JPH05129382A - Wire bonding method - Google Patents

Wire bonding method

Info

Publication number
JPH05129382A
JPH05129382A JP28531291A JP28531291A JPH05129382A JP H05129382 A JPH05129382 A JP H05129382A JP 28531291 A JP28531291 A JP 28531291A JP 28531291 A JP28531291 A JP 28531291A JP H05129382 A JPH05129382 A JP H05129382A
Authority
JP
Japan
Prior art keywords
pad
ball
bonding
vibration
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28531291A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
敦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28531291A priority Critical patent/JPH05129382A/en
Publication of JPH05129382A publication Critical patent/JPH05129382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To enhance the adhesive properties between a bonding ball at the tip of a wire and a pad under a state in which the deformation of the bonding ball is minimum in terms of a bonding process which connects the pad on a semiconductor device to the wire. CONSTITUTION:A contact bonding load produced, when a bonding ball comes into contact with a pad, is adapted to be smaller than the contact bonding load produced when supersonic waves are forced to act on after the contact bonding. The contact bonding load is set to a low load when the ultrasonic waves are oscillated. Then, impact is inflicted upon between the pad and the ball in the oscillation direction of the ultrasonic waves and in the vertical direction when or slightly before the ultrasonic waves are forced to act on.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特に半導体素子の電極(パッド)とリードとを
ワイヤを介して電気的に接続するワイヤボンディング方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a wire bonding method for electrically connecting an electrode (pad) of a semiconductor element and a lead via a wire.

【0002】[0002]

【従来の技術】半導体装置の製造工程において、半導体
素子の電極(パッド)とリードとをワイヤを介して電気
的に接続するワイヤボンディング工程がある。
2. Description of the Related Art In a semiconductor device manufacturing process, there is a wire bonding process for electrically connecting electrodes (pads) of a semiconductor element and leads via wires.

【0003】ワイヤボンディング方法としては、熱と超
音波とを併用した超音波熱圧着法が広く用いられてい
る。この超音波熱圧着法は、図5に示すようにキャピラ
リー10を通したワイヤ11の先端を放電電極(図示せ
ず)との間に高電圧を印加し放電現象を生じさせワイヤ
の先端をボール化させ、このボール13をキャピラリー
10を降下させて半導体素子のパッド12に押し付け超
音波と熱の作用とによりボールとパッドとをボンディン
グする。
As a wire bonding method, an ultrasonic thermocompression bonding method in which heat and ultrasonic waves are used in combination is widely used. In this ultrasonic thermocompression bonding method, as shown in FIG. 5, a high voltage is applied between the tip of the wire 11 that has passed through the capillary 10 and a discharge electrode (not shown) to cause a discharge phenomenon to cause the tip of the wire to reach a ball. The balls 13 are made to fall, and the capillaries 10 are lowered to press the balls 13 against the pads 12 of the semiconductor element to bond the balls and the pads by the action of ultrasonic waves and heat.

【0004】従来パッドにキャピラリー先端のボールを
押し付けボンディングするときキャピラリーにボンディ
ングアームを介して加える圧着荷重は、図6(a)に示
すように一定で、この一定荷重でボールをパッドに押し
付けた状態で超音波を15〜40ms程度発振させて超
音波エネルギーと熱エネルギーとによりボールとパッド
とを接着固定していた。
Conventionally, when the ball at the tip of the capillary is pressed against the pad for bonding, the pressure applied to the capillary via the bonding arm is constant as shown in FIG. 6 (a), and the ball is pressed against the pad with this constant load. Then, ultrasonic waves were oscillated for about 15 to 40 ms to bond and fix the ball and the pad with ultrasonic energy and thermal energy.

【0005】[0005]

【発明が解決しようとする課題】超音波を用いるワイヤ
ボンディング方法では、ボンディングの初期の段階で、
キャピラリー先端のボールが、超音波の振動によりパッ
ド上をすべり、パッド上の汚れや酸化膜を除去し、この
後ボールとパッド上の金属とが超音波エネルギーと熱エ
ネルギーとにより相互拡散を起こすことによって密着す
る。
In the wire bonding method using ultrasonic waves, in the initial stage of bonding,
The ball at the tip of the capillary slides on the pad by the vibration of ultrasonic waves, removes dirt and oxide film on the pad, and then the ball and the metal on the pad cause mutual diffusion by ultrasonic energy and thermal energy. To stick to each other.

【0006】ボールをパッド上ですべらせるためには、
圧着荷重は、10〜40グラム重と低い方が好ましい
が、このように圧着荷重が低いとボールがパッドに当た
ったときにボールがバウンドするので、実際にパッドに
ボールが当たったときに加わる動荷重は、バウンドしな
い場合より大きくなる。例えば圧着荷重を60グラム重
としてバウンドを防いだときの動荷重は150グラム重
程度であるが、圧着荷重を30グラム重にしてボールが
パッド上をすべり易くすると、動荷重は250グラム以
上に達するためパッド下のシリコン基板にクラックが発
生する。
In order to slide the ball on the pad,
The crimping load is preferably as low as 10 to 40 grams, but if the crimping load is low like this, the ball bounces when the ball hits the pad. Therefore, the movement applied when the ball actually hits the pad. The load will be higher than if it did not bounce. For example, the dynamic load when the crimping load is set to 60 grams and bounce is prevented is about 150 grams, but if the crimping load is set to 30 grams and the ball easily slides on the pad, the dynamic load reaches 250 grams or more. Therefore, the silicon substrate under the pad is cracked.

【0007】従って、バウンドを防ぐため、ボールがパ
ッドに接触するときの圧着荷重は、45〜100グラム
重と大きくする必要があるが、圧着荷重を大きくすると
ボールがパッド上をすべるようにするための超音波出力
も大きくしなくてはならない。これは、超音波を作用さ
せた後のボールの変形量を大きくする。
Therefore, in order to prevent bouncing, it is necessary to increase the pressure-bonding load when the ball comes into contact with the pad to be 45 to 100 gram weight. To increase the pressure-bonding load, the ball slides on the pad. The ultrasonic output of must also be increased. This increases the amount of deformation of the ball after applying ultrasonic waves.

【0008】ボンディングの変形量が大きくなるとパッ
ド上にボンディングされる面積が広くなるためパッドの
面積や、パッド間隔を広くとることが必要となる。
When the deformation amount of the bonding increases, the area to be bonded on the pad increases, so that it is necessary to increase the pad area and the pad spacing.

【0009】また、超音波振動は一定方向であるためパ
ッドに圧着後のボールは、超音波の振動方向に、圧着径
の平均が約80μmとき、2〜3μm大きなだ円形とな
っている。パッドの間隔の最短長は、このだ円の長辺の
長さによって決まることになる。
Further, since the ultrasonic vibration is in a fixed direction, the ball after being pressure-bonded to the pad has an elliptical shape having a large diameter of 2-3 μm when the average pressure-bonding diameter is about 80 μm in the ultrasonic vibration direction. The shortest pad spacing is determined by the length of the long side of this ellipse.

【0010】特に最近ゲートアレイ品などはペレットの
面積を小さくしてパッドの数を多くするという要求があ
るため、パッドとボールとの密着強度を下げずに、いか
にしてボール径を小さくするかということが、重要な課
題となっている。
Recently, especially for gate array products, there is a demand for reducing the area of pellets and increasing the number of pads. Therefore, how to reduce the ball diameter without lowering the adhesion strength between the pads and the balls. That is an important issue.

【0011】[0011]

【課題を解決するための手段】本発明のワイヤボンディ
ング方法は、キャピラリー先端に形成されたボールを半
導体素子のパッドに所定の圧着荷重で押しつける第1工
程と、前記圧着荷重を減少させたのち前記キャピラリー
または半導体素子を超音波の振動と垂直方向に所定時間
振動させる第2工程と、振動開始以後に超音波振動を加
える第3工程とを有するというものである。
According to the wire bonding method of the present invention, a first step of pressing a ball formed at the tip of a capillary against a pad of a semiconductor device with a predetermined crimping load, and after reducing the crimping load, It has a second step of vibrating the capillary or the semiconductor element in a direction perpendicular to the vibration of ultrasonic waves for a predetermined time, and a third step of applying ultrasonic vibration after the start of vibration.

【0012】[0012]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0013】図1(a)は本発明の第1の実施例におけ
るボールとパッドとに加わる圧着荷重とボンディング時
間との関係を示す特性図で、図1(b)は、ボールがパ
ッドに接触しているときの超音波発振と、超音波と垂直
方向のパッドとボール間の振動とのタイミングを示すタ
イムチャートである。なお図4は、ワイヤボンディング
装置の概略を示す正面図、図5はボールがパッドに接触
したときの半導体素子、キャピラリー及びワイヤの位置
関係を示す断面図である。
FIG. 1A is a characteristic diagram showing the relationship between the bonding pressure applied to the ball and the pad and the bonding time in the first embodiment of the present invention. FIG. 1B shows the ball contacting the pad. 7 is a time chart showing the timing of ultrasonic oscillation during vibration and vibration between the pad and the ball in the direction perpendicular to the ultrasonic wave. 4 is a front view showing the outline of the wire bonding apparatus, and FIG. 5 is a sectional view showing the positional relationship between the semiconductor element, the capillary and the wire when the ball contacts the pad.

【0014】ボール13がパッド12に接触したときの
圧着荷重は、図1(a)に示すように、高荷重1とし、
ボールがパッド上でバウンドしないようにしパッド下の
シリコン基板の破損を防止する。このときの荷重は、4
5〜80グラム重、好ましくは60グラム重とし、ま
た、ボール13がパッド12に当たるときの速度は、5
〜10mm/sであることが望ましい。次に圧着荷重を
徐徐に落として10〜40グラム重、好ましくは23グ
ラム重の低荷重2とする。低荷重とした後、超音波によ
る振動方向と垂直方向にパッドとボール間に図1(b)
に示すように振動を与える。この振動は、超音波の振動
方向6がX方向とすると、XYテーブルをY方向に動か
すことにより行なわれる。XYテーブルの振動は、図2
に示すように振幅と振幅回数とを表わすと振幅が2〜6
μmで、振幅回数は、1〜2回行う。このようにボール
とパッドとの間に振動を与えることにより、ボールがパ
ッド上をすべりパッド上の酸化膜や汚れを除去する。次
に超音波を発振させるが、このときの荷重は、10〜4
0グラム重と低くなっているので、パッドとボールとの
間のすべりが容易となり、超音波エネルギーは小さくす
ることが出来る。従って、圧着後のボールの変形量は少
なくできる。ここで、超音波の振動は、X方向で、XY
テーブルの振動はY方向であるため、圧着後のボール形
状は、超音波のみで圧着したときと比べ円に近くするこ
とが出きる。また、XYテーブルの振動によりボールを
パッド上にすべらせパッド上の汚れを除去して、超音波
によりボールとパッドとを密着させているため、パッド
の汚れの状態や酸化膜の厚さが、ある程度ばらついて
も、安定した密着強度を得られる。
The crimping load when the ball 13 contacts the pad 12 is a high load 1, as shown in FIG.
Prevent balls from bouncing on the pad and prevent damage to the silicon substrate under the pad. The load at this time is 4
The weight is 5 to 80 grams, preferably 60 grams, and the speed at which the ball 13 hits the pad 12 is 5
It is desirable to be 10 mm / s. Next, the pressure-bonding load is gradually reduced to a low load 2 of 10 to 40 grams, preferably 23 grams. Fig. 1 (b) between the pad and the ball in the direction perpendicular to the direction of ultrasonic vibration after applying a low load.
Apply vibration as shown in. This vibration is performed by moving the XY table in the Y direction when the vibration direction 6 of the ultrasonic waves is the X direction. The vibration of the XY table is shown in Fig. 2.
When the amplitude and the number of times of the amplitude are expressed as
In μm, the amplitude is performed once or twice. By applying vibration between the ball and the pad in this way, the ball slides on the pad and the oxide film and dirt on the pad are removed. Next, ultrasonic waves are oscillated, and the load at this time is 10 to 4
Since the weight is as low as 0 gram, slippage between the pad and the ball is facilitated, and ultrasonic energy can be reduced. Therefore, the amount of deformation of the ball after pressure bonding can be reduced. Here, the vibration of ultrasonic waves is XY in the X direction.
Since the vibration of the table is in the Y direction, the ball shape after pressure bonding can be closer to a circle than when it is pressure bonded only with ultrasonic waves. Further, since the ball is slid on the pad by the vibration of the XY table to remove the dirt on the pad and the ball and the pad are brought into close contact with each other by ultrasonic waves, the dirt state of the pad and the thickness of the oxide film are Stable adhesion strength can be obtained even if there is some variation.

【0015】また、ボールとパッド間の振動は、XYテ
ーブルを動かすことによってではなく、半導体素子9を
保持しているボンディングステージ5を超音波の振動方
向と垂直に振動させても良く、この場合半導体素子9を
直接振動させることが出来るため、この振動で、より安
定してパッド上の汚れや酸化膜を除去することができ
る。
Further, the vibration between the ball and the pad may be caused not by moving the XY table but by vibrating the bonding stage 5 holding the semiconductor element 9 perpendicularly to the vibration direction of the ultrasonic wave. Since the semiconductor element 9 can be directly vibrated, the vibration can more stably remove the dirt and oxide film on the pad.

【0016】図3(a)は、本発明の第2の実施例にお
けるボールとパッドとに加わる圧着荷重とボンディング
時間との関係を示す特性図で、図3(b)は、ボールが
パッドに接触しているときの超音波発振と、超音波振動
と垂直方向のパッドとボール間の振動とのタイミングを
示すタイムチャートである。
FIG. 3 (a) is a characteristic diagram showing the relationship between the bonding pressure applied to the ball and the pad and the bonding time in the second embodiment of the present invention, and FIG. 3 (b) shows the ball acting as the pad. 6 is a time chart showing the timing of ultrasonic oscillation when in contact, ultrasonic vibration, and vertical vibration between a pad and a ball.

【0017】この実施例では低荷重2aにおいて超音波
の発振時の圧着荷重と超音波振動と垂直方向のパッドと
ボール間の振動時の圧着荷重を変えている。このように
パッドとボール間を振動させてパッド上の汚れや酸化膜
を除去するのに最も効果のある圧着荷重と超音波により
ボールとパッドとを圧着するのに最も効果のある圧着荷
重とを別々に設定することで、より安定したボンディン
グが可能となる。
In this embodiment, the pressure-bonding load when the ultrasonic wave is oscillated and the pressure-bonding load when the ultrasonic vibration and the vibration between the pad and the ball in the vertical direction are changed at the low load 2a. In this way, the crimping load most effective for removing dirt and oxide film on the pad by vibrating between the pad and the ball and the crimping load most effective for crimping the ball and the pad by ultrasonic waves are set. By setting them separately, more stable bonding becomes possible.

【0018】[0018]

【発明の効果】以上説明したように本発明は、ボールが
パッドに接触したときの圧着荷重をその後パッドにボー
ルを圧着した状態で超音波を作用させるときの圧着荷重
に比べて重くし、かつ圧着荷重を低荷重とした後超音波
の発振と同時かまたは少し前に超音波の振動方向と垂直
方向にボールとパッドとの間に振動を与えることによっ
て、ボールとパッドとの密着性を向上させ、ボンディン
グ後のボールとパッドとの剥れを防止することができ
る。
As described above, according to the present invention, the crimping load when the ball contacts the pad is made heavier than the crimping load when ultrasonic waves are applied in the state where the ball is then crimped to the pad, and Improving the adhesion between the ball and the pad by applying a vibration between the ball and the pad in the direction perpendicular to the ultrasonic vibration direction at the same time as or slightly before the ultrasonic wave oscillation after the crimping load is reduced. By doing so, it is possible to prevent the balls from coming off the pads after bonding.

【0019】また、ボールがバッドに接触したときの圧
着荷重を45〜80グラム重と大きくすることによりボ
ールがパッド上でバウンドするのを防いでいるので、圧
着荷重が小さいときに発生しやすいパッド下のシリコン
基板の破損を防止できる。さらにパッドとボール間の振
動時及び超音波発振時の圧着荷重が10〜40グラム重
と小さいので圧着後のボールの変形量も小さくでき、超
音波の振動方向とパッドとボール間の振動方向が垂直方
向であるため圧着後のボール形状は、振動方向に長いだ
円の程度を少なくし円に近くすることができる。このよ
うにボールの変形量が小さく圧着後のボール形状も円に
近くすることが出来るため密着強度を維持しながら、パ
ッドの面積やパッド間の間隔を狭くすることができ半導
体装置の集積度を向上させることができる。
Further, since the ball is prevented from bouncing on the pad by increasing the crimping load when the ball comes into contact with the pad with a weight of 45 to 80 grams, the pad is apt to occur when the crimping load is small. The damage of the lower silicon substrate can be prevented. Furthermore, since the compression load between the pad and the ball during vibration and ultrasonic oscillation is as small as 10 to 40 grams, the amount of deformation of the ball after compression can be reduced, and the vibration direction of ultrasonic waves and the vibration direction between the pad and ball can be reduced. Since it is in the vertical direction, the ball shape after crimping can be made closer to a circle by reducing the degree of an ellipse that is long in the vibration direction. Since the amount of ball deformation is small and the ball shape after pressure bonding can be made close to a circle in this way, the area of the pads and the distance between the pads can be reduced while maintaining the adhesion strength, and the integration degree of the semiconductor device can be improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における圧着荷重の時間
的変化を示す特性図(図1(a))およびボンディング
時の超音波発振,超音波振動と垂直方向の振動のタイム
チャート(図1(b))である。
FIG. 1 is a characteristic diagram showing a change over time of a crimping load in a first embodiment of the present invention (FIG. 1A) and a time chart of ultrasonic oscillation during bonding, ultrasonic vibration and vertical vibration ( It is FIG.1 (b)).

【図2】超音波振動と垂直方向の振動を示す図である。FIG. 2 is a diagram showing ultrasonic vibration and vertical vibration.

【図3】第2の実施例における圧着荷重の時間的変化を
示す特性図(図3(a))およびボンディング時の超音
波発振,超音波振動と垂直方向の振動のタイムチャート
(図3(b))である。
FIG. 3 is a characteristic diagram (FIG. 3 (a)) showing a temporal change of a crimping load in the second embodiment and a time chart of ultrasonic oscillation during bonding, ultrasonic vibration and vertical vibration (see FIG. b)).

【図4】ワイヤボンディング装置の概略を示す正面図で
ある。
FIG. 4 is a front view showing an outline of a wire bonding device.

【図5】ボンディング時のキャピラリー、ワイヤ及び半
導体素子の位置関係を示す断面図である。
FIG. 5 is a cross-sectional view showing a positional relationship between a capillary, a wire and a semiconductor element during bonding.

【図6】従来技術における圧着荷重の時間的変化を示す
特性図(図6(a))およびボンディング時の超音波発
振のタイムチャートである。
FIG. 6 is a characteristic diagram (FIG. 6A) showing a time change of a crimping load in a conventional technique and a time chart of ultrasonic oscillation during bonding.

【符号の説明】[Explanation of symbols]

1 高荷重 2,2a 低荷重 3 ボンディングヘッド 4 X−Yテーブル 5 ボンディングステージ 6 超音波の振動方向 7 ボンディングアーム 8 リード 8a アイランド 9 半導体素子 10 キャピラリー 11 ワイヤ 12 パッド 13 ボール 14 ボールとキャピラリーの接触面 1 High load 2, 2a Low load 3 Bonding head 4 XY table 5 Bonding stage 6 Ultrasonic vibration direction 7 Bonding arm 8 Lead 8a Island 9 Semiconductor element 10 Capillary 11 Wire 12 Pad 13 Ball 14 Ball 14 Contact surface between ball and capillary

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超音波と熱エネルギーとを並用するワイ
ヤボンディング方法においてキャピラリー先端に形成さ
れたボールを半導体素子のパッドに所定の圧着荷重で押
しつける第1工程と、前記圧着荷重を減少させたのち前
記キャピラリーまたは半導体素子を超音波の振動方向と
垂直方向に所定時間振動させる第2工程と、振動開始以
後に超音波振動を方向に加える第3工程とを有すること
を特徴とするワイヤボンディング方法。
1. A wire bonding method in which ultrasonic waves and thermal energy are commonly used, in which a ball formed at the tip of a capillary is pressed against a pad of a semiconductor element with a predetermined crimping load, and after the crimping load is reduced. A wire bonding method, comprising: a second step of vibrating the capillary or the semiconductor element in a direction perpendicular to an ultrasonic vibration direction for a predetermined time; and a third step of applying ultrasonic vibration in the direction after the vibration is started.
【請求項2】 第1工程における圧着荷重は45〜80
グラム重第2工程における圧着荷重および振動の振幅は
それぞれ10〜40グラム重および2〜6μm、第3工
程における圧着荷重は10〜40グラム重である請求項
1記載のワイヤボンディング方法。
2. The crimping load in the first step is 45 to 80.
The wire bonding method according to claim 1, wherein the crimping load and the vibration amplitude in the second step are 10 to 40 grams and 2 to 6 μm, respectively, and the crimping load in the third step is 10 to 40 grams.
【請求項3】 キャピラリーを取り付けたボンディング
ヘッドを搭載するXYステージを動かして超音波の振動
方向と垂直方向に振動を行なう請求項1記載のワイヤボ
ンディング方法。
3. The wire bonding method according to claim 1, wherein an XY stage equipped with a bonding head having a capillary is moved to vibrate in a direction perpendicular to a vibration direction of ultrasonic waves.
【請求項4】 半導体素子を保持するボンディングヘッ
ドを動かして超音波の振動方向と垂直方向に振動を行な
うワイヤボンディング方法。
4. A wire bonding method in which a bonding head holding a semiconductor element is moved to vibrate in a direction perpendicular to a vibration direction of ultrasonic waves.
JP28531291A 1991-10-31 1991-10-31 Wire bonding method Pending JPH05129382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28531291A JPH05129382A (en) 1991-10-31 1991-10-31 Wire bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28531291A JPH05129382A (en) 1991-10-31 1991-10-31 Wire bonding method

Publications (1)

Publication Number Publication Date
JPH05129382A true JPH05129382A (en) 1993-05-25

Family

ID=17689903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28531291A Pending JPH05129382A (en) 1991-10-31 1991-10-31 Wire bonding method

Country Status (1)

Country Link
JP (1) JPH05129382A (en)

Similar Documents

Publication Publication Date Title
US6460591B1 (en) Ultrasonic bonding method and ultrasonic bonding apparatus
US6698646B2 (en) Room temperature gold wire bonding
JPH05129382A (en) Wire bonding method
US20110068469A1 (en) Semiconductor package with pre-formed ball bonds
US6779702B2 (en) Wire bonding apparatus with spurious vibration suppressing structure
US6165888A (en) Two step wire bond process
JPH08181175A (en) Wire bonding method
JP2821777B2 (en) Flip chip IC and manufacturing method thereof
JP3233194B2 (en) Wire bonding method
JPH06120290A (en) Semiconductor device
JPH10199913A (en) Wire-bonding method
JP2880832B2 (en) Wire bonding method
JPH04279040A (en) Wire-bonding method
KR940005716B1 (en) Wire bonding method for semiconductor device
JPH0645411A (en) Wire bonding method
JPH08306714A (en) Pellet bonding method
JPH05114629A (en) Wire bonding method and device
KR100685869B1 (en) Wire Bonder work Bumping and coining at the same time
JPH10261645A (en) Semiconductor device, formation of projected electrode, and wire-bonding method
JPS62123728A (en) Wire bonding method and device therefor
JP2001217274A (en) Formation method for metal bump
JP3405615B2 (en) Insulation coated wire bonding method
KR100771893B1 (en) Method of bonding wires
JPH05129356A (en) Bonding device of coated metallic fine wire
JPH11288960A (en) Wire-bonding connection and tool for bonding surface removal removal