JPH05128481A - Magnetic recording medium and production thereof and magnetic disk device constituted by using the medium - Google Patents

Magnetic recording medium and production thereof and magnetic disk device constituted by using the medium

Info

Publication number
JPH05128481A
JPH05128481A JP5681091A JP5681091A JPH05128481A JP H05128481 A JPH05128481 A JP H05128481A JP 5681091 A JP5681091 A JP 5681091A JP 5681091 A JP5681091 A JP 5681091A JP H05128481 A JPH05128481 A JP H05128481A
Authority
JP
Japan
Prior art keywords
underlayer
magnetic
recording medium
magnetic recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5681091A
Other languages
Japanese (ja)
Other versions
JP3029306B2 (en
Inventor
Akira Ishikawa
石川  晃
Yoshihiro Shiroishi
芳博 城石
Sadao Hishiyama
定夫 菱山
Tomoo Yamamoto
朋生 山本
Shinan Yaku
四男 屋久
Tsuguyuki Oono
徒之 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3056810A priority Critical patent/JP3029306B2/en
Publication of JPH05128481A publication Critical patent/JPH05128481A/en
Application granted granted Critical
Publication of JP3029306B2 publication Critical patent/JP3029306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the magnetic recording medium which has uniform magnetic characteristics within a medium surface and less modulations and can make high-density recording and the method for producing such medium with good reproducibility, and the magnetic disk device of a small size and small capacity using such medium. CONSTITUTION:This medium is constituted by forming the substrate layer of a magnetic layer into a two-layered structure consisting of 1st and 2nd layers, incorporating 0.1 to 50at.% at least one kind of elements Z among oxygen, fluorine and nitrogen or incorporating 0.001 to 5at.% hydrogen into at least either of the substrate layer and the magnetic layer 14. As a result, crystal nuclei are uniformly formed with good reproducibility within the medium plane and the crystallinity and orientability are uniformed in the medium plane in the initial stage of the crystal film formation of the magnetic films. Further, the magnetic characteristics, such as coercive force and squareness ratio, are improved and the high threshold recording density and S/N are obtd. by setting the content of the Z elements in the substrate layer 16 at the above-mentioned range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体とその製造
方法およびそれを用いた磁気ディスク装置に係り、特に
高密度磁気記録に好適な薄膜磁気記録媒体とその製造方
法およびそれを用いた磁気ディスク装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, a method for manufacturing the same, and a magnetic disk device using the same, and particularly to a thin film magnetic recording medium suitable for high density magnetic recording, a method for manufacturing the same, and a magnetic field using the same. Disc device

【0002】[0002]

【従来の技術】近年、大型計算機、ワークテーションお
よびパーソナルコンピュータ等の小型化、高速化が急速
な勢いで進展している。これに伴い計算機の外部データ
記憶装置である磁気ディスク装置に対しても大容量化、
小型化、高速アクセス化の要求が高まっている。上記の
ような磁気ディスク装置の高性能化には高密度記録が可
能な磁気記録媒体が必要である。高密度記録可能な媒体
としては、非磁性基板上にスパッタリング等の成膜技術
を用いて下地層、磁性層、保護層を順次積層した構造の
磁気ディスクが知られている。
2. Description of the Related Art In recent years, downsizing and speeding up of large-scale computers, work stations, personal computers, etc. have been rapidly progressing. As a result, the capacity of the magnetic disk device, which is the external data storage device of the computer, has been increased.
There is an increasing demand for miniaturization and high-speed access. A magnetic recording medium capable of high-density recording is required to improve the performance of the above magnetic disk device. As a medium capable of high-density recording, there is known a magnetic disk having a structure in which an underlayer, a magnetic layer, and a protective layer are sequentially laminated on a nonmagnetic substrate by using a film forming technique such as sputtering.

【0003】この構造の磁気ディスクは一般に薄膜媒体
と称され、磁性酸化物粉体をディスク基板上に塗布して
形成された塗布型媒体と比べ、磁性層中の磁気モーメン
ト密度が高く、また、高保磁力化が容易なため高密度磁
気記録に適している。この種の薄膜媒体の基板として
は、従来から金属材料あるいは有機樹脂、セラミックス
等からなる非磁性ディスクが用いられている。また、こ
の基板上には、表面硬度を増し磁気特性を向上する目的
で、基板表面層として予め例えばNi−P層がメッキ法
などにより形成される場合が一般的である。
A magnetic disk of this structure is generally called a thin film medium and has a higher magnetic moment density in the magnetic layer than a coating type medium formed by coating magnetic oxide powder on a disk substrate. It is suitable for high-density magnetic recording because it is easy to increase the coercive force. As a substrate for this type of thin film medium, a non-magnetic disk made of a metal material, an organic resin, ceramics or the like has been conventionally used. In addition, a Ni-P layer, for example, is generally formed in advance as a substrate surface layer on the substrate by a plating method or the like for the purpose of increasing surface hardness and improving magnetic characteristics.

【0004】さらに、米国特許第4735840号明細
書に記載されるようにNi−P層の表面にテクスチャと
呼ばれる微細な溝が円周方向に形成される場合がある。
このテクスチャ形成により磁気ヘッドと磁気記録媒体と
の接触面積が減少し、媒体が回転停止した際のヘッドの
媒体表面への粘着が抑制される効果がある。また、テク
スチャを設けることにより磁性膜の円周方向の保磁力あ
るいは角形比、残留磁化量等の磁気特性が向上し、その
結果記録再生時の分解能やS/Nが向上する。また、磁
気記録媒体製造時の成膜条件により媒体面内に磁気異方
性が生じ磁気特性が変動する場合があるが、上記テクス
チャ加工により円周方向の磁気特性が均一化され、その
結果、記録再生出力の揺らぎ(以後モジュレーション、
Mdと略記する)を減少させることができる。
Further, as described in US Pat. No. 4,735,840, fine grooves called a texture may be circumferentially formed on the surface of the Ni-P layer.
This texture formation has an effect of reducing the contact area between the magnetic head and the magnetic recording medium, and suppressing the adhesion of the head to the medium surface when the medium stops rotating. Further, by providing the texture, the magnetic properties such as the coercive force in the circumferential direction of the magnetic film, the squareness ratio, and the residual magnetization amount are improved, and as a result, the resolution and S / N at the time of recording / reproducing are improved. Further, magnetic anisotropy may occur in the surface of the medium depending on the film forming conditions at the time of manufacturing the magnetic recording medium, and the magnetic characteristics may change, but the magnetic characteristics in the circumferential direction are made uniform by the above texture processing, and as a result, Fluctuation of recording / reproducing output (modulation,
(Abbreviated as Md) can be reduced.

【0005】さらにまた、このモジュレーションをより
効果的に減少させる方法として、この基板上(Ni−P
層上)に下地層としてCrにTiあるいはSiを添加し
た合金層を形成する方法も知られている。このようなC
r下地層の合金化により、その上に形成する磁性層の初
期形成層が面内で等方的な結晶配向をするためモジュレ
ーションを効果的に減少させることができる。この種の
技術に関連するものとして、例えば特開昭63−197
018号公報が挙げられる。
Furthermore, as a method of more effectively reducing this modulation, on this substrate (Ni-P
There is also known a method of forming an alloy layer in which Ti or Si is added to Cr as an underlayer on (on the layer). C like this
By alloying the r underlayer, the initial formation layer of the magnetic layer formed thereon has an in-plane isotropic crystal orientation, so that the modulation can be effectively reduced. As a technique related to this type of technology, for example, Japanese Patent Laid-Open No. 63-197.
No. 018 publication is mentioned.

【0006】[0006]

【発明が解決しようとする課題】上記の如く、基板上
(Ni−P層上)のテクスチャ加工やCr下地層の合金
化により薄膜磁気記録媒体の記録特性が向上し、モジュ
レーションが減少するが、その効果はテクスチャ表面の
0.1μm以下の大きさの微視的な形状や表面組成によ
り変化する。従って磁気特性が面内で均一な媒体を再現
性よく作成するためには、テクスチャの微視的な形状を
面内で均一に形成し、その表面組成を再現性良く制御す
る必要がある。
As described above, the texturing of the substrate (on the Ni-P layer) and the alloying of the Cr underlayer improve the recording characteristics of the thin film magnetic recording medium and reduce the modulation. The effect changes depending on the microscopic shape and surface composition of 0.1 μm or less on the textured surface. Therefore, in order to create a medium having a uniform magnetic property in the surface with good reproducibility, it is necessary to form a microscopic texture shape uniformly in the surface and control the surface composition with good reproducibility.

【0007】しかし、金属基板上のテクスチャは通常、
粒径0.1〜数μmの砥粒を用いてディスク表面を切削
して形成されるため、0.1〜数μm以下の表面粗さや
ピッチを媒体面内で均一に制御することは極めて困難で
ある。また、基板表面の組成は基板洗浄法や保存条件に
より変化するため一定に制御することは困難である。
However, the texture on a metal substrate is usually
Since it is formed by cutting the disk surface with abrasive grains having a grain size of 0.1 to several μm, it is extremely difficult to uniformly control the surface roughness and pitch of 0.1 to several μm or less in the medium surface. Is. Further, the composition of the substrate surface changes depending on the substrate cleaning method and the storage conditions, so that it is difficult to control it to be constant.

【0008】さらにまた、有機樹脂やガラス基板を用い
たディスクにおいても表面を研磨粉で磨いたり、化学的
にエッチングすることにより円周方向、あるいは等方的
なテクスチャが形成されるが、ここでも微視的な表面形
状や表面組成を媒体面内で均一に再現性よく制御するこ
とは困難である。このためモジュレーションや、製造ロ
ットごとに媒体の記録再生特性が変動する問題があっ
た。
Further, even in the case of a disc using an organic resin or a glass substrate, a circumferential direction or an isotropic texture is formed by polishing the surface with abrasive powder or chemically etching it. It is difficult to uniformly and reproducibly control the microscopic surface shape and surface composition within the medium surface. Therefore, there is a problem in that the recording and reproducing characteristics of the medium vary depending on the modulation and manufacturing lot.

【0009】また、磁気ディスク装置の記録密度をさら
に向上させるためには従来の媒体では記録再生時の分解
能、S/Nが不十分であり、より優れた特性の媒体を開
発することが強く求められていた。また、媒体の組成、
プロセス条件により面内磁気異方性が極めて強く、テク
スチャ加工や下地合金化によってもモジュレーションを
減少できない場合があり、磁気記録特性を面内で均一化
する方法を新たに開発することが強く望まれていた。
Further, in order to further improve the recording density of the magnetic disk device, the resolution and S / N at the time of recording / reproducing are insufficient in the conventional medium, and it is strongly demanded to develop a medium having more excellent characteristics. It was being done. Also, the composition of the medium,
In-plane magnetic anisotropy is extremely strong depending on process conditions, and modulation may not be able to be reduced even by texturing or under-alloying.Therefore, it is strongly desired to develop a new method for homogenizing magnetic recording characteristics in-plane. Was there.

【0010】したがって、本発明の目的は上記従来の問
題点を解消することにあり、その第1の目的は、磁気記
録媒体面内の磁気記録特性が均一であり、高密度記録が
可能な磁気記録媒体を、第2の目的は、このような磁気
記録媒体を再現性良く製造する方法を、そして第3の目
的はこのような磁気記録媒体を用いた大容量の磁気ディ
スク装置を、それぞれ提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and the first object thereof is to provide a magnetic recording medium having uniform magnetic recording characteristics in the plane of the magnetic recording medium and capable of high density recording. The second object is to provide a method for producing such a magnetic recording medium with good reproducibility, and the third object is to provide a large-capacity magnetic disk device using such a magnetic recording medium. To do.

【0011】[0011]

【課題を解決するための手段】本発明者らは薄膜磁気記
録媒体の磁気特性に関し鋭意研究を重ねた結果、上記第
1の目的は、非磁性基板上に少なくとも下地層、磁性層
および保護層が順次積層形成されて成る薄膜磁気記録媒
体において、前記磁性層の下に第一の下地層とこの第一
の下地層上に、第二の下地層とを積層して下地層を少な
くとも二層以上の複数層構造とすると共に、この第一の
下地層の少なくとも表層部には酸素、フッ素および窒素
の元素群の中から選択される少なくとも一種の元素を原
子パーセントで0.1〜50%含有せしめることにより
達せられるとの知見を得た。
As a result of intensive studies conducted by the present inventors on the magnetic characteristics of thin film magnetic recording media, the first object is to provide at least an underlayer, a magnetic layer and a protective layer on a non-magnetic substrate. In a thin film magnetic recording medium in which the first underlayer and the second underlayer are laminated under the magnetic layer to form at least two underlayers. In addition to the above multi-layered structure, at least one element selected from the group of elements of oxygen, fluorine and nitrogen is contained in an atomic percentage of 0.1 to 50% in at least the surface layer portion of the first underlayer. We obtained the knowledge that it can be achieved by urging.

【0012】本発明はかかる知見に基づいて成されたも
のであり、以下に好ましい上記第一の下地層の例を示す
と、この下地層は下記の化学式(1)を満足する非磁性
層で構成される。
The present invention has been made on the basis of such findings, and the following is a preferred example of the first underlayer. The underlayer is a nonmagnetic layer satisfying the following chemical formula (1). Composed.

【0013】[0013]

【化2】A(1-x)Zx ………(1) ただし、Aは、B,Mg,Al,Si,P,Ca,S
c,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,
Zn,Ge,Sr,Y,Zr,Nb,Mo,Ru,R
h,Pd,Ag,Cd,In,Sn,Sb,Ba,H
f,Ta,W,Re,Os,Ir,Pt,Au,Tl,
PbおよびBiからなる元素群の中から選択される少な
くとも一種の元素、Zは、酸素、フッ素および窒素から
なる元素群の中から選択される少なくとも一種の元素で
あり、xは0.001〜0.50であり、原子パーセント
(以下、at%と略称)に換算すると0.1〜50at
%となる。そして、より好ましくは1〜20at%であ
る。
Embedded image A (1-x) Zx (1) where A is B, Mg, Al, Si, P, Ca, S
c, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ge, Sr, Y, Zr, Nb, Mo, Ru, R
h, Pd, Ag, Cd, In, Sn, Sb, Ba, H
f, Ta, W, Re, Os, Ir, Pt, Au, Tl,
At least one element selected from the element group consisting of Pb and Bi, Z is at least one element selected from the element group consisting of oxygen, fluorine and nitrogen, and x is 0.001 to 0. .50, which is 0.1 to 50 at when converted into atomic percent (hereinafter abbreviated as at%).
%. And, it is more preferably 1 to 20 at%.

【0014】上記化学式(1)において、より好ましい
A元素としてはMg,Al,Ti,V,Cr,Mn,N
i,Cu,Zn,MoおよびWからなる元素群の中から
選択される少なくとも一種の元素であり、同様により好
ましいZ元素としては、酸素およびフッ素からなる元素
群の中から選択される少なくとも一種の元素である。そ
して、第一の下地層の好ましい厚みとしては1〜50n
mである。この第一の下地層は、金属材料や有機樹脂、
セラミックスなどからなる非磁性基板上に熱処理、真空
蒸着、スパッタ蒸着、CVD、MBE、プラズマアッシ
ャ等の周知の方法により再現性良く均一に形成すること
ができる。
In the above chemical formula (1), more preferable A elements are Mg, Al, Ti, V, Cr, Mn and N.
At least one element selected from the group of elements consisting of i, Cu, Zn, Mo and W, and a more preferable Z element is at least one element selected from the group of elements consisting of oxygen and fluorine. It is an element. Then, the preferable thickness of the first underlayer is 1 to 50 n.
m. This first underlayer is made of metal material, organic resin,
A non-magnetic substrate made of ceramics or the like can be uniformly formed with good reproducibility by a known method such as heat treatment, vacuum deposition, sputter deposition, CVD, MBE, or plasma asher.

【0015】上記第一の下地層を形成する際、化学式
(1)におけるxの値が上記範囲となるように反応ガ
ス、ターゲット組成、温度、時間等の成膜条件を最適化
する。このxの値が上記範囲を外れ、下限値を下回った
場合には上記第一の下地層の効果が現われないか、ある
いは上限値を超えた場合には磁性層の結晶配向性が変化
し媒体の磁気特性が著しく劣化する。したがって、x値
を好ましい範囲内に調製することが重要であり、少なく
とも第一の下地層の表層部がこの範囲内にあることが重
要である。
When forming the first underlayer, the film forming conditions such as reaction gas, target composition, temperature and time are optimized so that the value of x in the chemical formula (1) is in the above range. When the value of x is out of the above range and is below the lower limit, the effect of the first underlayer does not appear, or when it exceeds the upper limit, the crystal orientation of the magnetic layer is changed and the medium The magnetic properties of are significantly deteriorated. Therefore, it is important to adjust the x value within the preferable range, and it is important that at least the surface layer portion of the first underlayer be within this range.

【0016】なお、本発明において基板のテクスチャ加
工は、必要条件ではないが従来法にしたがって上記第一
の下地層を形成する前の基板上(一般にNi−Pメッキ
層が表面に形成されている)にテクスチャを形成するこ
とが望ましい。また、上記第一の下地層自体にテクスチ
ャ加工を施すこともできる。また、本発明においては、
第一の下地層を構成する材料でディスク基板自身を形成
することもできる。この場合には基板自身その表面が第
一の下地層の役割をも兼ね備えているので、新たに第一
の下地層を形成する必要はなく、省略することができ
る。
In the present invention, the texturing of the substrate is not a necessary condition, but it is on the substrate (generally a Ni-P plating layer is formed on the surface) before forming the first underlayer according to the conventional method. It is desirable to form a texture in. Further, the first underlayer itself can be textured. Further, in the present invention,
It is also possible to form the disc substrate itself with the material forming the first underlayer. In this case, since the surface of the substrate itself also serves as the first underlayer, there is no need to newly form the first underlayer, and it can be omitted.

【0017】上記第一の下地層上に形成する好ましい第
二の下地層としては、Cr、MoおよびWの少なくとも
一種の金属もしくはこれらの金属にTi、Si、Feお
よびVの少なくとも一種を含有せしめた合金層で構成す
ることが望ましい。そして、好ましい膜厚としては10
〜500nmである。
As a preferable second underlayer formed on the above-mentioned first underlayer, at least one metal of Cr, Mo and W or at least one of Ti, Si, Fe and V is contained in these metals. It is desirable to use an alloy layer. And a preferable film thickness is 10
~ 500 nm.

【0018】記録媒体としては、さらにこの第二の下地
層上に磁性層を成膜するが、この磁性層としては、Co
基合金層、例えばNi,Cr,Zr,Ta,Ptの少な
くとも一種を含むCo合金層が好ましく、さらに膜厚と
しては、10〜100nmが好ましい。
As a recording medium, a magnetic layer is further formed on the second underlayer. The magnetic layer is Co.
A base alloy layer, for example, a Co alloy layer containing at least one of Ni, Cr, Zr, Ta and Pt is preferable, and the film thickness is preferably 10 to 100 nm.

【0019】磁性層の上には、例えばカーボンの如き保
護層を膜厚10〜50nm形成し、さらに例えば吸着性
のパーフルオロアルキルポリエーテル等の潤滑層を設け
ることにより、記録媒体面内の磁気記録特性が均一で、
高密度記録を可能とする磁気記録媒体が得られる。
A protective layer such as carbon is formed on the magnetic layer to a thickness of 10 to 50 nm, and a lubricating layer such as an adsorbent perfluoroalkylpolyether is further provided, so that the magnetic property in the plane of the recording medium is increased. The recording characteristics are uniform,
A magnetic recording medium that enables high-density recording is obtained.

【0020】なお、第二の下地層として上記のCrもし
くはCrの合金層を用い、磁性層としても上記のCo合
金層を用いることにより、記録媒体の記録再生特性を一
層向上せしめることができるので特に好ましい。また、
保護層としては上記のカーボン膜の外にWMoC等の炭
化物、SiN等の窒化物、SiO等の酸化物、あるいは
B、B4C、MoS2、Rh等を用いると耐摺動性、耐食
性を向上できるので好ましい。
By using the Cr or Cr alloy layer as the second underlayer and the Co alloy layer as the magnetic layer, the recording / reproducing characteristics of the recording medium can be further improved. Particularly preferred. Also,
If a carbide such as WMoC, a nitride such as SiN, an oxide such as SiO, or B, B 4 C, MoS 2 , Rh, or the like is used as the protective layer in addition to the above carbon film, sliding resistance and corrosion resistance are improved. It is preferable because it can be improved.

【0021】さらにまた、本発明の第1の目的は、非磁
性基板上に少なくとも下地層、磁性層および保護層が順
次積層されて成る薄膜磁気記録媒体であって、前記下地
層の少なくとも表層部に水素を0.001〜5at%
(原子パーセント)含有せしめて成る磁気記録媒体によ
っても、達成することができる。このように下地層に所
定量の水素を含有させることにより、記録媒体面内の磁
気記録特性を均一化し、高密度記録が可能な磁気記録媒
体を再現性良く製造することができる。
Further, a first object of the present invention is a thin film magnetic recording medium comprising a non-magnetic substrate and at least an underlayer, a magnetic layer and a protective layer which are sequentially laminated, wherein at least a surface layer portion of the underlayer. Hydrogen to 0.001 to 5 at%
It can also be achieved by a magnetic recording medium containing (atomic percentage). By thus containing a predetermined amount of hydrogen in the underlayer, the magnetic recording characteristics in the surface of the recording medium can be made uniform, and a magnetic recording medium capable of high density recording can be manufactured with good reproducibility.

【0022】また、前記したように下地層を少なくとも
第一、第二の積層構造とし、前記第一の下地層の少なく
とも表層部には酸素、フッ素および窒素の元素群の中か
ら選択される少なくとも一種の元素を0.1〜50at
%含有せしめると共に、さらに前記第一、第二の下地層
の何れか一方、もしくは双方に水素を0.001〜5a
t%含有せしめた磁気記録媒体としてもよく、この場合
には媒体面内の磁気記録特性がさらに均一化されより好
ましい。
Further, as described above, the underlayer has at least a first and second laminated structure, and at least the surface layer portion of the first underlayer is at least selected from the group of elements of oxygen, fluorine and nitrogen. One element 0.1 to 50 at
% Of hydrogen and 0.001 to 5a of hydrogen in one or both of the first and second underlayers.
A magnetic recording medium containing t% may be used, and in this case, the magnetic recording characteristics in the medium surface are more uniform, which is more preferable.

【0023】水素濃度の値が好ましい上記の範囲となる
ように到達真空度、真空排気法、ガス組成、ターゲット
組成、温度、時間等の成膜条件を最適化する。水素濃度
の値が上記の下限値を下回る場合には十分な効果が現わ
れず、また、上限値を超えた場合には磁性層の結晶配向
性が変化し媒体の磁気特性が著しく劣化する。
The film forming conditions such as ultimate vacuum, evacuation method, gas composition, target composition, temperature and time are optimized so that the value of the hydrogen concentration falls within the preferable range. If the hydrogen concentration value is below the above lower limit value, no sufficient effect is exhibited, and if the hydrogen concentration value is above the upper limit value, the crystal orientation of the magnetic layer changes and the magnetic properties of the medium deteriorate significantly.

【0024】上記本発明の第2の目的は、非磁性の基板
上に、少なくとも下地層、磁性層および保護層を順次積
層する工程を有する薄膜磁気記録媒体の製造方法であっ
て、前記下地層の形成工程としては少なくとも第一の下
地層上に第二の下地層を積層する複数の下地層形成工程
を有すると共に、前記第一の下地層形成工程において
は、少なくともその表層部に酸素、フッ素および窒素の
元素群の中から選択される少なくとも一種の元素を0.
1〜50at%含有せしめる形成工程を有して成る磁気
記録媒体の製造方法により、達成される。なお、上記非
磁性の基板上には通常、予めNi−Pメッキ層が表面に
形成されており、テクスチャ加工することが望ましい。
しかし、本発明においては必ずしもテクスチャ加工は必
要とせず、省略することもできる。
A second object of the present invention is a method of manufacturing a thin film magnetic recording medium, which comprises a step of sequentially laminating at least an underlayer, a magnetic layer and a protective layer on a non-magnetic substrate. The forming step includes a plurality of underlayer forming steps of laminating a second underlayer on at least the first underlayer, and in the first underlayer forming step, at least the surface layer portion contains oxygen and fluorine. And at least one element selected from the element group of nitrogen.
It is achieved by a method for manufacturing a magnetic recording medium, which comprises a forming step of containing 1 to 50 at%. A Ni-P plating layer is usually formed on the surface of the non-magnetic substrate in advance, and it is desirable to perform texture processing.
However, in the present invention, texturing is not always necessary and can be omitted.

【0025】また、他の方法としては、非磁性基板上に
少なくとも下地層、磁性層および保護層を順次積層形成
する工程を有する薄膜磁気記録媒体の製造方法であっ
て、前記下地層の形成工程としては少なくとも第一の下
地層上に第二の下地層を積層する複数の下地層形成工程
を有すると共に、前記第一の下地層形成工程においては
少なくともその表層部に酸素、フッ素および窒素の元素
群の中から選択される少なくとも一種の元素を0.1〜
50at%含有せしめる形成工程と、水素を0.001
〜5at%含有せしめる形成工程とを有して成る磁気記
録媒体の製造方法により、達成される。
Another method is a method of manufacturing a thin film magnetic recording medium, which comprises a step of sequentially laminating at least an underlayer, a magnetic layer and a protective layer on a non-magnetic substrate, the underlayer forming step. Has a plurality of underlayer forming steps of laminating a second underlayer on at least the first underlayer, and in the step of forming the first underlayer, oxygen, fluorine and nitrogen elements are present in at least the surface layer portion. 0.1 to at least one element selected from the group
A forming step containing 50 at% and hydrogen of 0.001
And a forming step in which the content of the magnetic recording medium is 5 at%.

【0026】上記本発明の第3の目的は、磁気記録媒体
と、磁気記録媒体の回転駆動部と、磁気ヘッドと、磁気
ヘッド駆動部と、記録再生信号処理系とを具備して成る
磁気ディスク装置であって、前記磁気記録媒体を上記第
1の目的を達成することのできる磁気記録媒体で構成す
ることにより、達成される。
A third object of the present invention is to provide a magnetic disk comprising a magnetic recording medium, a rotary drive unit for the magnetic recording medium, a magnetic head, a magnetic head drive unit, and a recording / reproducing signal processing system. An apparatus, which is achieved by configuring the magnetic recording medium as a magnetic recording medium capable of achieving the first object.

【0027】この磁気ディスク装置においては、さらに
上記磁気記録媒体と、トラック幅が12μm以下の例え
ば薄膜磁気ヘッド等の高密度記録対応の磁気ヘッドとを
組合せることにより、大容量の磁気ディスク装置を実現
することができる。
In this magnetic disk device, a magnetic disk device having a large capacity can be obtained by further combining the above magnetic recording medium with a magnetic head having a track width of 12 μm or less, which is compatible with high density recording such as a thin film magnetic head. Can be realized.

【0028】[0028]

【作用】前述の通り、第一の下地層の少なくとも表層部
に酸素、フッ素および窒素の元素群の中から選択される
少なくとも一種の元素を0.1〜50at%含有せしめ
ることにより、基板の表面組成を再現性良く均一化する
ことができる。その結果として、第二の下地膜や磁性膜
の結晶成長初期段階において結晶核が媒体面内で均一に
形成され、第二の下地膜や磁性膜の結晶性や配向性が媒
体面内で均一化することが電子線回折やRHEED、X
線回折法などにより明らかになった。
As described above, at least the surface layer of the first underlayer contains 0.1 to 50 at% of at least one element selected from the group of elements of oxygen, fluorine and nitrogen, and The composition can be made uniform with good reproducibility. As a result, crystal nuclei are uniformly formed in the medium plane in the initial stage of crystal growth of the second underlayer film and magnetic film, and the crystallinity and orientation of the second underlayer film and magnetic film are uniform in the medium plane. Electron beam diffraction, RHEED, X
It became clear by the line diffraction method.

【0029】また、基板上に例えば酸素を一定濃度含有
する第一の下地層を形成した場合には、磁気特性が表面
の微視的形状の影響を受けずに媒体面内で均一化するこ
とがSTMやTEM、RHEED、X線回折法などを用
いた解析により明らかになった。さらに、化学式(1)
で表示した組成のx値を上記の好ましい範囲に設定する
ことにより、保磁力や角形比等の磁気特性が向上し高い
限界記録密度やS/Nが得られる。すなわち、磁気特性
が媒体面内で均一であり、高密度記録が可能な媒体を再
現性よく形成することが可能となる。上記効果は窒素お
よび/またはフッ素を一定濃度含有する第一の下地層を
形成した場合でも同様に確認される。
When a first underlayer containing, for example, a constant concentration of oxygen is formed on the substrate, the magnetic characteristics should be uniform within the medium surface without being affected by the microscopic shape of the surface. Was clarified by analysis using STM, TEM, RHEED, X-ray diffraction method and the like. Furthermore, the chemical formula (1)
By setting the x value of the composition indicated by the above in the above preferable range, the magnetic characteristics such as the coercive force and the squareness ratio are improved, and a high limit recording density and S / N can be obtained. In other words, it is possible to form a medium with high magnetic properties, which is uniform in the plane of the medium and which enables high-density recording with good reproducibility. The above effect is similarly confirmed when the first underlayer containing nitrogen and / or fluorine at a constant concentration is formed.

【0030】また、上記効果は下地層および/または磁
性層中の水素を0.001〜5at%含有させた場合で
も同様に確認される。
Further, the above effect is similarly confirmed when hydrogen is contained in the underlayer and / or the magnetic layer in an amount of 0.001 to 5 at%.

【0031】これに対し、従来の金属材料や有機樹脂、
セラミックス等の非磁性基板を用いた場合には、既に述
べたように基板表面の微視的な表面形状や組成を一定に
制御することが困難なため、第二の下地膜や磁性膜の結
晶核生成が媒体面内で不均一となり、磁気特性が変動し
やすく再現性が低い。化学式(1)中のxの値が上記の
好ましい範囲を外れた場合は、第二の下地膜や磁性膜の
結晶性が劣化するため磁気記録媒体の磁気特性が低下
し、高い限界記録密度やS/Nが得られない。
On the other hand, conventional metal materials and organic resins,
When a non-magnetic substrate such as ceramics is used, it is difficult to control the microscopic surface shape and composition of the substrate surface to a constant level, as described above. Nucleation becomes non-uniform on the surface of the medium, and magnetic characteristics easily fluctuate and reproducibility is low. When the value of x in the chemical formula (1) is out of the above preferable range, the crystallinity of the second underlayer film or the magnetic film is deteriorated, so that the magnetic characteristics of the magnetic recording medium are deteriorated and the high limit recording density or S / N cannot be obtained.

【0032】また、上記下地層および/または磁性層中
の水素濃度についても好ましい含有量の範囲は一部異な
るが、上記の範囲を外れると特性が劣化する。特に、上
限の5at%を超えると、下地膜や磁性膜の結晶性が著
しく劣化するため、媒体の磁気特性が低下し高い限界記
録密度やS/Nが得られない。したがって、水素を導入
する場合には、酸素やフッ素、窒素に較べてかなり異な
った挙動を示すため、この上限の組成制御が重要とな
る。
Further, the hydrogen concentration in the underlayer and / or the magnetic layer is partially different in the range of preferable content, but if it is out of the above range, the characteristics are deteriorated. In particular, when the upper limit of 5 at% is exceeded, the crystallinity of the underlayer film and the magnetic film is remarkably deteriorated, so that the magnetic characteristics of the medium are deteriorated and a high limit recording density and S / N cannot be obtained. Therefore, when hydrogen is introduced, it behaves quite differently compared to oxygen, fluorine, and nitrogen, and it is important to control the composition of this upper limit.

【0033】上記第一の下地層の効果は、磁性層が例え
ばCoNi,CoCr,CoFe,CoMo,CoW,
CoPt,CoRe等のCo基合金であれば、何れも有
効に認められる。また、さらに磁性層の耐食性を考慮に
入れるとCoNiZr,CoCrPt,CoCrTa,
CoNiCrを主たる成分とする合金で構成することが
より望ましい。
The effect of the first underlayer is that the magnetic layer is made of, for example, CoNi, CoCr, CoFe, CoMo, CoW,
Any Co-based alloy such as CoPt and CoRe can be effectively recognized. Further, taking the corrosion resistance of the magnetic layer into consideration, CoNiZr, CoCrPt, CoCrTa,
It is more desirable to use an alloy containing CoNiCr as a main component.

【0034】また、第二の下地膜としてはCr,Wおよ
びMoのグループもしくはこのグループとSi,Ti,
FeおよびVのグループとの合金を用いた場合にも同様
の効果が認められるが、中でもCrもしくはCr合金が
好ましい。基板としてはAl−Mg等のアルミ合金ある
いは化学強化ガラス、有機樹脂、あるいはさらに好まし
くはこれらの基板上にNi−P、Ni−WP、Ni−V
等からなる非磁性メッキ層を形成したものが有効であ
る。
Further, as the second base film, a group of Cr, W and Mo or this group and Si, Ti,
Similar effects can be observed when alloys with Fe and V groups are used, but Cr or Cr alloys are particularly preferable. As the substrate, an aluminum alloy such as Al-Mg, chemically strengthened glass, organic resin, or more preferably Ni-P, Ni-WP, Ni-V on these substrates.
It is effective to form a non-magnetic plating layer made of, for example,

【0035】保護膜としてはC,B,B4C,SiC,
SiO2,Si34,WC,WMoC,WZrC等からな
る非磁性被覆層が好ましく有効である。
As the protective film, C, B, B 4 C, SiC,
A nonmagnetic coating layer made of SiO 2 , Si 3 N 4 , WC, WMoC, WZrC or the like is preferable and effective.

【0036】[0036]

【実施例】以下、本発明の代表的な実施例を図面にした
がって説明する。 〈実施例1〉図1は本発明の一実施例を示したもので、
非磁性基板の両面にそれぞれ磁気記録媒体が形成された
薄膜磁気ディスクの縦断面図であり、この例は第一の下
地層に酸素を含有せしめたものである。同図において1
1は非磁性基板であり、Al−Mg合金あるいは化学強
化ガラス、有機樹脂、セラミックス等で構成される。1
2、12’はNi−P、Ni−W−P等からなる非磁性
メッキ層で、Al−Mg合金を基体として用いた場合は
通常このメッキ層を形成したものを基板として用いる。
DESCRIPTION OF THE PREFERRED EMBODIMENT A typical embodiment of the present invention will be described below with reference to the drawings. <Embodiment 1> FIG. 1 shows an embodiment of the present invention.
FIG. 3 is a vertical cross-sectional view of a thin film magnetic disk in which magnetic recording media are formed on both surfaces of a non-magnetic substrate. In this example, a first underlayer contains oxygen. 1 in the figure
Reference numeral 1 is a non-magnetic substrate, which is made of Al-Mg alloy, chemically strengthened glass, organic resin, ceramics, or the like. 1
Reference numerals 2 and 12 'are non-magnetic plating layers made of Ni-P, Ni-WP, etc. When an Al-Mg alloy is used as a substrate, a substrate on which this plating layer is formed is usually used.

【0037】13、13’は第二の下地層であり、C
r,Mo,WもしくはCr合金、Mo合金、W合金の何
れかから構成される。14、14’は磁性層であり、C
oNi,CoCr,CoRe,CoPt,CoP,Co
Fe,CoNiZr,CoCrZr,CoCrTa,C
oCrPt,CoNiCr,CoNiTi,CoNi
P,CoNiPt,CoNiHf等のCo基合金からな
る。
Reference numerals 13 and 13 'are second underlayers, and C
It is composed of any one of r, Mo, W or Cr alloy, Mo alloy and W alloy. 14 and 14 'are magnetic layers, and C
oNi, CoCr, CoRe, CoPt, CoP, Co
Fe, CoNiZr, CoCrZr, CoCrTa, C
oCrPt, CoNiCr, CoNiTi, CoNi
It is made of a Co-based alloy such as P, CoNiPt, CoNiHf.

【0038】15、15’は保護層であり、C,B,B
4C,SiC,SiO2,Si34,WC,WMoC,W
ZrC等の非磁性被覆層からなる。そして、16、1
6’はこの実施例の特徴部分であるところの第一の下地
層であり、先に示した化学式(1)で表される非磁性層
で構成される。以下、本実施例の製造工程について詳細
に説明する。
Numerals 15 and 15 'are protective layers, and are C, B and B.
4 C, SiC, SiO 2 , Si 3 N 4 , WC, WMoC, W
It is composed of a non-magnetic coating layer such as ZrC. And 16, 1
Reference numeral 6'denotes a first underlayer, which is a characteristic part of this embodiment, and is composed of the nonmagnetic layer represented by the chemical formula (1) shown above. Hereinafter, the manufacturing process of this example will be described in detail.

【0039】まず、外径130mm、内径40mm、厚
さ1.9mmのAl−4%Mg合金基体11の両面に、
膜厚20μmのNi−12wt%P層12、12’をメ
ッキにより形成した。このNi−P層の表面を略円周方
向(ヘッド走行方向)に膜厚が15μmとなるまで研磨
してテクスチャを形成し、これを基板とした。
First, on both surfaces of an Al-4% Mg alloy substrate 11 having an outer diameter of 130 mm, an inner diameter of 40 mm and a thickness of 1.9 mm,
Ni-12 wt% P layers 12 and 12 ′ having a film thickness of 20 μm were formed by plating. The surface of the Ni-P layer was polished in a substantially circumferential direction (head traveling direction) until the film thickness became 15 μm to form a texture, which was used as a substrate.

【0040】この非磁性基板を酸素気流中、100〜2
00℃で熱処理し、Ni−Pの表層部に酸素を含有する
第一の下地層16、16’を膜厚5〜10nm形成し
た。この第一の下地層が形成されたディスク基板を空気
中に取り出さずに化学式(1)で定義される酸素濃度x
をオージェ電子分光法または二次イオン質量分析法によ
り分析した。
This non-magnetic substrate was placed in an oxygen stream at 100-2.
Heat treatment was performed at 00 ° C. to form first underlayers 16 and 16 ′ containing oxygen in a surface layer portion of Ni—P with a film thickness of 5 to 10 nm. The oxygen concentration x defined by the chemical formula (1) can be obtained without taking out the disk substrate on which the first underlayer is formed into the air.
Were analyzed by Auger electron spectroscopy or secondary ion mass spectrometry.

【0041】引き続きこの第一の下地層上にマグネトロ
ンスパッタリング装置を用いて、基板温度150℃、投
入電力3W/cm2、アルゴン圧力5mTorrにて、
第二の下地膜13、13’となる膜厚50nmのCr層
を成膜した。この第二の下地膜上に磁性層14、14’
として膜厚60nmのCo−12at%Cr−4at%
Ta層を積層した。この磁性膜上に同様のスパッタリン
グ装置で膜厚20nmのカーボン保護膜15、15’を
積層し、さらに保護膜上に吸着性のパーフルオロアルキ
ルポリエーテル等からなる潤滑層(図示せず)を設け
た。
Subsequently, using a magnetron sputtering device on the first underlayer, the substrate temperature was 150 ° C., the input power was 3 W / cm 2 , and the argon pressure was 5 mTorr.
A 50 nm-thickness Cr layer to be the second base films 13 and 13 'was formed. The magnetic layers 14, 14 'are formed on the second underlayer film.
As a film thickness of 60 nm, Co-12 at% Cr-4 at%
The Ta layer was laminated. A 20 nm-thick carbon protective film 15, 15 ′ is laminated on this magnetic film by a similar sputtering device, and a lubricating layer (not shown) made of adsorbable perfluoroalkyl polyether or the like is further provided on the protective film. It was

【0042】こうして形成された磁気記録媒体の記録再
生特性を相対速度12m/s、浮上スペーシング0.1
2μmにおいて、実効ギャップ長0.3μm、トラック
幅10μmの薄膜磁気ヘッドを用いて測定し、モジュレ
ーション(Md)、限界記録密度(D50)、S/Nの値
を測定した。モジュレーションは媒体面内における最大
出力H、最低出力LとによりMd=(H−L)/(H+
L)×100%で定義される。
The recording / reproducing characteristics of the magnetic recording medium thus formed were measured at a relative velocity of 12 m / s and a floating spacing of 0.1.
At 2 μm, a thin film magnetic head having an effective gap length of 0.3 μm and a track width of 10 μm was used to measure the modulation (Md), the limit recording density (D 50 ), and the S / N value. The modulation is Md = (HL) / (H +) depending on the maximum output H and the minimum output L in the medium plane.
L) × 100%.

【0043】表1に基板熱処理時間を変化させた時の酸
素濃度x、Md、D50、S/Nの変化を示した。なお、
表1には上記第一の下地層16を設けない従来例の記録
再生特性をも比較例として表示した。この比較例は特に
ことわりのない限り以後に示す全ての実施例においても
同様に用いた。
Table 1 shows changes in oxygen concentration x, Md, D 50 and S / N when the heat treatment time of the substrate was changed. In addition,
Table 1 also shows the recording / reproducing characteristics of the conventional example in which the first underlayer 16 is not provided as a comparative example. This comparative example was similarly used in all the examples described below unless otherwise specified.

【0044】[0044]

【表1】 [Table 1]

【0045】表1より明らかなように、xの値が0.0
008〜0.50の時にMdが減少し、D50、S/Nの
値が向上した。さらに、非磁性基板の熱処理温度、時間
を変化させ、酸素を含有する第一の下地層の膜厚を1n
mから50nmまで変化させた場合も、表1と同様の磁
気特性の向上効果が確認された。
As is clear from Table 1, the value of x is 0.0
When it was 008 to 0.50, Md decreased and D 50 and S / N values improved. Furthermore, the film thickness of the first underlayer containing oxygen is changed to 1 n by changing the heat treatment temperature and time of the non-magnetic substrate.
Even when the thickness was changed from m to 50 nm, the same effect of improving the magnetic characteristics as in Table 1 was confirmed.

【0046】〈実施例2〉実施例1と同様の手順によ
り、Ni−P層をメッキしたAl−Mg合金基体の表面
を研磨してテクスチャを形成し、これを基板とした。こ
の非磁性基板上にマグネトロンスパッタリング装置によ
り、化学式(1)のA元素としてCrターゲットおよび
酸素とアルゴンとの混合ガスを用いスパッタリングによ
り、所定量の酸素を含有する第一の下地層16、16’
を膜厚5〜10nm形成した。その際、基板温度を15
0℃、投入電力を3W/cm2と設定した。なお、その
他のA元素であるMg,Al,Si,Ca,Sc,T
i,V,Mn,Fe,Co,Ni,Cu,Zn,Ge,
Sr,Y,Zr,Nb,Mo,Ru,Rh,Pd,A
g,Cd,In,Sn,Sb,Ba,Hf,Ta,W,
Re,Os,Ir,Pt,Au,Tl,Pb,Biから
成る元素群より選ばれる少なくとも一種の元素について
も同様の方法で、所定量の酸素を含有する第一の下地層
16、16’を膜厚5〜10nm形成した。
Example 2 By the same procedure as in Example 1, the surface of the Al—Mg alloy substrate plated with the Ni—P layer was polished to form a texture, which was used as a substrate. A first underlayer 16, 16 ′ containing a predetermined amount of oxygen is formed on the non-magnetic substrate by a magnetron sputtering device using a Cr target as the A element in the chemical formula (1) and a mixed gas of oxygen and argon.
To a film thickness of 5 to 10 nm. At that time, the substrate temperature is set to 15
The input power was set at 0 ° C. and 3 W / cm 2 . Other A elements such as Mg, Al, Si, Ca, Sc, T
i, V, Mn, Fe, Co, Ni, Cu, Zn, Ge,
Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, A
g, Cd, In, Sn, Sb, Ba, Hf, Ta, W,
In the same manner, at least one element selected from the group of elements consisting of Re, Os, Ir, Pt, Au, Tl, Pb and Bi is used to form the first underlayer 16 or 16 'containing a predetermined amount of oxygen. A film thickness of 5 to 10 nm was formed.

【0047】この第一の下地層が形成された基板を空気
中に取り出さずに、第一の下地層中の酸素濃度xの値を
オージェ電子分光法または二次イオン質量分析法により
分析し、xの値が0.001〜0.50(原子%に換算
して0.1〜50at%)の範囲となるように成膜中の
酸素ガス分圧を制御した。この第一の下地層上に実施例
1と同様にCrを含有する第二の下地膜13、13’、
Co−12at%Cr−4at%Ta磁性膜14、1
4’、カーボン保護膜15、15’を順次積層した。さ
らに、この保護膜上に吸着性のパーフルオロアルキルポ
リエーテル等からなる潤滑層を設けて薄膜磁気記録媒体
を完成させた。
The value of the oxygen concentration x in the first underlayer was analyzed by Auger electron spectroscopy or secondary ion mass spectrometry without taking out the substrate on which the first underlayer was formed into the air, The oxygen gas partial pressure during film formation was controlled so that the value of x was in the range of 0.001 to 0.50 (0.1 to 50 at% in terms of atomic%). On the first underlayer, the second underlayer films 13, 13 'containing Cr as in Example 1 are provided.
Co-12 at% Cr-4 at% Ta magnetic film 14, 1
4 ′ and carbon protective films 15 and 15 ′ were sequentially laminated. Furthermore, a thin film magnetic recording medium was completed by providing a lubricating layer made of an adsorbent perfluoroalkyl polyether or the like on the protective film.

【0048】こうして形成された媒体の記録再生特性を
実施例1と同様に測定し、モジュレーション(Md)、
限界記録密度(D50)、S/Nの値を求め、その結果を
表2に示した。なお、この表2では第一の下地層16、
16’として、Mg,Al,Ti,V,Cr,Mn,N
i,Cu,Zn,Zr,Nb,Mo,Ta,Wターゲッ
トを用いて成膜した場合の酸素濃度x、Md、D50、S
/Nの値を示した。
The recording / reproducing characteristics of the medium thus formed were measured in the same manner as in Example 1, and the modulation (Md),
Limit recording density (D 50 ) and S / N values were determined, and the results are shown in Table 2. In Table 2, the first underlayer 16,
16 'is Mg, Al, Ti, V, Cr, Mn, N
Oxygen concentration x, Md, D 50 , S when a film is formed using an i, Cu, Zn, Zr, Nb, Mo, Ta, W target.
The value of / N is shown.

【0049】[0049]

【表2】 [Table 2]

【0050】表2より明らかなように、xの値が0.0
08〜0.41(0.8〜41at%)の例であるが何
れも比較例よりもMdが減少し、D50、S/Nの値が向
上した。なお、表2には例示してないが、第一の下地層
形成用ターゲットとしてSi,Ca,Sc,Fe,C
o,Ge,Sr,Y,Ru,Rh,Pd,Ag,Cd,
In,Sn,Sb,Ba,Hf,Re,Os,Ir,P
t,Au,Tl,Pb,Biを用い、第一の下地層中の
酸素濃度xの値を0.001〜0.50(0.1〜50
at%)の範囲に設定した場合においても、Md=6%
以下、D50=29kFCI以上、S/N=6.5以上と
なり、いずれも比較例に比べMdが減少し、D50および
S/Nの値が向上した。
As is clear from Table 2, the value of x is 0.0
Although the values are 08 to 0.41 (0.8 to 41 at%), the Md was decreased and the D 50 and S / N values were improved in comparison with the comparative examples. Although not illustrated in Table 2, Si, Ca, Sc, Fe, C are used as the first underlayer forming target.
o, Ge, Sr, Y, Ru, Rh, Pd, Ag, Cd,
In, Sn, Sb, Ba, Hf, Re, Os, Ir, P
Using t, Au, Tl, Pb, and Bi, the value of the oxygen concentration x in the first underlayer is 0.001 to 0.50 (0.1 to 50).
(at%) even when set to the range of Md = 6%
Below, D 50 = 29 kFCI or more and S / N = 6.5 or more, and in both cases, Md was decreased and the values of D 50 and S / N were improved as compared with the comparative example.

【0051】上記の例では第一の下地層の成膜時に単一
組成のターゲットを用いたが、さらに、上記元素を二種
以上含むターゲットを用い、上記と全く同様の条件にて
膜厚5〜10nmの第一の下地層を形成した。この場合
も、これら二種以上の元素の濃度比によらず、酸素の濃
度に依存し、表2と同様の磁気特性の向上効果が確認さ
れた。また、非磁性基板11として、Al−Mg合金基
体の代わりに、有機樹脂、セラミックスからなる基体を
用いた場合にも表2と同様の磁気特性の向上効果が確認
された。
In the above example, a target having a single composition was used at the time of forming the first underlayer, but a target containing two or more of the above elements was used, and a film thickness of 5 was obtained under the same conditions as above. A first underlayer of 10 nm was formed. Also in this case, it was confirmed that the same effect of improving the magnetic properties as in Table 2 was confirmed, depending on the oxygen concentration, not on the concentration ratio of these two or more elements. Further, when the non-magnetic substrate 11 was a substrate made of organic resin or ceramics instead of the Al—Mg alloy substrate, the same effect of improving the magnetic properties as in Table 2 was confirmed.

【0052】〈実施例3〉実施例1と同様に、Ni−P
層12をメッキしたAl−Mg合金基体11の表面を研
磨してテクスチャを形成し、これを基板とした。この非
磁性基板上にマグネトロンスパッタリング装置を用い、
NiターゲットとB、C、P、Sからなる第二の群より
選ばれる一つの元素からなるターゲットとを用い、実施
例2と同様の方法にて膜厚5〜10nmの酸素を含有す
る第一の下地層16、16’を形成した。
<Embodiment 3> As in Embodiment 1, Ni-P
The surface of the Al-Mg alloy substrate 11 plated with the layer 12 was polished to form a texture, which was used as a substrate. Using a magnetron sputtering device on this non-magnetic substrate,
Using a Ni target and a target composed of one element selected from the second group consisting of B, C, P, and S, the first method containing oxygen in a thickness of 5 to 10 nm in the same manner as in Example 2 The underlayers 16 and 16 'were formed.

【0053】この第一の下地層においてNiに対する第
二の群より選ばれる元素の濃度比を5〜20at%と設
定した。また、第一の下地層中の酸素濃度xの値をオー
ジェ電子分光法または二次イオン質量分析法により分析
し、xの値が0.001〜0.50(0.1〜50at
%)の範囲となるように成膜中の酸素ガス分圧を制御し
た。次いで、この第一の下地層上に実施例1と同様にC
rを含有する第二の下地膜13、13’を、その上にC
o−12at%Cr−4at%Taの磁性膜14、1
4’を、さらにその上にカーボン保護膜15、15’を
積層した。最後にこの保護膜上に吸着性のパーフルオロ
アルキルポリエーテル等からなる潤滑層(図示せず)を
設けた。
In this first underlayer, the concentration ratio of the element selected from the second group to Ni was set to 5 to 20 at%. Moreover, the value of oxygen concentration x in the first underlayer was analyzed by Auger electron spectroscopy or secondary ion mass spectrometry, and the value of x was 0.001 to 0.50 (0.1 to 50 at).
%) Was controlled so that the partial pressure of oxygen gas during film formation was within the range. Then, C was formed on the first underlayer in the same manner as in Example 1.
The second base films 13 and 13 'containing r are coated with C
Magnetic films 14, 1 of o-12 at% Cr-4 at% Ta
4 ', and the carbon protective films 15, 15' were further laminated thereon. Finally, a lubricating layer (not shown) made of an adsorbent perfluoroalkyl polyether or the like was provided on the protective film.

【0054】こうして形成された媒体の記録再生特性を
実施例1と同様に測定し、モジュレーション(Md)、
限界記録密度(D50)、S/Nの値を求め、その結果を
表3に示した。
The recording / reproducing characteristics of the medium thus formed were measured in the same manner as in Example 1, and the modulation (Md),
The limit recording density (D 50 ) and S / N values were determined, and the results are shown in Table 3.

【0055】[0055]

【表3】 [Table 3]

【0056】表3より明らかなように、第一の下地層の
NiにB、C、P、Sをそれぞれ5〜20at%含有さ
せた試料に、酸素濃度x=0.008〜0.25とした
場合についてもMdが減少し、D50およびS/N値が向
上した。B、C、P、Sは第一の下地層をNiで構成す
る場合に、Ni層が帯磁するのを抑制する効果を有すた
め、適量含有させることが望ましい。
As is clear from Table 3, the oxygen concentration x was 0.008 to 0.25 in the sample in which Ni of the first underlayer contained 5 to 20 at% of B, C, P and S, respectively. Md is decreased also when you were improved D 50 and S / N value. Since B, C, P, and S have an effect of suppressing magnetization of the Ni layer when the first underlayer is made of Ni, it is desirable to contain an appropriate amount.

【0057】〈実施例4〉実施例1と同様に、Ni−P
層12をメッキしたAl−Mg合金基体11の表面を研
磨してテクスチャを形成し、これを基板とした。この非
磁性基板上にマグネトロンスパッタリング装置を用い
て、フッ素を含有するターゲット(第一の下地層を構成
するA元素を含む)とArスパッタガスにより、フッ素
を含む第一の下地層16、16’を膜厚5〜10nm形
成した。この第一の下地層中のフッ素濃度xの値をオー
ジェ電子分光法または二次イオン質量分析法により分析
し、xの値が0.001〜0.50(0.1〜50at
%)の範囲となるように基板温度、圧力、パワー密度を
制御した。
<Embodiment 4> As in Embodiment 1, Ni-P
The surface of the Al-Mg alloy substrate 11 plated with the layer 12 was polished to form a texture, which was used as a substrate. Using a magnetron sputtering apparatus on this non-magnetic substrate, a fluorine-containing target (including A element forming the first underlayer) and an Ar sputtering gas are used to form the fluorine-containing first underlayer 16, 16 ′. To a film thickness of 5 to 10 nm. The value of the fluorine concentration x in the first underlayer was analyzed by Auger electron spectroscopy or secondary ion mass spectrometry, and the value of x was 0.001 to 0.50 (0.1 to 50 at).
%), The substrate temperature, pressure, and power density were controlled.

【0058】この第一の下地層上に、実施例1と同様に
Crを含有する第二の下地層13、13’を、その上に
Co−12at%Cr−4at%Taの磁性層14、1
4’を、さらにその上にカーボン保護膜15、15’を
積層した。最後にこの保護膜上にこの保護膜上に、吸着
性のパーフルオロアルキルポリエーテル等からなる潤滑
層(図示せず)を設けた。
On the first underlayer, second underlayers 13 and 13 'containing Cr were formed in the same manner as in Example 1, and a magnetic layer 14 of Co-12 at% Cr-4 at% Ta was formed thereon. 1
4 ', and the carbon protective films 15, 15' were further laminated thereon. Finally, a lubricating layer (not shown) made of an adsorbent perfluoroalkylpolyether or the like was provided on the protective film.

【0059】こうして形成された媒体の記録再生特性を
実施例1と同様に測定し、モジュレーション(Md)、
限界記録密度(D50)、S/Nの値を求め、その結果を
表4に示す。
The recording / reproducing characteristics of the medium thus formed were measured in the same manner as in Example 1, and the modulation (Md),
The limit recording density (D 50 ) and S / N values were determined, and the results are shown in Table 4.

【0060】[0060]

【表4】 [Table 4]

【0061】表4より明らかなように、この例ではxの
値が0.008〜0.50(0.1〜50at%)にお
いて、Mdが減少し、D50およびS/N値が向上した。
また、表4には表示していないが、第一の下地層形成時
にSi,Ca,Sc,Fe,Co,Ge,Sr,Y,R
u,Rh,Pd,Ag,Cd,In,Sn,Sb,B
a,Hf,Re,Os,Ir,Pt,Au,Tl,P
b,Biとフッ素を含有するターゲットを用い、第一の
下地層中のフッ素濃度xの値を0.001〜0.03
(0.1〜3at%)の範囲に設定した場合は、Md5
%以下、D5029kFCI以上、S/N6.4以上とな
り、比較例に比べ格段に特性の向上がみられた。
As is clear from Table 4, in this example, when the value of x was 0.008 to 0.50 (0.1 to 50 at%), Md decreased and D 50 and S / N value improved. ..
Although not shown in Table 4, Si, Ca, Sc, Fe, Co, Ge, Sr, Y, R are formed when the first underlayer is formed.
u, Rh, Pd, Ag, Cd, In, Sn, Sb, B
a, Hf, Re, Os, Ir, Pt, Au, Tl, P
b, Bi and a target containing fluorine are used, and the value of the fluorine concentration x in the first underlayer is 0.001 to 0.03.
When set in the range of (0.1-3at%), Md5
% Or less, D 50 29 kFCI or more, and S / N 6.4 or more, and the characteristics were remarkably improved as compared with the comparative example.

【0062】上記の例では第一の下地層の成膜時に単一
組成のターゲットを用いたが、さらに、上記元素を二種
以上含むターゲットを用い、上記と全く同様の条件にて
膜厚5〜10nmの第一の下地層を形成した。この場合
も、これら二種以上の元素の濃度比によらず、フッ素の
濃度に依存し、表4と同様の磁気特性の向上効果が確認
された。
In the above example, a target having a single composition was used when forming the first underlayer, but a target containing two or more of the above elements was used, and a film thickness of 5 was obtained under the same conditions as above. A first underlayer of 10 nm was formed. Also in this case, it was confirmed that the effect of improving the magnetic characteristics was the same as in Table 4, depending on the fluorine concentration, not on the concentration ratio of these two or more elements.

【0063】また、第一の下地層を成膜する際に、Ar
と酸素の混合ガスを用いて成膜し、膜中の酸素濃度を
0.1〜3at%の範囲に設定した上記フッ素を含有す
る第一の下地層を膜厚5〜10nm形成した場合にも、
表4と同様の磁気特性の向上効果が確認された。
When forming the first underlayer, Ar is used.
When a film is formed using a mixed gas of oxygen and oxygen, and the film thickness of the first underlayer containing fluorine is 5 to 10 nm, the oxygen concentration in the film is set to the range of 0.1 to 3 at%. ,
The same effect of improving the magnetic properties as in Table 4 was confirmed.

【0064】さらにまた、第一の下地層を二層に分け、
一層目をフッ素を含有する上記の第一の下地層とし、こ
の上に二層目として上記酸素とフッ素とを含有する上記
の第一の下地層として、全体の膜厚が5〜10nmとな
るように形成したが、この場合にも表4と同様の磁気特
性の向上効果が確認された。なお、非磁性基板11とし
て、Al−Mg合金基体の代わりに、有機樹脂、セラミ
ックスからなる基体を用いた場合にも表4と同様の磁気
特性の向上効果が確認された。
Furthermore, the first underlayer is divided into two layers,
The first layer is the first underlayer containing fluorine, and the second layer is the first underlayer containing oxygen and fluorine, and the total thickness is 5 to 10 nm. Although formed in this way, the effect of improving the magnetic characteristics similar to that in Table 4 was confirmed in this case as well. It should be noted that the same effect of improving the magnetic characteristics as in Table 4 was confirmed when a substrate made of organic resin or ceramics was used as the non-magnetic substrate 11 instead of the Al—Mg alloy substrate.

【0065】〈実施例5〉実施例1と同様に、Ni−P
層12をメッキしたAl−Mg合金基体11の表面を研
磨してテクスチャを形成し基板とした。この非磁性基板
上にマグネトロンスパッタリング装置を用いて、窒素を
含有するターゲット(第一の下地層の構成元素を含む)
とArスパッタガスにより、窒素を含む第一の下地層1
6、16’を膜厚5〜10nm形成した。この第一の下
地層中の窒素濃度xの値を、オージェ電子分光法または
二次イオン質量分析法により分析し、xの値が0.00
1〜0.50(0.1〜50at%)の範囲となるよう
に基板温度、圧力、パワー密度を制御した。
<Embodiment 5> As in Embodiment 1, Ni-P
The surface of the Al-Mg alloy substrate 11 plated with the layer 12 was polished to form a texture, and the substrate was obtained. Using a magnetron sputtering device on this non-magnetic substrate, a target containing nitrogen (including the constituent elements of the first underlayer)
And the Ar sputter gas, the first underlayer 1 containing nitrogen.
6 and 16 'were formed to a film thickness of 5 to 10 nm. The value of nitrogen concentration x in this first underlayer was analyzed by Auger electron spectroscopy or secondary ion mass spectrometry, and the value of x was 0.00
The substrate temperature, pressure, and power density were controlled so as to be in the range of 1 to 0.50 (0.1 to 50 at%).

【0066】この第一の下地層上に実施例1と同様にC
rを含有する第二の下地膜13、13’を、その上にC
o−12at%Cr−4at%Taの磁性膜14、1
4’を、さらにその上にカーボン保護膜15、15’を
順次積層した。最後にこの保護膜上に吸着性のパーフル
オロアルキルポリエーテル等からなる潤滑層を設け、薄
膜磁気記録媒体を完成した。
C was formed on the first underlayer in the same manner as in Example 1.
The second base films 13 and 13 'containing r are coated with C
Magnetic films 14, 1 of o-12 at% Cr-4 at% Ta
4 ', and the carbon protective films 15 and 15' were sequentially laminated on the 4 '. Finally, a lubricating layer made of adsorbent perfluoroalkylpolyether or the like was provided on this protective film to complete a thin film magnetic recording medium.

【0067】こうして得られた媒体の記録再生特性を実
施例1と同様に測定し、モジュレーション(Md)、限
界記録密度(D50)、S/Nの値を求めた。その結果を
表5に、ターゲット中の金属元素を変化させた場合のフ
ッ素濃度x、Md、D50、S/Nの値として示した。
The recording / reproducing characteristics of the medium thus obtained were measured in the same manner as in Example 1 to obtain the values of modulation (Md), limit recording density (D 50 ), and S / N. The results are shown in Table 5 as values of fluorine concentration x, Md, D 50 and S / N when the metal element in the target was changed.

【0068】[0068]

【表5】 [Table 5]

【0069】表5より明らかなように、xの値が0.0
09〜0.25においてMdが減少し、D50およびS/
Nの値が共に向上した。
As is clear from Table 5, the value of x is 0.0
09-0.25, Md decreased, D 50 and S /
Both N values have improved.

【0070】また、この表5には表示してないが、第一
の下地層16、16’の形成時に、Si,Ca,Sc,
Fe,Co,Ge,Sr,Y,Ru,Rh,Pd,A
g,Cd,In,Sn,Sb,Ba,Hf,Re,O
s,Ir,Pt,Au,Tl,Pb,Biと窒素を含有
するターゲットを用い、膜中の窒素濃度xの値を0.0
1〜0.3(0.1at%〜3at%)の範囲に設定し
た場合は、Md=6%以下、D50=29kFCI以上、
S/N=6.4以上となり、比較例に比べ格段の特性向
上が見られた。
Although not shown in Table 5, when forming the first underlayer 16, 16 ', Si, Ca, Sc,
Fe, Co, Ge, Sr, Y, Ru, Rh, Pd, A
g, Cd, In, Sn, Sb, Ba, Hf, Re, O
Using a target containing s, Ir, Pt, Au, Tl, Pb, Bi and nitrogen, the value of nitrogen concentration x in the film is 0.0
When set in the range of 1 to 0.3 (0.1 at% to 3 at%), Md = 6% or less, D 50 = 29 kFCI or more,
The S / N was 6.4 or more, showing a marked improvement in characteristics as compared with the comparative example.

【0071】上記の例では第一の下地層の成膜時に単一
組成のターゲットを用いたが、さらに、上記元素を二種
以上含むターゲットを用い、上記と全く同様の条件にて
膜厚5〜10nmの第一の下地層を形成した。この場合
も、これら二種以上の元素の濃度比によらず、窒素の濃
度に依存し、表5と同様の磁気特性の向上効果が確認さ
れた。
In the above example, a target having a single composition was used when forming the first underlayer, but a target containing two or more of the above elements was used, and a film thickness of 5 was obtained under the same conditions as above. A first underlayer of 10 nm was formed. Also in this case, it was confirmed that the same effect of improving the magnetic characteristics as in Table 5 was obtained, depending on the nitrogen concentration, not on the concentration ratio of these two or more elements.

【0072】また、第一の下地層16、16’を成膜す
る際に、Arと酸素の混合ガスを用いて成膜し、膜中の
酸素濃度を0.1〜3at%の範囲に設定すると共に、
上記窒素をも含有する第一の下地層を膜厚5〜10nm
形成したが、この場合にも表5と同様の磁気特性の向上
効果が確認された。
When forming the first underlayers 16 and 16 ′, a mixed gas of Ar and oxygen is used to form the film, and the oxygen concentration in the film is set to a range of 0.1 to 3 at%. As well as
The film thickness of the first underlayer containing nitrogen is 5 to 10 nm.
Although formed, in this case as well, the same effect of improving the magnetic properties as in Table 5 was confirmed.

【0073】さらにまた、上記第一の下地層を二層に分
け、一層目を上記窒素を含有する第一の下地層とし、そ
の上に二層目として上記酸素と窒素とを含有する下地層
を膜厚5〜10nm形成したが、この場合も表5と同様
の磁気特性の向上効果が確認された。なお、非磁性基板
11として、Al−Mg合金基体の代わりに、有機樹
脂、セラミックスからなる基体を用いた場合にも表5と
同様の磁気特性の向上効果が確認された。
Furthermore, the first underlayer is divided into two layers, the first underlayer is the first underlayer containing nitrogen, and the second underlayer is the second underlayer containing oxygen and nitrogen. Was formed to a film thickness of 5 to 10 nm. In this case as well, the effect of improving the magnetic characteristics similar to that in Table 5 was confirmed. It should be noted that the same effect of improving the magnetic properties as in Table 5 was confirmed even when a substrate made of organic resin or ceramics was used as the non-magnetic substrate 11 instead of the Al—Mg alloy substrate.

【0074】〈実施例6〉実施例1と同様に、Ni−P
層12をメッキしたAl−Mg合金基体の表面を研磨し
てテクスチャを形成し、これを基板とした。この非磁性
基板上にマグネトロンスパッタリング装置を用いて、第
一の下地層の構成元素を含むターゲットと窒素およびC
4を含むArスパッタリングガスにより、膜厚5〜1
0nmの窒素とフッ素とを含む第一の下地層を形成し
た。
<Embodiment 6> As in Embodiment 1, Ni-P
The surface of the Al-Mg alloy substrate plated with the layer 12 was polished to form a texture, which was used as the substrate. Using a magnetron sputtering device on this non-magnetic substrate, a target containing the constituent elements of the first underlayer and nitrogen and C
The film thickness is 5 to 1 by Ar sputtering gas containing F 4.
A first underlayer containing 0 nm of nitrogen and fluorine was formed.

【0075】この第一の下地層中の窒素とフッ素との合
計濃度xの値をオージェ電子分光法または二次イオン質
量分析法により分析し、xの値が0.001〜0.50
(0.1〜50at%)の範囲となるように基板温度、
圧力、パワー密度を制御した。
The value of the total concentration x of nitrogen and fluorine in the first underlayer was analyzed by Auger electron spectroscopy or secondary ion mass spectrometry, and the value of x was 0.001 to 0.50.
The substrate temperature should be in the range of (0.1 to 50 at%),
The pressure and power density were controlled.

【0076】この第一の下地層上に、実施例1と同様に
Crを含有する第二の下地膜13、13’、その上にC
o−12at%Cr−4at%Taの磁性膜14、1
4’、さらにその上にカーボン保護膜15、15’を順
次積層した。最後にこの保護膜上に吸着性のパーフルオ
ロアルキルポリエーテル等からなる潤滑層(図示せず)
を設けた。
On the first underlayer, the second underlayer films 13 and 13 'containing Cr as in Example 1 and C on the second underlayer films 13 and 13'.
Magnetic films 14, 1 of o-12 at% Cr-4 at% Ta
4 ', and further carbon protective films 15 and 15' were sequentially laminated thereon. Finally, a lubricating layer (not shown) made of adsorbable perfluoroalkyl polyether or the like is formed on this protective film.
Was established.

【0077】こうして形成された薄膜磁気記録媒体の記
録再生特性を実施例1と同様に測定し、モジュレーショ
ン(Md)、限界記録密度(D50)、S/Nの値を求め
た。この結果を、表6にターゲット中の金属元素を変化
させた場合の窒素とフッ素との合計濃度x、Md、
50、S/Nの値として示した。
The recording / reproducing characteristics of the thin film magnetic recording medium thus formed were measured in the same manner as in Example 1, and the values of modulation (Md), limit recording density (D 50 ) and S / N were obtained. The results are shown in Table 6, where the total concentration x, Md of nitrogen and fluorine when the metal element in the target was changed,
The values are shown as D 50 and S / N.

【0078】[0078]

【表6】 [Table 6]

【0079】表6より明らかなように、xの値が0.0
08〜0.50(0.1〜50at%)においてMdが
減少し、D50およびS/N値が共に向上した。特に、x
の値が0.01〜0.15(1〜15at%)の場合に
は、Mdがより減少し、より高いD50およびS/N値が
得られた。
As is clear from Table 6, the value of x is 0.0
At 08 to 0.50 (0.1 to 50 at%), Md decreased, and both D 50 and S / N value improved. In particular, x
When the value of was 0.01 to 0.15 (1 to 15 at%), Md was further decreased, and higher D 50 and S / N values were obtained.

【0080】また、表6には表示してないが、第一の下
地層形成時にSi,Ca,Sc,Fe,Co,Ge,S
r,Y,Ru,Rh,Pd,Ag,Cd,In,Sn,
Sb,Ba,Hf,Re,Os,Ir,Pt,Au,T
l,Pb,Biのターゲットを用い、膜中の窒素とフッ
素の合計濃度xの値を同様に0.008〜0.25
(0.8〜25at%)の範囲に設定した場合には、M
d=6%以下、D50=29kFCI以上、S/N=6.
3以上となり、比較例に比べ格段に特性が向上した。
Although not shown in Table 6, Si, Ca, Sc, Fe, Co, Ge, and S are formed when the first underlayer is formed.
r, Y, Ru, Rh, Pd, Ag, Cd, In, Sn,
Sb, Ba, Hf, Re, Os, Ir, Pt, Au, T
Using a target of 1, Pb and Bi, the value of the total concentration x of nitrogen and fluorine in the film was 0.008 to 0.25 in the same manner.
When set in the range of (0.8 to 25 at%), M
d = 6% or less, D 50 = 29 kFCI or more, S / N = 6.
It was 3 or more, and the characteristics were remarkably improved as compared with the comparative example.

【0081】上記の例では第一の下地層の成膜時に単一
組成のターゲットを用いたが、さらに、上記元素を二種
以上含むターゲットを用い、上記と全く同様の条件にて
膜厚5〜10nmの第一の下地層を形成した。この場合
も、これら二種以上の元素の濃度比によらず、窒素とフ
ッ素との濃度に依存し、表6と同様の磁気特性の向上効
果が確認された。
In the above example, a target having a single composition was used when forming the first underlayer, but a target containing two or more of the above elements was used, and a film thickness of 5 was obtained under the same conditions as above. A first underlayer of 10 nm was formed. In this case as well, it was confirmed that the same effect of improving the magnetic properties as in Table 6 was confirmed, depending on the concentrations of nitrogen and fluorine, not on the concentration ratio of these two or more elements.

【0082】また、上記の例と同様にArと酸素の混合
ガスを用いて成膜し、膜中の酸素濃度を0.1〜3at
%の範囲に設定した上記窒素とフッ素とを含有する第一
の下地層を膜厚5〜10nm形成したが、この場合も表
6と同様の磁気特性の向上効果が確認された。
As in the above example, a film was formed by using a mixed gas of Ar and oxygen, and the oxygen concentration in the film was 0.1 to 3 at.
The first underlayer containing nitrogen and fluorine set in the range of 5% was formed to a film thickness of 5 to 10 nm. In this case as well, the effect of improving the magnetic characteristics similar to that in Table 6 was confirmed.

【0083】さらにまた、上記第一の下地層を二層に分
け、一層目を上記窒素とフッ素とを含有する第一の下地
層とし、その上に二層目として上記酸素と窒素とフッ素
とを含有する下地層を膜厚5〜10nm形成したが、こ
の場合も表6と同様の磁気特性の向上効果が確認され
た。なお、非磁性基板11として、Al−Mg合金基体
の代わりに、有機樹脂、セラミックスからなる基体を用
いた場合にも表6と同様の磁気特性の向上効果が確認さ
れた。
Furthermore, the first underlayer is divided into two layers, the first layer is a first underlayer containing nitrogen and fluorine, and the second layer is formed on the first underlayer containing oxygen, nitrogen and fluorine. An underlayer containing Al was formed to a film thickness of 5 to 10 nm, and in this case as well, the effect of improving magnetic characteristics similar to that in Table 6 was confirmed. It should be noted that the same effect of improving the magnetic characteristics as in Table 6 was confirmed even when a substrate made of organic resin or ceramics was used as the non-magnetic substrate 11 instead of the Al—Mg alloy substrate.

【0084】〈実施例7〉実施例1と同様に、Ni−P
層12をメッキしたAl−Mg合金基体11の表面を研
磨してテクスチャを形成し基板とした。この非磁性基板
上にマグネトロンスパッタリング装置を用い、Ni10
90合金ターゲットおよび酸素と水素(これらは水蒸気
で導入可)とアルゴンとの混合ガスを用い、酸素および
水素を含有する第一の下地層16、16’を、膜厚5〜
10nm形成した。その際、基板温度を150℃、投入
電力を3W/cm2と設定した。この第一の下地層中の
酸素濃度xおよび水素濃度yの値を光電子分光法あるい
はオージェ電子分光法、二次イオン質量分析法、CHN
分析法、質量分析法などにより分析し、酸素濃度がx=
0.013を有し、同時に水素濃度がy=0.0000
1〜0.05(0.001〜5at%)の範囲の値を有
するように到達真空度あるいは排気速度、ターボ分子ポ
ンプなどによる排気法、Arガス純度、成膜中の酸素ガ
ス分圧および水素ガス分圧をそれぞれ制御した。
<Embodiment 7> As in Embodiment 1, Ni-P
The surface of the Al-Mg alloy substrate 11 plated with the layer 12 was polished to form a texture, and the substrate was obtained. Using a magnetron sputtering device on this non-magnetic substrate, Ni 10 C
Using a r 90 alloy target and a mixed gas of oxygen and hydrogen (which can be introduced by steam) and argon, the first underlayers 16 and 16 ′ containing oxygen and hydrogen are formed with a film thickness of 5 to 5
10 nm was formed. At that time, the substrate temperature was set to 150 ° C. and the input power was set to 3 W / cm 2 . The values of oxygen concentration x and hydrogen concentration y in this first underlayer are determined by photoelectron spectroscopy or Auger electron spectroscopy, secondary ion mass spectrometry, CHN.
Analyzed by analysis method, mass spectrometry method, etc., oxygen concentration is x =
Has a hydrogen content of 0.013 and at the same time a hydrogen concentration of y = 0.0000
Ultimate vacuum or evacuation speed, evacuation method by turbo molecular pump, Ar gas purity, oxygen gas partial pressure during film formation, and hydrogen so as to have a value in the range of 1 to 0.05 (0.001 to 5 at%) The gas partial pressure was controlled respectively.

【0085】この第一の下地層16、16’上に実施例
1と同様にCrを含有する第二の下地膜13、13’
を、その上にCo−12at%Cr−4at%Ta磁性
膜14、14’を、さらにその上にカーボン保護膜1
5、15’を順次積層した。
On the first underlayers 16, 16 ', the second underlayer films 13, 13' containing Cr as in Example 1 are formed.
On top of them, Co-12 at% Cr-4 at% Ta magnetic films 14 and 14 ′, and carbon protective film 1 on top of them.
5, 15 'were sequentially laminated.

【0086】その際、第二の下地膜13、13’および
磁性膜14、14’中の平均水素濃度がy=0.000
01〜0.05(0.001〜5at%)の範囲の値を
有するように到達真空度あるいは排気速度、ターボ分子
ポンプなどによる排気法、成膜中のArガス純度、酸素
ガス分圧、水素ガス分圧をそれぞれ制御した。最後にこ
のカーボン保護膜15、15’上に、吸着性のパーフル
オロアルキルポリエーテル等からなる潤滑層(図示せ
ず)を設け、薄膜磁気記録媒体を完成させた。
At this time, the average hydrogen concentration in the second underlayer films 13 and 13 'and the magnetic films 14 and 14' is y = 0.000.
Ultimate vacuum or evacuation speed, evacuation method using turbo molecular pump, Ar gas purity during formation, oxygen gas partial pressure, hydrogen so as to have a value in the range of 01 to 0.05 (0.001 to 5 at%) The gas partial pressure was controlled respectively. Finally, a lubricating layer (not shown) made of an adsorptive perfluoroalkyl polyether or the like was provided on the carbon protective films 15 and 15 'to complete the thin film magnetic recording medium.

【0087】こうして形成された媒体の記録再生特性を
実施例1と同様に測定し、モジュレーション(Md)、
限界記録密度(D50)、S/Nの値を求めた。この結果
を表7に第一、第二の下地膜および磁性膜中の平均水素
濃度y、Md、D50、S/N値として示した。
The recording / reproducing characteristics of the medium thus formed were measured in the same manner as in Example 1, and the modulation (Md),
The limit recording density (D 50 ) and the value of S / N were obtained. The results are shown in Table 7 as the average hydrogen concentration y, Md, D 50 and S / N value in the first and second underlayer films and the magnetic film.

【0088】[0088]

【表7】 [Table 7]

【0089】表7より明らかなように、水素濃度yの値
が0.00001〜0.05(0.001〜5at%)
においてMdが減少し、D50およびS/Nの値が共に向
上し良好な結果が得られた。
As is clear from Table 7, the value of hydrogen concentration y is 0.0001 to 0.05 (0.001 to 5 at%).
In M, the Md decreased and the values of D 50 and S / N were improved, and good results were obtained.

【0090】また、第一の下地層16、16’を形成せ
ずに、上記基板上に直接第二の下地膜を形成し、この第
二の下地膜および磁性膜中の平均水素濃度が0.001
〜5at%となるように到達真空度あるいは排気速度、
ターボ分子ポンプなどによる排気法、Arガス純度、成
膜中の酸素ガス分圧を制御したところ、Md=1%、D
50=31kFCI以上、S/N=6.7以上となり、比
較例に比べMdが減少し、D50、S/Nの値も向上し
た。
A second underlayer film is formed directly on the substrate without forming the first underlayer layers 16 and 16 ', and the average hydrogen concentration in the second underlayer film and the magnetic film is 0. .001
Ultimate vacuum or pumping speed so that it becomes ~ 5at%,
When the exhaust method using a turbo molecular pump or the like, the Ar gas purity, and the oxygen gas partial pressure during film formation were controlled, Md = 1%, D
50 = 31 kFCI or more and S / N = 6.7 or more, Md decreased compared to the comparative example, and D 50 and S / N values also improved.

【0091】〈実施例8〉上記実施例7と同様の工程で
あるが、第一の下地層16、16’を形成せずに上記基
板上に直接第二の下地膜を形成し、到達真空度もしくは
排気速度、ターボ分子ポンプなどによる排気法、Arガ
ス純度、成膜中の酸素ガス分圧を制御してこの第二の下
地膜および磁性膜中に水素を、その平均濃度が0.00
1〜5at%となるように含有させて薄膜磁気記録媒体
を製造した。この媒体の特性はMd=1%、D50=31
kFCI以上、S/N=6.7以上であり、水素を含ま
ない比較例に比べMdが減少し、D50、S/Nの値も向
上した。この例は前述のように水素ドープによる効果で
あり、酸素、フッ素、窒素等を含有させた第一の下地層
を省略したものである。
<Embodiment 8> The steps are the same as those in Embodiment 7, except that the second undercoating film is formed directly on the substrate without forming the first undercoating layers 16 and 16 ', and the ultimate vacuum is achieved. Temperature or exhaust rate, exhaust method using a turbo molecular pump, Ar gas purity, and oxygen gas partial pressure during film formation are controlled, and hydrogen in the second underlayer and magnetic film has an average concentration of 0.00
A thin film magnetic recording medium was manufactured by containing 1 to 5 at%. The characteristics of this medium are Md = 1% and D 50 = 31.
kFCI or more and S / N = 6.7 or more, the Md was decreased, and the values of D 50 and S / N were improved as compared with the comparative example containing no hydrogen. This example is the effect of hydrogen doping as described above, and the first underlayer containing oxygen, fluorine, nitrogen, etc. is omitted.

【0092】〈実施例9〉実施例1〜8で製造した本発
明の薄膜磁気記録媒体を各4枚づつ磁気ディスク装置に
組み込み、記録再生試験を行った。装置構成としては、
周知の装置にCoTaZr合金を磁極材とする薄膜磁気
ヘッドを7個組み合わせたものを使用した。この装置は
図2の断面図に示したように磁気記録媒体21、磁気記
録媒体の回転駆動部22、磁気ヘッド23、磁気ヘッド
駆動部24、記録再生信号処理系25などの部品から構
成される。
<Embodiment 9> Four thin film magnetic recording media of the present invention produced in each of Embodiments 1 to 8 were incorporated into a magnetic disk device, and a recording / reproducing test was conducted. As for the device configuration,
A known device was used in which seven thin-film magnetic heads each having a magnetic pole material of CoTaZr alloy were combined. As shown in the cross-sectional view of FIG. 2, this device is composed of components such as a magnetic recording medium 21, a rotation driving unit 22 of the magnetic recording medium, a magnetic head 23, a magnetic head driving unit 24, and a recording / reproducing signal processing system 25. ..

【0093】この磁気ディスク装置では、記録媒体21
間の磁気特性の変動が従来の1/3に低下し、モジュレ
ーションが1/2に減少した。さらに、記録密度を1.
5倍高めることができ、従来装置に比べ小形の磁気ディ
スク装置を実現することができた。また、本実施例では
CoTaZr合金を磁極材とする薄膜磁気ヘッドを用い
た場合を示したが、その他NiFe、CoFe合金等を
磁極材とした薄膜磁気ヘッドを用いた場合や、CoTa
Zr、FeAlSi合金等をギャップ部に設けたメタル
インギャップ型(MIG)磁気ヘッドを用いた場合でも同
様の効果が得られた。
In this magnetic disk device, the recording medium 21
The fluctuation of the magnetic characteristics during the period was reduced to 1/3 of the conventional one, and the modulation was reduced to 1/2. Furthermore, the recording density is 1.
The size can be increased five times, and a compact magnetic disk device can be realized as compared with the conventional device. Further, in the present embodiment, the case of using the thin film magnetic head using CoTaZr alloy as the magnetic pole material has been described, but in addition to the case of using the thin film magnetic head using NiFe, CoFe alloy or the like as the magnetic pole material,
Similar effects were obtained even when a metal-in-gap type (MIG) magnetic head having a gap portion made of Zr, FeAlSi alloy, or the like was used.

【0094】[0094]

【発明の効果】上述のように、本発明によれば高密度記
録が可能な磁気記録媒体とその製造方法およびこれを用
いた小形で大容量の磁気ディスク装置を実現することが
でき、所期の目的を達成することができた。
As described above, according to the present invention, it is possible to realize a magnetic recording medium capable of high density recording, a manufacturing method thereof, and a small-sized and large-capacity magnetic disk device using the same. Was able to achieve the purpose of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例となるの磁気記録媒体の縦断
面図である。
FIG. 1 is a vertical sectional view of a magnetic recording medium according to an embodiment of the present invention.

【図2】本発明の一実施例となる磁気ディスク装置の縦
断面図である。
FIG. 2 is a vertical sectional view of a magnetic disk device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…基体、 12、12’
…非磁性メッキ層、13、13’…第二の下地層、
14、14’…磁性層、15、15’…保護層、
16、16’…第一の下地層 21…磁気記録媒体、 22…磁気記
録媒体の回転駆動部、23…磁気ヘッド、
24…磁気ヘッド駆動部、25…記録再生信号
処理系。
11 ... Base, 12, 12 '
... Non-magnetic plating layer, 13, 13 '... Second underlayer,
14, 14 '... magnetic layer, 15, 15' ... protective layer,
16, 16 '... First underlayer 21 ... Magnetic recording medium, 22 ... Rotation drive unit of magnetic recording medium, 23 ... Magnetic head,
24 ... Magnetic head drive unit, 25 ... Recording / reproducing signal processing system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 朋生 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 屋久 四男 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大野 徒之 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Tomio Yamamoto 1-280, Higashi Koikeku, Kokubunji City, Tokyo Metropolitan Research Center, Hitachi, Ltd. (72) Inventor Yasuo Yaku 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. (72) Inventor, Tadashi Ono 1-280, Higashi Koigokubo, Kokubunji, Tokyo

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に少なくとも下地層、磁性層
および保護層が順次積層されて成る薄膜磁気記録媒体で
あって、前記下地層は少なくとも第一の下地層上に、第
二の下地層が積層された複数層構造を有すると共に、前
記第一の下地層の少なくとも表層部には酸素、フッ素お
よび窒素の元素群の中から選択される少なくとも一種の
元素を原子パーセントで0.1〜50%含有せしめて成
る磁気記録媒体。
1. A thin-film magnetic recording medium comprising a non-magnetic substrate and at least an underlayer, a magnetic layer and a protective layer sequentially laminated on the non-magnetic substrate, the underlayer being provided on at least a first underlayer and a second underlayer. While having a multi-layered structure in which the formation is laminated, at least one element selected from the group of elements of oxygen, fluorine and nitrogen is present in at least the surface layer portion of the first underlayer in an atomic percentage of 0.1 to 0.1. A magnetic recording medium containing 50%.
【請求項2】上記第一の下地層の少なくとも表層部が、
下記の化学式(1)を満足する非磁性層から成る請求項
1記載の磁気記録媒体。 【化1】A(1-x)Zx ………(1) ただし、Aは、B,Mg,Al,Si,P,Ca,S
c,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,
Zn,Ge,Sr,Y,Zr,Nb,Mo,Ru,R
h,Pd,Ag,Cd,In,Sn,Sb,Ba,H
f,Ta,W,Re,Os,Ir,Pt,Au,Tl,
PbおよびBiからなる元素群の中から選択される少な
くとも一種の元素,Zは、酸素,フッ素および窒素から
なる元素群の中から選択される少なくとも一種の元素で
あり、xは0.001〜0.50であり原子パーセントに
換算して0.1%〜50%である。
2. At least the surface layer portion of the first underlayer,
The magnetic recording medium according to claim 1, comprising a nonmagnetic layer satisfying the following chemical formula (1). Embedded image A (1-x) Zx (1) where A is B, Mg, Al, Si, P, Ca, S
c, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ge, Sr, Y, Zr, Nb, Mo, Ru, R
h, Pd, Ag, Cd, In, Sn, Sb, Ba, H
f, Ta, W, Re, Os, Ir, Pt, Au, Tl,
At least one element selected from the element group consisting of Pb and Bi, Z is at least one element selected from the element group consisting of oxygen, fluorine and nitrogen, and x is 0.001 to 0. It is 0.50 and is 0.1% to 50% in terms of atomic percentage.
【請求項3】上記化学式(1)のAを、Mg,Al,T
i,V,Cr,Mn,Ni,Cu,Zn,MoおよびW
からなる元素群の中から選択される少なくとも一種の元
素とし、Zを、酸素およびフッ素からなる元素群の中か
ら選択される少なくとも一種の元素として成る請求項2
記載の磁気記録媒体。
3. A in the chemical formula (1) is replaced with Mg, Al, T
i, V, Cr, Mn, Ni, Cu, Zn, Mo and W
3. At least one element selected from the element group consisting of, and Z is at least one element selected from the element group consisting of oxygen and fluorine.
The magnetic recording medium described.
【請求項4】上記第二の下地層を、Cr、MoおよびW
の少なくとも一種の金属もしくはこれらの金属にTi、
Si、FeおよびVの少なくとも一種を含有せしめた合
金層で構成して成る請求項1乃至4何れか記載の磁気記
録媒体。
4. The second underlayer is formed of Cr, Mo and W.
At least one metal or Ti to these metals,
5. The magnetic recording medium according to claim 1, which is composed of an alloy layer containing at least one of Si, Fe and V.
【請求項5】非磁性基板上に少なくとも下地層、磁性層
および保護層が順次積層されて成る薄膜磁気記録媒体で
あって、前記下地層の少なくとも表層部に水素を原子パ
ーセントで0.001〜5%含有せしめて成る磁気記録
媒体。
5. A thin-film magnetic recording medium comprising a non-magnetic substrate and at least an underlayer, a magnetic layer and a protective layer, which are sequentially laminated, wherein hydrogen is present in at least a surface layer portion of the underlayer in an atomic percentage of 0.001 to 0.001. A magnetic recording medium containing 5%.
【請求項6】上記下地層は少なくとも第一の下地層上
に、第二の下地層が積層された複数層構造を有すると共
に、前記第一の下地層の少なくとも表層部には酸素、フ
ッ素および窒素の元素群の中から選択される少なくとも
一種の元素を原子パーセントで0.1〜50%含有せし
めて成る請求項5記載の磁気記録媒体。
6. The underlayer has a multi-layer structure in which a second underlayer is laminated on at least a first underlayer, and oxygen, fluorine and 6. The magnetic recording medium according to claim 5, wherein at least one element selected from the element group of nitrogen is contained in an atomic percentage of 0.1 to 50%.
【請求項7】上記第一の下地層の厚みを1〜50nm、
第二の下地層の厚みを10〜500nm、磁性層の厚み
を10〜100nm、保護層の厚みを10〜50nmと
して成る請求項1乃至6何れか記載の磁気記録媒体。
7. The thickness of the first underlayer is 1 to 50 nm,
7. The magnetic recording medium according to claim 1, wherein the second underlayer has a thickness of 10 to 500 nm, the magnetic layer has a thickness of 10 to 100 nm, and the protective layer has a thickness of 10 to 50 nm.
【請求項8】上記保護層をカーボン膜で構成すると共
に、この上に潤滑層を形成して成る請求項7記載の磁気
記録媒体。
8. The magnetic recording medium according to claim 7, wherein the protective layer is formed of a carbon film, and a lubricating layer is formed on the carbon film.
【請求項9】上記磁性層をCo基合金磁性膜で構成して
成る請求項7記載の磁気記録媒体。
9. The magnetic recording medium according to claim 7, wherein the magnetic layer is composed of a Co-based alloy magnetic film.
【請求項10】上記Co基合金磁性膜をNi,Cr,Z
r,TaおよびPtからなる元素群の中から選択される
少なくとも一種の金属元素を添加したCo合金で構成し
て成る請求項7記載の磁気記録媒体。
10. The Co-based alloy magnetic film is made of Ni, Cr, Z.
8. The magnetic recording medium according to claim 7, which is composed of a Co alloy to which at least one metal element selected from the group of elements consisting of r, Ta and Pt is added.
【請求項11】非磁性基板上に、少なくとも下地層、磁
性層および保護層を順次積層する工程を有して成る薄膜
磁気記録媒体の製造方法であって、前記下地層の形成工
程としては少なくとも第一の下地層上に第二の下地層を
積層する複数の下地層形成工程を有すると共に、前記第
一の下地層形成工程においては、少なくともその表層部
に酸素、フッ素および窒素の元素群の中から選択される
少なくとも一種の元素を原子パーセントで0.1〜50
%含有せしめる形成工程を有して成る磁気記録媒体の製
造方法。
11. A method of manufacturing a thin-film magnetic recording medium, comprising a step of sequentially laminating at least an underlayer, a magnetic layer and a protective layer on a non-magnetic substrate, wherein at least the underlayer is formed. In addition to having a plurality of underlayer forming steps of stacking a second underlayer on the first underlayer, in the first underlayer forming step, at least the surface layer portion of the element group of oxygen, fluorine and nitrogen 0.1-50 at least one element selected from the atomic percentage
%, A method of manufacturing a magnetic recording medium, which comprises a forming step of containing.
【請求項12】非磁性基板上に少なくとも下地層、磁性
層および保護層を順次積層形成する工程を有して成る薄
膜磁気記録媒体の製造方法であって、下地層の形成工程
としては少なくとも第一の下地層上に第二の下地層を積
層する複数の下地層形成工程を有すると共に、前記第一
の下地層形成工程においては、少なくともその表層部に
酸素、フッ素および窒素の元素群の中から選択される少
なくとも一種の元素を原子パーセントで0.1〜50%
含有せしめる形成工程と、水素を原子パーセントで0.
001〜5%含有せしめる形成工程とを有して成る磁気
記録媒体の製造方法。
12. A method of manufacturing a thin film magnetic recording medium, comprising a step of sequentially forming at least an underlayer, a magnetic layer and a protective layer on a non-magnetic substrate, wherein at least the underlayer forming step is performed. In addition to having a plurality of underlayer forming steps of laminating a second underlayer on one underlayer, in the first underlayer forming step, at least the surface layer portion thereof contains an element group of oxygen, fluorine and nitrogen. 0.1-50% in atomic percent of at least one element selected from
Forming step to contain and hydrogen in atomic percent of 0.
001 to 5% forming step, and a method for manufacturing a magnetic recording medium.
【請求項13】上記非磁性基板上には、予めNi−Pメ
ッキ層が形成され、テクスチャ加工処理工程を施して成
る請求項11もしくは12記載の磁気記録媒体の製造方
法。
13. The method of manufacturing a magnetic recording medium according to claim 11, wherein a Ni—P plating layer is previously formed on the non-magnetic substrate and a texture processing step is performed.
【請求項14】磁気記録媒体と、磁気記録媒体回転駆動
部と、磁気ヘッドと、磁気ヘッド駆動部と、記録再生信
号処理系とを具備して成る磁気ディスク装置であって、
前記磁気記録媒体を請求項1乃至10何れか記載の磁気
記録媒体で構成して成る磁気ディスク装置。
14. A magnetic disk device comprising a magnetic recording medium, a magnetic recording medium rotation drive section, a magnetic head, a magnetic head drive section, and a recording / reproducing signal processing system.
A magnetic disk device comprising the magnetic recording medium according to claim 1.
JP3056810A 1991-03-20 1991-03-20 Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same Expired - Fee Related JP3029306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056810A JP3029306B2 (en) 1991-03-20 1991-03-20 Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056810A JP3029306B2 (en) 1991-03-20 1991-03-20 Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same

Publications (2)

Publication Number Publication Date
JPH05128481A true JPH05128481A (en) 1993-05-25
JP3029306B2 JP3029306B2 (en) 2000-04-04

Family

ID=13037737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056810A Expired - Fee Related JP3029306B2 (en) 1991-03-20 1991-03-20 Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same

Country Status (1)

Country Link
JP (1) JP3029306B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403240B1 (en) 1996-05-20 2002-06-11 Hitachi, Ltd. Magnetic recording media and magnetic recording system using the same
US6692843B2 (en) 1996-11-05 2004-02-17 Hitachi Global Storage Technologies Japan, Ltd. Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403240B1 (en) 1996-05-20 2002-06-11 Hitachi, Ltd. Magnetic recording media and magnetic recording system using the same
US6596420B2 (en) 1996-05-20 2003-07-22 Hitachi, Ltd. Magnetic recording media and magnetic recording system using the same
US7056604B2 (en) 1996-05-20 2006-06-06 Hitachi Global Storage Technologies Japan, Ltd. Magnetic recording media and magnetic recording system using the same
US6692843B2 (en) 1996-11-05 2004-02-17 Hitachi Global Storage Technologies Japan, Ltd. Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage

Also Published As

Publication number Publication date
JP3029306B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US5605733A (en) Magnetic recording medium, method for its production, and system for its use
KR0130768B1 (en) Magnetic recording media for longitudinal recording
US7235314B2 (en) Inter layers for perpendicular recording media
JP4751344B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
US6767651B2 (en) Magnetic recording medium, method for manufacturing a magnetic recording medium and magnetic recording device
JP3371062B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
JPH0573881A (en) Magnetic recording medium and production thereof
JP3666853B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP4557838B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2003123243A (en) Magnetic recording medium and method of manufacturing the same
US20140178714A1 (en) Method and Manufacture Process for Exchange Decoupled First Magnetic Layer
JP3029306B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same
JP3359706B2 (en) Magnetic recording media
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JP3732769B2 (en) Magnetic recording medium, manufacturing method thereof, manufacturing apparatus, and magnetic recording / reproducing apparatus
JP3652616B2 (en) Magnetic recording medium, manufacturing method thereof, magnetic recording / reproducing apparatus, and sputtering target
JP2002324313A (en) Manufacturing method of magnetic recording medium
US6826825B2 (en) Method for manufacturing a magnetic recording medium
JP3962415B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2749046B2 (en) Magnetic recording medium for longitudinal recording and magnetic recording apparatus for longitudinal recording using the same
JPH05266456A (en) Magnetic recording medium and magnetic recorder
JPH05197942A (en) Magnetic recording medium and magnetic recorder
JP4049042B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2010086611A (en) Method of manufacturing perpendicular magnetic recording medium
JP2001229527A (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees