軸
と平行な直線エッジ部からの反射光を完全に除去するこ
とができる。この回転角mは対物レンズのNAにより異
なる値となる。NAが大きいほどその値は大きい。この
際、異物散乱光は全く影響を受けない。第2図(b)
は、余裕をみて回転角を45゜とした時のパターン及び
異物からの反射光を示したものである。パターン2のう
ちx軸及びy軸と平行な直線エッジ部からの反射回折光
は対物レンズ7に入射しないから、検出画像26に示すよ
うに、これらのパターン情報は、完全に除去できる。一
方、パターン2のうちx軸及びy軸に対し45゜方向を成
す直線エッジ部からの反射回折光は、対物レンズ7に入
射し、20の位置、すなわちフーリエ変換面において、細
長く集光したフーリエ変換像となり、また検出画像26に
おいてもそのパターン情報27が得られている。25は異物
のフーリエ変換像であり、その形状の不規則性のためフ
ーリエ変換面で大きく広がっている。そこで、両者のフ
ーリエ変換像の形状の違いに着目して、遮光部31を有す
る空間フィルタ29を、20の位置、すなわちフーリエ変換
面に設置することにより、45゜方向の直線エッジ部のフ
ーリエ変換像を遮光することができる。その結果、検出
画像32に示すように異物情報33のみを抽出することがで
きる。尚、この45゜方向のパターンはウェハ上でわずか
に存在するものであり、フーリエ変換像24は極めて細い
ため、空間フィルタ29の遮光部31もかなり細くすること
ができる。従って、この遮光部31による異物散乱光の遮
光量は極めて少ない。
First, the basic principle of the present invention will be described with reference to FIG. 2, taking a patterned wafer foreign matter inspection as an example. FIG. 2 (a) shows the principle of the foreign matter inspection optical system. Wafer 1
Is imaged on the photoelectric conversion element 13 by the objective lens 7 and the relay lenses 9 and 12. On the other hand, the spatial frequency region in the objective lens 7, that is, the Fourier transform plane (corresponding to the exit pupil) 8 is imaged at the position of 20 by the relay lens 9. According to the present invention, as shown in FIG. 2B, the circuit patterns formed on the wafer are substantially orthogonal to each other.
For a set of straight lines and the above-mentioned straight lines that exist in a small part
The focus is on the fact that it consists of a total of three groups of straight lines that form an angle of 45 °. Now, FIG. 2 (a)
As shown in FIG. 2, a laser 19 for obliquely illuminating a pattern 18 composed of straight edge portions parallel to the x-axis and the y-axis is assumed.
Let the beam 102 and the x-axis be the angle of rotation made in the plane of the wafer. Depending on the rotation angle, the reflected diffracted light from the linear edge portion of the pattern 18 in the y-axis direction, that is, the Fourier transform image, is at the 20th position, that is, the Fourier transform surface of the objective lens 7 (spatial frequency region = exit pupil). At the image forming position of 8 (21 is the image of the exit pupil), it changes like 22. That is, it can be seen that when the rotation angle becomes a certain value m or more, the reflected diffracted light from the straight edge portion of the pattern no longer enters the objective lens. For example, NA (Numerica1 Aper
ture: numerical aperture) 0.4, m = 20 °. Therefore, when an NA0.4 objective lens is used in the detection optical system, the rotation angle of the oblique illumination laser beam is set to the x-axis and y-axis.
By setting the value to exceed 20 ° with respect to the axis, it is possible to completely eliminate the reflected light from the straight edge portion parallel to the x axis and the Y axis. This rotation angle m has a different value depending on the NA of the objective lens. The larger the NA, the larger the value. At this time, the scattered light of foreign matter is not affected at all. Fig. 2 (b)
Shows the reflected light from the pattern and the foreign matter when the rotation angle is set to 45 ° with a margin. Since the reflected diffracted light from the straight edge portion of the pattern 2 parallel to the x-axis and the y-axis does not enter the objective lens 7, as shown in the detected image 26, these pattern information can be completely removed. On the other hand, in the pattern 2, the reflected diffracted light from the straight edge portion forming the 45 ° direction with respect to the x-axis and the y-axis is incident on the objective lens 7 and is condensed in a slender shape at the 20th position, that is, the Fourier transform plane. The converted image is obtained, and the pattern information 27 of the detected image 26 is obtained. Reference numeral 25 is a Fourier transform image of the foreign matter, which is greatly spread on the Fourier transform plane due to the irregularity of the shape. Therefore, paying attention to the difference in the shapes of the Fourier transform images of both, by installing the spatial filter 29 having the light shielding portion 31 at the position of 20, that is, the Fourier transform plane, the Fourier transform of the straight edge portion in the 45 ° direction is performed. The image can be shielded. As a result, only the foreign substance information 33 can be extracted as shown in the detected image 32. Incidentally, since the pattern in the 45 ° direction is slightly present on the wafer and the Fourier transform image 24 is extremely thin, the light shielding portion 31 of the spatial filter 29 can be made considerably thin. Therefore, the light blocking amount of the foreign substance scattered light by the light blocking unit 31 is extremely small.

以上述べたように、本発明の基本原理は、x軸及びy軸
方向の反射回折光が対物レンズに入射しないある回転角
でウェハ上を斜方照明することにより、ウェハ上の回路
パターンの大半を占めるx軸及びy軸方向のパターン情
報を除去し、残りの他の方向のパターン情報について
は、対物レンズもしくは検出光学系のフーリエ変換面に
設けた空間フィルタにより、これを除去することによ
り、異物散乱光を大きく損なうことなく、異物情報のみ
を抽出するものである。
As described above, the basic principle of the present invention is that most of the circuit pattern on the wafer is obtained by obliquely illuminating the wafer at a certain rotation angle such that the reflected diffracted light in the x-axis and y-axis directions does not enter the objective lens. By removing the pattern information in the x-axis and y-axis directions occupying, and removing the remaining pattern information in the other direction by a spatial filter provided on the Fourier transform surface of the objective lens or the detection optical system. Only the foreign substance information is extracted without greatly impairing the foreign substance scattered light.

以下、本発明の第1の実施例を第1図により説明する。The first embodiment of the present invention will be described below with reference to FIG.

第1図は第1と実施例における異物検出光学系を示す図
である。本光学系は、xyステージ(図示せず)、レーザ
斜方照明光学系200a,200b、対物レンズ7、リレーレン
ズ9、空間フィルタ10、リレーレンズ12、2次元固体撮
像素子90より構成される。同図において、試料は回路パ
ターンが形成された製品ウェハである。レーザ照方照明
光学系200a,200bは、それぞれ、半導体レーザ4a,4b、ビ
ーム補正光学系5a,5b、集光レンズ6a,6bから成り、半導
体レーザ4a,4bから出射した楕円形ビームを、ビーム補
正光学系5a,5bにより円形ビームに整形した後、集光レ
ンズ6a,6bにより、傾斜角3゜、x軸及びy軸より45゜
の回転角でもって、2方向からウェハ上に照射する。ウ
ェハ1は、対物レンズ7、リレーレンズ9、12により2
次元固体撮像素子90上に結像している。一方、対物レン
ズ7のフーリエ変換面(空間周波数領域=射出瞳)8
は、リレーレンズ9により11の位置に結像している。本
実施例においては、ウェハ1上の回路パターン2を構成
する主要な2組の直線エッジ群が、それぞれx軸及びy
軸に平行になるようにウェハを配置している。従って、
x軸及びy軸に対して45゜の回転角で斜方照明すること
により、上記x軸及びy軸に平行な直線エッジ群からの
反射回折光は対物レンズに入射しないから、これらのパ
ターン情報を除去することができる。一方、パターン2
のうち、x軸及びy軸に対して45゜方向を成す直線エッ
ジ群はレーザビームに対し直交となるから、その反射回
折光は、フーリエ変換面11において、第2図(b)に示
すような細長く集光したフーリエ変換像となる。従っ
て、遮光部15を有する空間フィルタ10を11の位置に設け
ることにより、このパターン情報を除去することができ
る尚、この際、レーザビーム102と平行な45゜方向から
の反射回折光は対物レンズ7に入射しない。以上のよう
にして、ウェハ上の回路パターン情報を総て除去するこ
とができ、その結果、2次元固体撮像素子90の検出画像
16に示すように、異物情報17のみを抽出することができ
る。
FIG. 1 is a diagram showing a foreign matter detection optical system in the first and the examples. This optical system includes an xy stage (not shown), laser oblique illumination optical systems 200a and 200b, an objective lens 7, a relay lens 9, a spatial filter 10, a relay lens 12, and a two-dimensional solid-state image sensor 90. In the figure, the sample is a product wafer on which a circuit pattern is formed. The laser illuminating illumination optical systems 200a and 200b are semiconductor lasers 4a and 4b, beam correction optical systems 5a and 5b, and condensing lenses 6a and 6b, respectively.The elliptical beams emitted from the semiconductor lasers 4a and 4b are beam beams. After being shaped into a circular beam by the correction optical systems 5a and 5b, irradiation is performed on the wafer from two directions by the condenser lenses 6a and 6b with an inclination angle of 3 ° and a rotation angle of 45 ° from the x-axis and the y-axis. The wafer 1 is 2 by the objective lens 7 and the relay lenses 9 and 12.
An image is formed on the three-dimensional solid-state image sensor 90. On the other hand, the Fourier transform plane (spatial frequency domain = exit pupil) 8 of the objective lens 7
Is imaged at the position 11 by the relay lens 9. In the present embodiment, the two main sets of straight line edge groups forming the circuit pattern 2 on the wafer 1 are respectively the x-axis and the y-axis.
The wafer is arranged so that it is parallel to the axis. Therefore,
By obliquely illuminating the x-axis and y-axis at a rotation angle of 45 °, the reflected diffracted light from the straight edge group parallel to the x-axis and y-axis does not enter the objective lens. Can be removed. On the other hand, pattern 2
Among them, since the linear edge group forming the 45 ° direction with respect to the x-axis and the y-axis is orthogonal to the laser beam, its reflected diffracted light is shown on the Fourier transform plane 11 as shown in FIG. 2 (b). It becomes a fine and long Fourier-transformed image. Therefore, the pattern information can be removed by providing the spatial filter 10 having the light-shielding portion 15 at the position of 11. In this case, the reflected diffracted light from the 45 ° direction parallel to the laser beam 102 is the objective lens. It does not enter 7. As described above, all the circuit pattern information on the wafer can be removed, and as a result, the detected image of the two-dimensional solid-state imaging device 90 can be removed.
As shown in 16, only the foreign substance information 17 can be extracted.

本実施例においては、原理説明のところでも述べたよう
に、45゜回転斜方照明により、異物散乱光に影響を与え
ることなく、ウェハ上の回路パターンの大半を占めるx
軸及びy軸方向のパターン情報を除去でき、また残りの
他の方向のパターン情報を除去するための空間フィルタ
10の遮光部15の幅をかなり小さくすることができるた
め、異物散乱光を大きく損なうことなく、異物情報のみ
を抽出することができる。
In this embodiment, as described in the description of the principle, the 45 ° rotation oblique illumination occupies most of the circuit pattern on the wafer without affecting the scattered light of foreign matter.
A spatial filter for removing pattern information in the axial and y-axis directions and for removing pattern information in the remaining other directions
Since the width of the light shielding unit 15 of 10 can be made considerably small, only the foreign substance information can be extracted without greatly impairing the foreign substance scattered light.

以下、本発明の第2の実施例を第3図により説明する。The second embodiment of the present invention will be described below with reference to FIG.

第3図は第2の実施例における異物検出光学系を示す図
である。本光学系は、第1図に示した第1の実施例の異
物検出光学系において、既にあるレーザ斜方照明光学系
と直交する方向に、新たにレーザ斜方照明光学系200c,2
00d(図示せず)を追加し、計4方向から斜方照明する
構成とし、かつそれに対応して、遮光部42及び43を有す
る空間フィルタ40をフーリエ変換面11に配置した他は、
総て第1の実施例の異物検出光学系と同じ構成及び機能
を有する。x軸及びy軸に対して45゜の回転角で4方向
から斜方照明した場合でも、パターン2のうちx軸及び
y軸に平行な直線エッジ群からの反射回折光は対物レン
ズに入斜しないから、これらの情報を除去することがで
きる。一方、パターン2のうち、x軸及びy軸に対して
45゜方向を成す直線エッジ群は4方向からのレーザビー
ムに対し、直交となるから、その反射回折光は、フーリ
エ変換面11において、細長く集光した十文字状のフーリ
エ変換像となる。従って、遮光部42及び43を有する空間
フィルタ40を11の位置に設けることにより、このパター
ン情報を除去することができる。以上のようにして、ウ
ェハ上の回路パターン情報を総て除去することができ、
その結果、2次元固体撮像素子90の検出画像44に示すよ
うに、異物情報45のみを抽出することができる。
FIG. 3 is a diagram showing a foreign matter detection optical system in the second embodiment. This optical system is a laser oblique illumination optical system 200c, 2 newly added in the direction orthogonal to the existing laser oblique illumination optical system in the foreign matter detection optical system of the first embodiment shown in FIG.
00d (not shown) is added to obliquely illuminate from four directions in total, and correspondingly, the spatial filter 40 having the light shielding portions 42 and 43 is arranged on the Fourier transform surface 11,
All have the same configuration and function as the foreign matter detection optical system of the first embodiment. Even when obliquely illuminated from four directions at a rotation angle of 45 ° with respect to the x-axis and the y-axis, the reflected diffracted light from the linear edge group parallel to the x-axis and the y-axis in the pattern 2 is incident on the objective lens. Since it does not, this information can be removed. On the other hand, in pattern 2, for the x-axis and the y-axis
Since the linear edge group forming the 45 ° direction is orthogonal to the laser beams from the four directions, the reflected diffracted light becomes a cross-shaped Fourier transform image condensed on the Fourier transform plane 11. Therefore, this pattern information can be removed by providing the spatial filter 40 having the light shielding portions 42 and 43 at the position of 11. As described above, all the circuit pattern information on the wafer can be removed,
As a result, as shown in the detected image 44 of the two-dimensional solid-state image sensor 90, only the foreign substance information 45 can be extracted.

本実施例においては、第1の実施例と同様の効果がある
だけでなく、さらに以下の効果を有する。すなわち、異
物によってはその形状に方向性をもつものがあり、限ら
れた方向から照明した場合、その散乱光の指向性が高く
なり、最悪の場合、散乱光が対物レンズに入射しないケ
ースも生じてくる。本実施例では4方向から斜方照明し
ているため、上記の場合でも、異物散乱の指向性を低減
することができ、異物検出光量の低下を防ぐことができ
る。また、パターン段差部に付着し、2方向照明では段
差の陰になり検出が困難な異物も、4方照明により十分
な照明光量が得られ、異物見逃しを防ぐことができる。
The present embodiment has not only the same effects as the first embodiment, but also the following effects. That is, some foreign matter has a directivity in its shape, and when illuminated from a limited direction, the directivity of the scattered light becomes high, and in the worst case, the scattered light may not enter the objective lens. Come on. In the present embodiment, since the oblique illumination is performed from four directions, even in the above case, it is possible to reduce the directivity of the foreign substance scattering and prevent the reduction of the foreign substance detection light amount. In addition, even for foreign matter that is attached to the pattern step portion and is difficult to detect due to the shadow of the step in the two-direction illumination, a sufficient illumination light amount can be obtained by the four-way illumination, and it is possible to prevent the foreign matter from being overlooked.

以下、本発明の第3の実施例を第4図により説明する。The third embodiment of the present invention will be described below with reference to FIG.

第4図は、第3の実施例における異物検出光学系を示す
図である。本光学系は、xyステージ(図示せず)、レー
ザ斜方照明光学系200a,200b,200c,200d(図示せず)、
対物レンズ7、リレーレンズ9、波長分離ミラー50、空
間フィルタ51a,51b、ミラー52a,52b、波長合成ミラー5
3、リレーレンズ54、2次元固体撮像素子54と、さらに
信号処理系としてメモリ60、比較回路150より構成され
る。同図において、試料は前述の2つの実施例と同様、
回路パターンが形成された製品ウェハである。4つのレ
ーザ斜方照方光学系200a,200b,200c,200dの構成,配
置,機能は第2の実施例と全く同様であるか半導体レー
ザ4a,4bは波長840nmのものを、4c,4dは波長780nmのもの
をそれぞれ使用している。ウェハ1′は、対物レンズ
7、リレーレンズ9,54により、2次元固体撮像素子90上
に結像している。一方、対物レンズ7のフーリエ変換面
(空間周波数領域=射出瞳)8は、リレーレンズ9によ
り、55及び56の位置に結像している。波長分離ミラー50
及び波長合成ミラー53は、波長840nmの光を透過させ、
波長780nmの光を反射する。
FIG. 4 is a diagram showing a foreign matter detection optical system in the third embodiment. This optical system includes an xy stage (not shown), laser oblique illumination optical systems 200a, 200b, 200c, 200d (not shown),
Objective lens 7, relay lens 9, wavelength separation mirror 50, spatial filters 51a and 51b, mirrors 52a and 52b, wavelength combining mirror 5
3, a relay lens 54, a two-dimensional solid-state image sensor 54, a memory 60 as a signal processing system, and a comparison circuit 150. In the figure, the sample is the same as in the previous two examples.
It is a product wafer on which a circuit pattern is formed. The four laser oblique illumination optical systems 200a, 200b, 200c, 200d are exactly the same in configuration, arrangement, and function as in the second embodiment, or the semiconductor lasers 4a, 4b have a wavelength of 840 nm, and 4c, 4d are The wavelengths of 780 nm are used respectively. The wafer 1'is imaged on the two-dimensional solid-state imaging device 90 by the objective lens 7 and the relay lenses 9 and 54. On the other hand, the Fourier transform plane (spatial frequency domain = exit pupil) 8 of the objective lens 7 is imaged at positions 55 and 56 by the relay lens 9. Wavelength separation mirror 50
And the wavelength synthesizing mirror 53 transmits light having a wavelength of 840 nm,
Reflects light with a wavelength of 780 nm.

以下、本異物検出光学系の機能を説明する。x軸及びy
軸に対して45゜の回転角で4方向から斜方照明した場合
は、第2の実施例と同様、パターン140のうちx軸及び
y軸に平行な直線エッジ群からの反射回折光は対物レン
ズに入斜しないから、これらの情報を除去することがで
きる。一方、パターン140のうち、x軸及びy軸に対し
て45゜方向を成す直線エッジ群は4方向のレーザビーム
に対し、直交を成す。波長840nmの半導体レーザ4a,4bか
ら出射したビームによって照明された同ビームに対して
直交する45゜方向の直線エッジ群からの反射回折光は、
波長分離ミラー50を透過し、フーリエ変換面55におい
て、第2図(b)に示すような、ビームと平行に細長く
集光したフーリエ変換像となる。従って遮光部58aを有
する空間フィルタ51aを55の位置に設けることにより、
このパターン情報を除去することができる。一方、波長
780nmの半導体レーザ4c,4dから出射したビームによって
照明された同ビームに対して直交する45゜方向の直線エ
ッジ群からの反射回折光は、波長分離ミラー50により反
射され、フーリエ変換面56において、第2図(b)に示
すような、ビームと平行に細長く集光したフーリエ変換
像となる。従って、上記と同様に、遮光部58bを有する
空間フィルタ51bを56の位置に設けることにより、この
パターン情報を除去することができる。以上のようにし
て、回路パターンの情報が除去された2つの波長のウェ
ハ1′からの反射光は、波長合成ミラー53により合成さ
れた後、リレースイッチ54により、2次元固体撮像素子
90上に結像する。一方、ウェハ1′は、前述の2つの実
施例におけるウェハ1よりもパターン段差が大きい(Al
配線工程のように半導体製造プロセスの後工程において
は、前工程に比べパターン段差が大きくなる)ため、パ
ターン140のコーナ部での光の散乱状態が異物のそれに
近くなり、空間フィルタ51a及び51bを通過してしまう。
その結果、2次元固体撮像素子90の検出画像61には、異
物情報63と共にパターンのコーナ部の情報62が混在して
いる。そこで、検出画像61と、予じめメモリ60に格納し
ておいた隣接チップの同一場所での記憶画像64とを、比
較回路150において比較し、共通部分であるパターンの
コーナ部の情報を除去すれば、その差画像66に示すよう
に異物情報63のみを抽出することができる。
The function of the foreign matter detection optical system will be described below. x-axis and y
When oblique illumination is performed from four directions at a rotation angle of 45 ° with respect to the axis, the reflected diffracted light from the linear edge group parallel to the x-axis and the y-axis of the pattern 140 is the same as in the second embodiment. Since the lens is not inclined, this information can be removed. On the other hand, in the pattern 140, straight edge groups forming a 45 ° direction with respect to the x-axis and the y-axis are orthogonal to the laser beams in the four directions. The reflected diffracted light from the linear edge group in the 45 ° direction orthogonal to the beam emitted from the semiconductor lasers 4a and 4b having the wavelength of 840 nm is
After passing through the wavelength separation mirror 50, a Fourier transform image is formed on the Fourier transform surface 55 as shown in FIG. Therefore, by providing the spatial filter 51a having the light shielding portion 58a at the position of 55,
This pattern information can be removed. On the other hand, wavelength
The reflected diffracted light from the linear edge group in the 45 ° direction orthogonal to the beam emitted from the semiconductor lasers 4c and 4d of 780 nm and orthogonal to the beam is reflected by the wavelength separation mirror 50, and at the Fourier transform surface 56, As shown in FIG. 2 (b), a Fourier transform image is obtained in which the beam is elongated and elongated in parallel with the beam. Therefore, similar to the above, by providing the spatial filter 51b having the light shielding portion 58b at the position of 56, this pattern information can be removed. As described above, the reflected lights from the wafer 1 ′ having the two wavelengths from which the information of the circuit pattern is removed are combined by the wavelength combining mirror 53, and then the two-dimensional solid-state image pickup device by the relay switch 54.
Image on 90. On the other hand, the wafer 1'has a larger pattern step than the wafer 1 in the above two embodiments (Al.
In the subsequent step of the semiconductor manufacturing process such as the wiring step, the pattern step becomes larger than in the previous step), so the light scattering state at the corner portion of the pattern 140 becomes close to that of the foreign matter, and the spatial filters 51a and 51b are removed. I will pass.
As a result, the detected image 61 of the two-dimensional solid-state image pickup device 90 contains the foreign substance information 63 and the pattern corner information 62. Therefore, the detected image 61 and the stored image 64 at the same location of the adjacent chip stored in the prediction memory 60 are compared in the comparison circuit 150, and the information of the corner portion of the pattern which is the common portion is removed. Then, as shown in the difference image 66, only the foreign substance information 63 can be extracted.

以上、本実施例においては、第1及び第2の実施例と同
様の効果を有するだけでなく、さらに以下の効果を有す
る。すなわち、本実施例においては、ウェハからの反射
光を2つの波長成分に分離することにより、本来ならば
第2の実施例に示すように十文字状のフーリエ変換像に
なるものを、それぞれ1本の直線状のフーリエ変換像に
慣らしめ、空間フィルタの遮光部分の面積が小さくてす
むようにしている。その結果、異物散乱光の遮光量が減
少し、異物検出光量が増加する。また、隣接チップ比較
方式の併用により、従来、その性能が低下していたパタ
ーン段差の大きいウェハ上の異物検出能力が向上する。
As described above, the present embodiment has not only the same effects as those of the first and second embodiments, but also the following effects. That is, in the present embodiment, by separating the reflected light from the wafer into two wavelength components, one cross-shaped Fourier transform image as originally shown in the second embodiment is obtained. The linear Fourier transform image of ## EQU1 ## is used so that the area of the light-shielding portion of the spatial filter can be small. As a result, the light blocking amount of the foreign substance scattered light decreases, and the foreign substance detection light amount increases. Further, the combined use of the adjacent chip comparison method improves the foreign matter detection ability on a wafer having a large pattern step, which performance has been conventionally reduced.

尚、以上の実施例では、試料として半導体ウェハを用い
ているか、本発明はレチクルやマスク、あるいは、他の
何らかの規則性のあるパターン上の異物検出、さらに全
くパターンのない試料上の異物検出にも十分適用でき
る。
In the above embodiments, whether a semiconductor wafer is used as the sample, the present invention is applicable to the detection of foreign matter on a reticle, a mask, or some other regular pattern, or even on a sample without any pattern. Is also applicable.

また、第3の実施例で、ウェハからの反射光を波長分離
ミラーを用いて2つの波長に分離していたが、これを偏
向ビームスプリッタにおきかえ、互いに直交する2つの
偏向成分に分離することも、もちろん可能である。その
際は、互いに直交する直線偏光レーザで斜方照明する。
Further, in the third embodiment, the reflected light from the wafer is separated into two wavelengths by using the wavelength separation mirror. However, this is replaced with the deflection beam splitter, and it is separated into two deflection components orthogonal to each other. Of course, it is possible. At that time, obliquely illuminating with linearly polarized lasers orthogonal to each other.

また、以上の実施例ではレーザビームの回転角を45゜と
しているが、対物レンズにパターンエッジ部の反射回折
光が入射しない角度であるならば、回転角は他の値でも
かまわない。上記角度は、対物レンズのNAによって決ま
るものである。
Further, although the rotation angle of the laser beam is 45 ° in the above embodiments, the rotation angle may be another value as long as it is an angle at which the reflected diffraction light of the pattern edge portion does not enter the objective lens. The angle is determined by the NA of the objective lens.

〔発明の効果〕〔The invention's effect〕

本発明によれば、互いにほぼ直交する主要な直線群と該
主要な直線群の各々に対して所定の角度傾斜した他の直
線群とで構成された回路パターン上に存在する1〜2μ
m或いはそれ以下の微小異物からの散乱反射光の光量を
低減することなく、前記主要な直線群エッジンから生じ
る散乱反射光を検出光学系の対物レンズの開口(視野)
の外に逃がして除去し、他の直線群のエッジから生じる
散乱反射光をフーリエ変換面に配置された空間フィルタ
で遮光して除去すると共に、該空間フィルタでも完全に
除去できない回路パターンのコーナ部のエッジから生じ
る散乱反射光による誤検出も2チップ比較により共通部
分として消去して、1〜2μm或いはそれ以下の真の微
小異物情報を高信頼度で検査することができる効果を奏
する。
According to the present invention, 1 to 2 μ existing on a circuit pattern composed of a main line group that is substantially orthogonal to each other and another line group that is inclined at a predetermined angle with respect to each of the main line groups.
The aperture (field of view) of the objective lens of the detection optical system detects scattered reflected light generated from the main straight line group edgeon without reducing the light amount of scattered reflected light from a minute foreign matter of m or less.
Corners of the circuit pattern that cannot be completely removed even by the spatial filter disposed on the Fourier transform surface while shielding and removing scattered reflection light generated from the edges of other straight line groups. False detection due to scattered reflected light generated from the edge of is also erased as a common part by two-chip comparison, and there is an effect that true minute foreign substance information of 1 to 2 μm or less can be inspected with high reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例における異物検査光学系
を示す斜視図、第2図は本発明の原理を示す図、第3図
は本発明の第2の実施例における異物検出光学系を示す
斜視図、第4図は本発明の第3の実施例における異物検
出光学系を示す斜視図、第5図は従来の検出方式を示す
図、第6図は異物散乱光の偏光状態を示す図、第7図は
従来方式による微小異物の検出状態を示す図である。 1,1′……ウェハ 2,18,17,140……パターン 3,72,84……異物 4a,4b,4c,4d……半導体レーザ 19,70a,70b……レーザ 7……対物レンズ 8,11,20,55,56……フーリエ変換面 10,29,40,51a,51b……空間フィルタ 22,24……直線エッジ部のフーリエ変換像 25……異物のフーリエ変換像 90……2次元固体撮像素子
FIG. 1 is a perspective view showing a foreign matter inspection optical system according to the first embodiment of the present invention, FIG. 2 is a diagram showing the principle of the present invention, and FIG. 3 is a foreign matter detection optical system according to the second embodiment of the present invention. FIG. 4 is a perspective view showing a system, FIG. 4 is a perspective view showing a foreign matter detection optical system in a third embodiment of the present invention, FIG. 5 is a view showing a conventional detection method, and FIG. 6 is a polarization state of foreign matter scattered light. FIG. 7 and FIG. 7 are diagrams showing the state of detection of minute foreign matter by the conventional method. 1,1 ′ …… Wafer 2,18,17,140 …… Pattern 3,72,84 …… Foreign matter 4a, 4b, 4c, 4d …… Semiconductor laser 19,70a, 70b …… Laser 7 …… Objective lens 8,11 , 20,55,56 …… Fourier transform plane 10,29,40,51a, 51b …… Spatial filter 22,24 …… Fourier transform image of straight edge part 25 …… Fourier transform image of foreign material 90 …… Two-dimensional solid Image sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料上に本来同一で、互いにほぼ直交する
主要な直線群と該主要な直線群の各々に対して平面内で
所定の角度傾斜した他の直線群とで構成された回路パタ
ーンが形成された各チップにおいて、指向性の高い照明
光を、前記回路パターン上に、前記照明光の光軸が前記
主要な直線群の各々に対して回路パターン面上で所定の
回転角度を形成した方向で、且つ垂直に対して傾斜した
方向から照明し、この照明個所において前記主要な直線
群のエッジから生じる散乱反射光を前記回路パターン面
に対してほぼ垂直の光軸と所定のNA(開口数)とを有す
る検出光学系から逃がして前記検出光学系に入射する前
記他の直線群のエッジから生じる散乱反射光及び回路パ
ターン上に存在する異物からの散乱反射光の内、前記他
の直線群のエッジから生じる散乱反射光を前記検出光学
系内のフーリエ変換面に配置された空間フィルタで遮光
して該空間フィルタを通過した散乱反射光を光電変換手
段で受光して異物候補信号に変換してメモリに記憶する
異物候補信号検出工程と、該異物候補信号検出工程によ
りメモリに記憶された異物候補信号と光電変換手段から
得られる異物候補信号とをチップ単位において同一座標
系で比較して共通して検出された場合には回路パターン
の情報として除去して真の異物情報を検出するチップ比
較による真の異物情報検出工程とを有することを特徴と
する異物検出方法。
1. A circuit pattern composed of a main straight line group, which is essentially the same on a sample and is substantially orthogonal to each other, and another straight line group inclined by a predetermined angle in a plane with respect to each of the main straight line groups. In each of the chips formed with, the illumination light with high directivity is formed on the circuit pattern, and the optical axis of the illumination light forms a predetermined rotation angle on the circuit pattern surface with respect to each of the main straight line groups. In this direction, and from a direction inclined with respect to the vertical, the scattered reflection light generated from the edge of the main straight line group at this illumination point is almost perpendicular to the circuit pattern surface and a predetermined NA ( (Numerical aperture) and scattered reflection light generated from an edge of the other straight line group which is released from the detection optical system having a numerical aperture) and incident on the detection optical system and scattered reflection light from a foreign substance existing on a circuit pattern, Edge of line group The scattered reflected light generated from the light is blocked by the spatial filter arranged on the Fourier transform surface in the detection optical system, and the scattered reflected light passing through the spatial filter is received by the photoelectric conversion means to be converted into a foreign object candidate signal and stored in the memory. And the foreign matter candidate signal stored in the memory by the foreign matter candidate signal detection step and the foreign matter candidate signal obtained from the photoelectric conversion means are compared in the same coordinate system on a chip-by-chip basis. A true foreign matter information detecting step by chip comparison for detecting true foreign matter information by removing as circuit pattern information when detected, a foreign matter detecting method.
【請求項2】試料上に本来同一で、互いにほぼ直交する
主要な直線群と該主要な直線群の各々に対して平面内で
所定の角度傾斜した他の直線群とで構成された回路パタ
ーンが形成された各チップにおいて、指向性の高い照明
光を、前記回路パターン上に、前記照明光の光軸が前記
主要な直線群の各々に対して回路パターン面上で所定の
回転角度を形成した方向で、且つ垂直に対して傾斜した
方向から照明する照明光学系と、該照明光学系で照明さ
れた各チップにおける照明個所において前記主要な直線
群のエッジから生じる散乱反射光を逃がして他の直線群
のエッジから生じる散乱反射光及び試料上に存在する異
物からの散乱反射光を入射するように前記回路パターン
面に対してほぼ垂直の光軸と所定のNA(開口数)とを有
する対物レンズを備え、前記他の直線群のエッジから生
じて前記対物レンズに入射する散乱反射光を遮光する空
間フィルタをフーリエ変換面に配置し、該空間フィルタ
を通過した散乱反射光を受光して異物候補信号に変換す
る光電変換手段を備えた検出光学系とを備えた異物検出
装置を設け、該検出光学系の光電変換手段から得られる
異物候補信号を記憶するメモリを設け、該メモリに記憶
された異物候補信号と前記検出光学系の光電変換手段か
ら得られる異物候補信号とをチップ単位において同一座
標系で比較して共通して検出された場合には回路パター
ンの情報として除去して真の異物情報を検出するチップ
比較手段を設けたことを特徴とする異物検出装置。
2. A circuit pattern composed of a main straight line group which is essentially the same on the sample and is substantially orthogonal to each other, and another straight line group which is inclined at a predetermined angle in a plane with respect to each of the main straight line groups. In each of the chips formed with, the illumination light with high directivity is formed on the circuit pattern, and the optical axis of the illumination light forms a predetermined rotation angle on the circuit pattern surface with respect to each of the main straight line groups. In an inclined direction with respect to the vertical direction, and escapes scattered reflected light generated from the edge of the main straight line group at the illumination point in each chip illuminated by the illumination optical system. Has an optical axis substantially perpendicular to the circuit pattern surface and a predetermined NA (numerical aperture) so that scattered reflected light generated from the edge of the straight line group and scattered reflected light from a foreign substance existing on the sample are incident. Objective lens A spatial filter that blocks scattered reflected light generated from the edge of the other straight line group and incident on the objective lens is arranged on the Fourier transform surface, and the scattered reflected light that has passed through the spatial filter is received to detect a foreign substance candidate signal. A foreign matter detection device provided with a detection optical system having a photoelectric conversion means for converting into a foreign matter, a memory for storing a foreign matter candidate signal obtained from the photoelectric conversion means of the detection optical system, and a foreign matter stored in the memory. If the candidate signal and the foreign matter candidate signal obtained from the photoelectric conversion means of the detection optical system are compared in the same coordinate system on a chip-by-chip basis and detected in common, the foreign matter information is removed as circuit pattern information and true foreign matter information is obtained. A foreign matter detection device comprising a chip comparison means for detecting
JP62272958A 1987-10-30 1987-10-30 Foreign object detection method and apparatus Expired - Fee Related JPH0786465B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62272958A JPH0786465B2 (en) 1987-10-30 1987-10-30 Foreign object detection method and apparatus
US07/262,573 US5046847A (en) 1987-10-30 1988-10-25 Method for detecting foreign matter and device for realizing same
KR1019880014141A KR920009713B1 (en) 1987-10-30 1988-10-29 Method and its device for detecting foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272958A JPH0786465B2 (en) 1987-10-30 1987-10-30 Foreign object detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH01117024A JPH01117024A (en) 1989-05-09
JPH0786465B2 true JPH0786465B2 (en) 1995-09-20

Family

ID=17521157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272958A Expired - Fee Related JPH0786465B2 (en) 1987-10-30 1987-10-30 Foreign object detection method and apparatus

Country Status (1)

Country Link
JP (1) JPH0786465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201044A (en) * 2005-01-21 2006-08-03 Hitachi High-Technologies Corp Defect inspection method, and device thereof

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411377B1 (en) 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US5177559A (en) * 1991-05-17 1993-01-05 International Business Machines Corporation Dark field imaging defect inspection system for repetitive pattern integrated circuits
US5410400A (en) * 1991-06-26 1995-04-25 Hitachi, Ltd. Foreign particle inspection apparatus
JP3314440B2 (en) * 1993-02-26 2002-08-12 株式会社日立製作所 Defect inspection apparatus and method
JP4690584B2 (en) * 2001-06-06 2011-06-01 有限会社ユナテック Surface evaluation apparatus and surface evaluation method
JP4183492B2 (en) 2002-11-27 2008-11-19 株式会社日立製作所 Defect inspection apparatus and defect inspection method
JP2004177377A (en) 2002-11-29 2004-06-24 Hitachi Ltd Inspecting method and inspecting apparatus
JP4552859B2 (en) 2003-10-27 2010-09-29 株式会社ニコン Surface inspection apparatus and surface inspection method
JP2005283190A (en) 2004-03-29 2005-10-13 Hitachi High-Technologies Corp Foreign matter inspection method and device therefor
JP4713185B2 (en) 2005-03-11 2011-06-29 株式会社日立ハイテクノロジーズ Foreign object defect inspection method and apparatus
JP4988223B2 (en) 2005-06-22 2012-08-01 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
JP4996856B2 (en) 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
JP4988224B2 (en) 2006-03-01 2012-08-01 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
JP2007248086A (en) 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Flaw inspection device
WO2008001891A1 (en) 2006-06-30 2008-01-03 Hitachi High-Technologies Corporation Inspecting device, and inspecting method
JP4928862B2 (en) 2006-08-04 2012-05-09 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
US7664608B2 (en) 2006-07-14 2010-02-16 Hitachi High-Technologies Corporation Defect inspection method and apparatus
KR100835017B1 (en) * 2006-07-27 2008-06-03 미쓰비시덴키 가부시키가이샤 Breaker
JP5221858B2 (en) 2006-08-30 2013-06-26 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
US7847927B2 (en) 2007-02-28 2010-12-07 Hitachi High-Technologies Corporation Defect inspection method and defect inspection apparatus
JP4876019B2 (en) 2007-04-25 2012-02-15 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
JP5132982B2 (en) 2007-05-02 2013-01-30 株式会社日立ハイテクノロジーズ Pattern defect inspection apparatus and method
US8351683B2 (en) 2007-12-25 2013-01-08 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
JP5319930B2 (en) * 2008-02-20 2013-10-16 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
JP5202462B2 (en) 2009-07-23 2013-06-05 株式会社日立ハイテクノロジーズ Pattern defect inspection apparatus and method
US11143600B2 (en) 2018-02-16 2021-10-12 Hitachi High-Tech Corporation Defect inspection device
US10948423B2 (en) * 2019-02-17 2021-03-16 Kla Corporation Sensitive particle detection with spatially-varying polarization rotator and polarizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124117A (en) * 1979-03-19 1980-09-25 Toshiba Corp Pattern inspecting apparatus
JPH0743322B2 (en) * 1985-07-19 1995-05-15 株式会社日立製作所 Inspection method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201044A (en) * 2005-01-21 2006-08-03 Hitachi High-Technologies Corp Defect inspection method, and device thereof

Also Published As

Publication number Publication date
JPH01117024A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
JPH0786465B2 (en) Foreign object detection method and apparatus
JP4988223B2 (en) Defect inspection apparatus and method
KR920009713B1 (en) Method and its device for detecting foreign matter
US4669875A (en) Foreign particle detecting method and apparatus
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
JPH07123108B2 (en) Proximity alignment system using polarized light and double conjugate projection lens
JPH04305951A (en) Method for approximating number of particles on patterned region of wafer surface and precise inspecting device for surface
JPH0915163A (en) Method and equipment for inspecting foreign substance
GB2139753A (en) Sensing relative position of alignment marks
JP3087384B2 (en) Foreign matter inspection device
USRE33991E (en) Foreign particle detecting method and apparatus
JPS6365904B2 (en)
JPH0663982B2 (en) Foreign object detection method and apparatus
JP2512059B2 (en) Foreign object detection method and apparatus
JPS6240656B2 (en)
JP3053096B2 (en) Foreign object detection method and device
JP3102493B2 (en) Foreign matter inspection method and apparatus
JPH0646182B2 (en) Apparatus and method for inspecting foreign matter on mask
JP2577920B2 (en) Foreign substance inspection device
JPH0752156B2 (en) Foreign matter inspection device
JP3020546B2 (en) Foreign matter inspection device
JPH0715366B2 (en) Object position detection optical device
JPS636442A (en) Method and device for foreign matter inspection
JPH0216438A (en) Instrument and method for inspecting foreign matter
JPS62170963A (en) Foreign matter inspection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees