JP4751344B2 - Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus - Google Patents
Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus Download PDFInfo
- Publication number
- JP4751344B2 JP4751344B2 JP2007016637A JP2007016637A JP4751344B2 JP 4751344 B2 JP4751344 B2 JP 4751344B2 JP 2007016637 A JP2007016637 A JP 2007016637A JP 2007016637 A JP2007016637 A JP 2007016637A JP 4751344 B2 JP4751344 B2 JP 4751344B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic recording
- layer
- perpendicular magnetic
- recording medium
- nonmagnetic underlayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7379—Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7369—Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
- G11B5/737—Physical structure of underlayer, e.g. texture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
Landscapes
- Magnetic Record Carriers (AREA)
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Description
本発明は、磁気記録技術を用いたハードディスク装置等に用いられる垂直磁気記録媒体及び磁気記録再生装置に関する。 The present invention relates to a perpendicular magnetic recording medium and a magnetic recording / reproducing apparatus used in a hard disk device using magnetic recording technology.
近年、ハードディスク装置の大容量化が求められている中で、記録密度の向上に伴い記録ビットサイズがますます小さくなっている。大容量のハードディスク媒体を形成するためには、記録ビットサイズの微細化するばかりでなく、記録再生特性の向上、すなわち媒体から発生するノイズを低減させる必要がある。媒体ノイズの主たる原因は、ビット境界部のジグザグ状の磁壁に起因すると考えられている。ビット境界部から発生するノイズを低減する一つの方法として、より明確な記録ビット境界を形成するという方法がある。これにより、記録ビット間の磁気的相互作用が低減され、一つ一つの記録ビットに正確に記録再生が行えるようになる。 In recent years, as the capacity of hard disk drives has been increased, the recording bit size has become smaller as the recording density has increased. In order to form a large-capacity hard disk medium, it is necessary not only to reduce the recording bit size, but also to improve recording / reproduction characteristics, that is, to reduce noise generated from the medium. It is considered that the main cause of the medium noise is due to the zigzag domain wall at the bit boundary. One method for reducing noise generated from the bit boundary is to form a clearer recording bit boundary. As a result, the magnetic interaction between the recording bits is reduced, and recording and reproduction can be accurately performed on each recording bit.
記録再生特性の改善の手段として、例えば、非磁性基板上に、少なくとも非磁性下地層と磁性層と保護膜が順次積層されている垂直磁気記録媒体において、磁性層は、強磁性の結晶粒と酸化物を主成分とする非磁性の結晶粒界とからなり、非磁性下地層は、六方最密充填結晶構造の金属または合金で構成され、非磁性下地層と非磁性基板との間に、面心立方結晶構造の金属または合金で構成したシード層を備えるという技術がある(例えば、特許文献1参照)。特にこの技術では、シード層がCu,Au,Pd,Pt,Irのいずれかの金属、あるいはCu,Au,Pd,Pt,Irのうちの少なくとも1種を含む合金、またはNiとFeを含む合金であることを特徴としている。これは、シード層として面心立方構造の最密面である(111)面を配向させ、これによりその上に形成する六方最密構造からなる非磁性下地層を(002)面に配向させることが可能となる。これにより、非磁性下地層と同じ六方最密構造をとる記録層の結晶配向性も改善し、磁気特性に優れた垂直磁気記録媒体を得ることが可能となる。 As a means for improving the recording / reproduction characteristics, for example, in a perpendicular magnetic recording medium in which at least a nonmagnetic underlayer, a magnetic layer, and a protective film are sequentially laminated on a nonmagnetic substrate, the magnetic layer includes ferromagnetic crystal grains. It consists of a nonmagnetic grain boundary mainly composed of oxide, and the nonmagnetic underlayer is composed of a hexagonal close-packed crystal structure metal or alloy, and between the nonmagnetic underlayer and the nonmagnetic substrate, There is a technique of providing a seed layer composed of a metal or alloy having a face-centered cubic crystal structure (see, for example, Patent Document 1). In particular, in this technique, the seed layer is a metal of any one of Cu, Au, Pd, Pt, and Ir, an alloy containing at least one of Cu, Au, Pd, Pt, and Ir, or an alloy containing Ni and Fe. It is characterized by being. This is to orient the (111) plane, which is the close-packed surface of the face-centered cubic structure, as a seed layer, and thereby orient the nonmagnetic underlayer consisting of the hexagonal close-packed structure formed on the (002) plane. Is possible. Thereby, the crystal orientation of the recording layer having the same hexagonal close-packed structure as the nonmagnetic underlayer is also improved, and a perpendicular magnetic recording medium having excellent magnetic properties can be obtained.
しかしながら、面心立方構造をとる結晶質のシード層を使用すると結晶配向性は改善するが、シード層の粒径が非磁性下地層に反映されるため、結晶粒子を微細化することが困難となる。 However, when a crystalline seed layer having a face-centered cubic structure is used, the crystal orientation is improved. However, since the grain size of the seed layer is reflected in the nonmagnetic underlayer, it is difficult to refine the crystal grains. Become.
また、非磁性基板上に、少なくとも軟磁性下地層と、第一の非磁性下地層と、第二の非磁性下地層と、垂直磁気記録膜と、保護膜とが設けられ、前記第一の下地膜がPt,Pdまたはこれらのうち少なくともいずれか一方の合金からなり、第二の非磁性下地層がRuまたはRu合金からなるので、記録再生特性および熱揺らぎ耐性の向上を試みた技術がある(例えば、特許文献2参照)。特に、第一の下地膜には、結晶粒子を微細化する目的として、Pt,Pdに他の元素を添加したPt合金,Pd合金を用いることができる。好ましい添加元素としては、B,C,P,Si,Al,Cr,Co,Ta,W,Pr,Nd,Smなどを挙げられており、特にCを添加することによって、第二の非磁性下地層および磁気記録層の結晶性の改良を試みている。 Further, on the nonmagnetic substrate, at least a soft magnetic underlayer, a first nonmagnetic underlayer, a second nonmagnetic underlayer, a perpendicular magnetic recording film, and a protective film are provided. Since the base film is made of Pt, Pd or an alloy of at least one of them, and the second non-magnetic base layer is made of Ru or Ru alloy, there is a technique that tries to improve recording / reproduction characteristics and heat fluctuation resistance. (For example, refer to Patent Document 2). In particular, a Pt alloy or Pd alloy obtained by adding other elements to Pt or Pd can be used for the first undercoat film for the purpose of refining crystal grains. Preferred additive elements include B, C, P, Si, Al, Cr, Co, Ta, W, Pr, Nd, Sm, and the like. We are trying to improve the crystallinity of the formation and the magnetic recording layer.
しかしながら、PtやPdに添加物を加えることによって、結晶配向性や記録再生特性の改善は見られるが、実施例のように、第一の非磁性下地層は粒径が観察されており、結晶粒子の形状を維持している。この場合、第一の非磁性下地層の粒径が制限となって、磁気記録層のさらなる粒径微細化が困難となっていた。
本発明は、上記事情に鑑みてなされたもので、垂直磁気記録層の磁性粒子の配向性を改善し、かつ磁性粒子を微細化し、記録再生特性の良好な垂直磁気記録媒体を得ることを目的とする。 The present invention has been made in view of the above circumstances, and aims to improve the orientation of magnetic particles in a perpendicular magnetic recording layer and to make the magnetic particles finer to obtain a perpendicular magnetic recording medium having good recording and reproducing characteristics. And
本発明の垂直磁気記録媒体は、 非磁性基板、
非磁性基板上に形成された少なくとも一層の軟磁性層、
該軟磁性層上に形成され、粒径1〜3nmの結晶質の微粒子が集まった微細結晶構造を有し、第1のPd−Si層と、該第1のPd−Si層上に形成され、Si含有量が10at%未満である第2のPd−Si層とからなり、該第1のPd−Si層のSi含有量は、該第2のPd−Si層のSi含有量より多い第一の非磁性下地層、
該第一の非磁性下地層上に形成され、ルテニウムからなる第二の非磁性下地層、及び
該第二の非磁性下地層上に形成されたCoとPtを主成分として含有する垂直磁気記録層を具備することを特徴とする。
The perpendicular magnetic recording medium of the present invention comprises a nonmagnetic substrate,
At least one soft magnetic layer formed on a non-magnetic substrate;
Formed on the soft magnetic layer, having a fine crystal structure in which crystalline fine particles having a particle diameter of 1 to 3 nm are gathered, formed on the first Pd—Si layer and the first Pd—Si layer. A second Pd—Si layer having a Si content of less than 10 at%, wherein the Si content of the first Pd—Si layer is greater than the Si content of the second Pd—Si layer. A non-magnetic underlayer,
A second nonmagnetic underlayer made of ruthenium formed on the first nonmagnetic underlayer, and perpendicular magnetic recording containing Co and Pt as main components formed on the second nonmagnetic underlayer It is characterized by comprising a layer.
また、本発明の磁気記録再生装置は、該軟磁性層上に形成され、粒径1〜3nmの結晶質の微粒子が集まった微細結晶構造を有し、第1のPd−Si層と、該第1のPd−Si層上に形成され、Si含有量が10at%未満である第2のPd−Si層とからなり、該第1のPd−Si層のSi含有量は、該第2のPd−Si層のSi含有量より多い第一の非磁性下地層、該第一の非磁性下地層上に形成され、ルテニウムからなる第二の非磁性下地層、及び 該第二の非磁性下地層上に形成されたCoとPtを主成分として含有する垂直磁気記録層を具備する垂直磁気記録媒体と、
前記垂直磁気記録媒体を支持および回転駆動する機構と、
前記垂直磁気記録媒体に対して情報の記録を行うための素子及び記録された情報の再生を行うための素子を有する磁気ヘッドと、
前記磁気ヘッドを前記垂直磁気記録媒体に対して移動自在に支持したキャリッジアッセンブリとを具備することを特徴とする。
In addition, the magnetic recording / reproducing apparatus of the present invention has a fine crystal structure formed on the soft magnetic layer and in which crystalline fine particles having a particle diameter of 1 to 3 nm are collected, the first Pd—Si layer, A second Pd-Si layer formed on the first Pd-Si layer and having a Si content of less than 10 at%. The Si content of the first Pd-Si layer is A first nonmagnetic underlayer having a higher Si content than the Pd-Si layer, a second nonmagnetic underlayer made of ruthenium formed on the first nonmagnetic underlayer, and the second nonmagnetic underlayer A perpendicular magnetic recording medium comprising a perpendicular magnetic recording layer containing Co and Pt as main components formed on a base layer;
A mechanism for supporting and rotating the perpendicular magnetic recording medium;
A magnetic head having an element for recording information on the perpendicular magnetic recording medium and an element for reproducing recorded information;
And a carriage assembly that movably supports the magnetic head with respect to the perpendicular magnetic recording medium.
本発明によれば、垂直磁気記録層の磁性粒子の配向性を改善し、かつ磁性粒子を微細化して、記録再生特性の良好な垂直磁気記録媒体が得られる。 According to the present invention, it is possible to improve the orientation of the magnetic particles in the perpendicular magnetic recording layer and make the magnetic particles finer to obtain a perpendicular magnetic recording medium having good recording / reproducing characteristics.
本発明の垂直磁気記録媒体は、非磁性基板、
非磁性基板上に形成された一層または二層以上の軟磁性層、
軟磁性層上に形成された第一の非磁性下地層、
第一の非磁性下地層上に形成された第二の非磁性下地層、及び
第二の非磁性下地層上に形成された垂直磁気記録層を具備する。
The perpendicular magnetic recording medium of the present invention comprises a nonmagnetic substrate,
One or more soft magnetic layers formed on a non-magnetic substrate;
A first nonmagnetic underlayer formed on the soft magnetic layer;
A second nonmagnetic underlayer formed on the first nonmagnetic underlayer; and a perpendicular magnetic recording layer formed on the second nonmagnetic underlayer.
第一の非磁性下地層は、微細結晶構造を有し、PdまたはPd合金である。 The first nonmagnetic underlayer has a fine crystal structure and is Pd or a Pd alloy.
第二の非磁性下地層は、RuまたはRu合金である。 The second nonmagnetic underlayer is Ru or a Ru alloy.
本発明に用いられる微細結晶構造とは、多結晶構造と非晶質の中間の構造であって、多結晶構造がさらに細かく分裂し、例えば1〜3nm程度の結晶質の微粒子が集まったものを指す。 The fine crystal structure used in the present invention is an intermediate structure between a polycrystalline structure and an amorphous structure, in which the polycrystalline structure is further finely divided, for example, a collection of crystalline fine particles of about 1 to 3 nm. Point to.
このような微細結晶構造を有する第一の非磁性下地層を形成すると、その上に形成され、結晶構造を有する、第二の非磁性下地層及び垂直磁気記録層は、その結晶粒子が第一の非磁性下地層の粒径に制限を受けることなく、より微細に形成され得る。また、第一の非磁性下地層が、非晶質ではなく微結晶状態に保たれていることで、第二の非磁性下地層は、その結晶配向性の改善が可能となり、さらに、その上に形成する垂直磁気記録層の配向性の改善も可能となる。 When the first nonmagnetic underlayer having such a fine crystal structure is formed, the second nonmagnetic underlayer and the perpendicular magnetic recording layer, which are formed on the first nonmagnetic underlayer and have the crystal structure, have the crystal grains of the first nonmagnetic underlayer. It can be formed more finely without being limited by the particle size of the nonmagnetic underlayer. In addition, since the first nonmagnetic underlayer is maintained in a microcrystalline state rather than amorphous, the second nonmagnetic underlayer can be improved in crystal orientation, and further, It is also possible to improve the orientation of the perpendicular magnetic recording layer to be formed.
このように、本発明によれば、微結晶構造を有する第一の非磁性下地層を用いることにより、垂直磁気記録層の配向性改善および粒径微細化が可能となり、記録再生特性が大幅に向上され、高密度記録が可能な垂直磁気記録媒体を得ることができる。 As described above, according to the present invention, by using the first nonmagnetic underlayer having a microcrystalline structure, the orientation of the perpendicular magnetic recording layer can be improved and the grain size can be reduced, and the recording / reproducing characteristics can be greatly improved. An improved perpendicular magnetic recording medium capable of high density recording can be obtained.
以下、図面を参照し、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
図1は、本発明の一実施形態に係る垂直磁気記録媒体の構成を模式的に表す断面図を示す。 FIG. 1 is a sectional view schematically showing the configuration of a perpendicular magnetic recording medium according to an embodiment of the present invention.
図1において、垂直磁気記録媒体10は、非磁性基板1上に、軟磁性裏打ち層2、第一の非磁性下地層3、第二の非磁性下地層4、垂直磁気記録層5、および保護膜6が順に積層されている。また、保護層6表面には、例えばディップ法等によりパーフルオロポリエーテル等の潤滑剤を塗布し、図示しない潤滑層を形成することができる。
In FIG. 1, a perpendicular
本発明では、まず、非磁性基板上に、軟磁性裏打ち層を形成する。高透磁率な軟磁性裏打ち層を設けることにより、軟磁性裏打ち層上に垂直磁気記録層を有するいわゆる二層膜垂直磁気記録媒体が構成される。この二層膜垂直磁気記録媒体において、軟磁性裏打ち層は、垂直磁気記録層を磁化するための磁気ヘッド、例えば単磁極ヘッドからの記録磁界を、水平方向に通して、磁気ヘッド側へ還流させるという、磁気ヘッドの機能の一部を担っており、磁界の記録層に急峻で充分な垂直磁界を印加させ、記録再生効率を向上させる役目を果たし得る。 In the present invention, first, a soft magnetic backing layer is formed on a nonmagnetic substrate. By providing a soft magnetic backing layer having a high magnetic permeability, a so-called double-layer perpendicular magnetic recording medium having a perpendicular magnetic recording layer on the soft magnetic backing layer is formed. In this double-layer perpendicular magnetic recording medium, the soft magnetic underlayer causes a recording magnetic field from a magnetic head for magnetizing the perpendicular magnetic recording layer, for example, a single magnetic pole head, to flow in the horizontal direction to the magnetic head side. It plays a part of the function of the magnetic head, and can play a role of improving the recording and reproducing efficiency by applying a steep and sufficient perpendicular magnetic field to the recording layer of the magnetic field.
軟磁性裏打ち層として用いる軟磁性材料としては、飽和磁束密度が高く、軟磁気特性が良好なCoZrNb、CoTaZr、FeCoB、FeCoN、FeTaC、FeTaN、FeNi、CoB及びFeAlSiなどが用いられる。 As the soft magnetic material used for the soft magnetic underlayer, CoZrNb, CoTaZr, FeCoB, FeCoN, FeTaC, FeTaN, FeNi, CoB, FeAlSi, and the like having a high saturation magnetic flux density and good soft magnetic properties are used.
本発明に用いられる軟磁性裏打ち層は、単層、または二層以上の積層体である。積層体の場合、各軟磁性層間に任意の非磁性中間層を用いることができる。 The soft magnetic backing layer used in the present invention is a single layer or a laminate of two or more layers. In the case of a laminated body, an arbitrary nonmagnetic intermediate layer can be used between the soft magnetic layers.
次に、軟磁性裏打ち層上に第一の非磁性下地層となる膜を製膜する。この第一の非磁性下地層は、その上に形成される第二の非磁性下地層の結晶粒子の微細化および結晶粒子の結晶配向性を改善する目的で設けられる。第一の非磁性下地層は、PdまたはPd合金から形成される。Pd合金を用いる場合、B,Hf,Si,Ti,Zr,Ge,Al,Cr,MgおよびVから選ばれる少なくとも一種の元素との合金であることが好ましい。 Next, a film to be the first nonmagnetic underlayer is formed on the soft magnetic backing layer. The first nonmagnetic underlayer is provided for the purpose of refining the crystal grains of the second nonmagnetic underlayer formed thereon and improving the crystal orientation of the crystal grains. The first nonmagnetic underlayer is formed from Pd or a Pd alloy. When a Pd alloy is used, it is preferably an alloy with at least one element selected from B, Hf, Si, Ti, Zr, Ge, Al, Cr, Mg, and V.
第一の非磁性下地層は、より好ましくは、PdとSiの合金からなることが好ましい。 More preferably, the first nonmagnetic underlayer is made of an alloy of Pd and Si.
なお、ここでは、PdとSiの混合材料もPd合金の1つに含むものとする。 Here, a mixed material of Pd and Si is also included in one of the Pd alloys.
第一の非磁性下地層は、微細結晶構造をとることが必要である。 The first nonmagnetic underlayer needs to have a fine crystal structure.
一口に微細結晶構造といっても、多結晶構造と非晶質の間の幅広い範囲の構造を示しているが、本願で用いられる微結晶構造とは、多結晶構造がさらに細かく分裂したような、1〜3nm程度の結晶質の微粒子が集まったものを指しており、微細な粒子の周りに非晶質が偏析しているようないわゆるグラニュラ型の構造(偏析型グラニュラ微結晶)は含んでいない。また、本願の微細結晶構造をX線回折測定で測定すると、明確なピーク構造として検出されない一方、断面TEM構造などでは格子縞がはっきり観測できている。電子線回折等で、非晶質のリング状とは異なり、多数のスポットとして観測できる場合もある。 Even if it is called a fine crystal structure, it shows a wide range of structures between a polycrystalline structure and an amorphous structure. However, the microcrystalline structure used in this application is a structure in which the polycrystalline structure is more finely divided. , Refers to a collection of crystalline fine particles of about 1 to 3 nm, including so-called granular structures (segregated granular microcrystals) in which amorphous segregates around fine particles. Not in. Further, when the fine crystal structure of the present application is measured by X-ray diffraction measurement, it is not detected as a clear peak structure, but lattice fringes can be clearly observed in a cross-sectional TEM structure or the like. In some cases, it can be observed as a large number of spots by electron beam diffraction or the like, unlike an amorphous ring shape.
本発明では、結晶粒子構造を持たない微結晶構造のPdまたはPd合金からなる第一の非磁性下地層を用いて、第一の非磁性下地層の粒径による制限を除去して、第二の非磁性下地層、垂直磁気記録層の微細化を可能とする。同様の効果は粒子構造を持たない非晶質の物質を用いても、第一の非磁性下地層の粒径による制限を除去することはできるが、この場合は非晶質構造のため第二の非磁性下地層の配向性の改善を両立させることができない。また、同じ微結晶でも偏析型グラニュラ微結晶の場合は、グラニュラ微結晶の粒径が小さいため微細化が可能となるが、第一の非磁性下地層の粒径による制限が除去できているわけではなく、本願の技術とは異なっている。また、この場合、配向性の改善の程度は、面心立方構造を有するPd多結晶の下地層を用いた場合に劣らないものとなる。一方、本発明のように、微結晶構造の第一の非磁性下地層を用いると、Pd多結晶構造の下地層を用いたより、さらに第二の非磁性下地層の配向性を改善することができる。Pd多結晶構造の第一の非磁性下地層の上に、RuまたはRu合金の第二の非磁性下地層を用いた場合、第一の非磁性下地層から第二の非磁性下地層にエピタキシャル成長する際に、2層の下地層間に格子定数の違いが存在するために、格子を整合させるための格子緩和層(初期層)が発生してしまう。この格子緩和層は、特にRu,Ru合金からなる第二の非磁性下地層に発生しやすい。一方、本発明に用いられる微細結晶構造の第一の非磁性下地層の場合、微細結晶の体積が小さいために、応力の小さくなった微細結晶内に格子ひずみが押し込められ、上記格子緩和層は第一の非磁性下地層側に形成される。よって、Pd多結晶構造を用いた場合より、さらに第二の非磁性下地層の配向性を改善することが可能となる。このような効果はグラニュラ型微結晶では得ることができない。 In the present invention, the first nonmagnetic underlayer made of Pd or Pd alloy having a microcrystalline structure having no crystal grain structure is used to remove the limitation due to the particle size of the first nonmagnetic underlayer, and the second The nonmagnetic underlayer and the perpendicular magnetic recording layer can be miniaturized. The same effect can be obtained even if an amorphous material having no particle structure is used, but the restriction due to the particle size of the first nonmagnetic underlayer can be removed. The improvement in the orientation of the nonmagnetic underlayer cannot be achieved at the same time. In the case of segregated granular microcrystals even if they are the same microcrystals, the grain size of the granular microcrystals is small, so that miniaturization is possible. Rather, it is different from the technology of the present application. Further, in this case, the degree of improvement in orientation is not inferior to that in the case of using a Pd polycrystalline underlayer having a face-centered cubic structure. On the other hand, when the first nonmagnetic underlayer having a microcrystalline structure is used as in the present invention, the orientation of the second nonmagnetic underlayer can be further improved as compared with the use of the underlayer having a Pd polycrystalline structure. it can. When a second nonmagnetic underlayer of Ru or Ru alloy is used on the first nonmagnetic underlayer having a Pd polycrystalline structure, epitaxial growth is performed from the first nonmagnetic underlayer to the second nonmagnetic underlayer. In this case, since there is a difference in lattice constant between the two underlying layers, a lattice relaxation layer (initial layer) for matching the lattice is generated. This lattice relaxation layer is likely to occur particularly in the second nonmagnetic underlayer made of Ru or Ru alloy. On the other hand, in the case of the first non-magnetic underlayer having a fine crystal structure used in the present invention, since the volume of the fine crystal is small, lattice strain is pushed into the fine crystal with reduced stress, and the lattice relaxation layer is It is formed on the first nonmagnetic underlayer side. Therefore, the orientation of the second nonmagnetic underlayer can be further improved as compared with the case where the Pd polycrystalline structure is used. Such an effect cannot be obtained with granular microcrystals.
このような微結晶のPd膜、Pd合金膜を得るには、例えばPd膜の一部をシリサイド化させてやればよい。これは、SiまたはSi化合物からなる非磁性シード層に接するようにPd、Pd合金膜を製膜することで可能となる。このように製膜することで、Pd、Pd合金層の基板側がシリサイド化され、記録層側のPd、Pd合金層がその粒径を保てなくなり微細結晶化する。 In order to obtain such a microcrystalline Pd film or Pd alloy film, for example, a part of the Pd film may be silicided. This can be achieved by forming a Pd or Pd alloy film in contact with a nonmagnetic seed layer made of Si or a Si compound. By forming the film in this way, the substrate side of the Pd, Pd alloy layer is silicided, and the Pd, Pd alloy layer on the recording layer side cannot maintain its particle size and is finely crystallized.
また、この第一の非磁性下地層としてPd−Si合金を用いる場合には、第1のPd−Si層と、第1のPd−Si合金層とはPdとSiの組成比が異なる第2のPd−Si層の積層を用いることができる。必要に応じて、さらにPd−Si層を積層することもできる。この場合、軟磁性層側の第1のPd−Si層は、Si供給層として働くために、Si含有量は、垂直磁気記録層側に形成された第2のPd−Si層のSi含有量より多いことが好ましい。垂直磁気記録層側のPd−Si膜のSi組成量が多くなると、Pd−Si膜が非晶質や偏析型グラニュラ微結晶となってしまい、結晶構造改善効果を得ることが難しくなる傾向がある。 Further, when a Pd—Si alloy is used as the first nonmagnetic underlayer, the first Pd—Si layer and the first Pd—Si alloy layer have different Pd and Si composition ratios. A stack of Pd—Si layers can be used. If necessary, a Pd—Si layer can be further laminated. In this case, since the first Pd—Si layer on the soft magnetic layer side functions as an Si supply layer, the Si content is the Si content of the second Pd—Si layer formed on the perpendicular magnetic recording layer side. More is preferred. When the Si composition amount of the Pd-Si film on the perpendicular magnetic recording layer side increases, the Pd-Si film becomes amorphous or segregated granular microcrystals, and it tends to be difficult to obtain an effect of improving the crystal structure. .
また、垂直磁気記録層側の第2のPd−Si層の望ましいSi組成量は、10at%未満、より好ましくは、3ないし10at%である。10at%より多いと、Pd−Si膜が非晶質、または偏析型グラニュラ微結晶になりやすく、結晶配向性改善効果が得にくい。また、3at%以上であると、Pd−Si膜の微結晶の効果が得やすい。 The desirable Si composition amount of the second Pd—Si layer on the perpendicular magnetic recording layer side is less than 10 at%, more preferably 3 to 10 at%. If it exceeds 10 at%, the Pd—Si film is likely to be amorphous or segregated granular microcrystals, and it is difficult to obtain the effect of improving crystal orientation. In addition, if it is 3 at% or more, the effect of the microcrystal of the Pd—Si film is easily obtained.
一方、軟磁性層側の第1のPd−Si層のSi含有量は、好ましくは10at%以上、より好ましくは、10ないし100at%である。10at%未満であるとSi供給量が少なくなるため、垂直磁気記録層側のPd−Si膜で微結晶を得ることが難しくなる。また、シリサイド化反応を利用すると、通常に製膜した場合より膜が平坦化でき、より配向性が改善できるという利点がある。これは、シリサイド化反応に特有のものである。ここで、Pd−Si層として組成比に変化のない一様な単層のPd−Si層を作製してしまうと、Pd粒子の周りにSiが偏析したグラニュラ型の微結晶構造や、Pd−Si膜の本来の構造である斜方晶構造、または結晶構造がうまく形成されずに非晶質になる傾向がある。また、シリサイド化反応特有の平坦化効果も得ることができず、よって、第二の非磁性下地層の配向性を改善することが困難となる傾向がある。一方、本発明のように、異なる組成比を持つPd−Si層を積層することで、微結晶のPd−Si膜を得ることができる。また、シリサイド化を促進させるためには、PdやSiを含む膜を製膜する際に、好ましくは0.5Pa以下、より好ましくは0.3ないし0.05Pa程度の低圧力で製膜してやればよい。これにより、不純物によるSiの酸化を防ぎ、より活性なSiを得られ、シリサイド反応が促進される。これを一般に用いられる0.7Pa程度で製膜すると、Siの一部が酸化されることにより、シリサイド反応が抑制され、Pd膜やPd合金膜が微結晶化されないか、偏析型グラニュラPd合金膜が形成される傾向がある。なお、ここで記載された圧力は、製膜に利用される真空チャンバー全体を計測したものであるが、実質的には基板付近の真空度を指している。すなわち、一般に0.5Pa以下の低圧力下ではスパッタリングが起こりにくくなるが、それを防ぐために、差動排気法を用いて、チャンバーやターゲット付近の圧力は高く保ったまま、基板付近の圧力のみを下げた場合には、上述の望ましい真空度は基板付近の圧力のことを指している。 On the other hand, the Si content of the first Pd—Si layer on the soft magnetic layer side is preferably 10 at% or more, more preferably 10 to 100 at%. If it is less than 10 at%, the amount of Si supply decreases, and it becomes difficult to obtain microcrystals with the Pd—Si film on the perpendicular magnetic recording layer side. In addition, when the silicidation reaction is used, there is an advantage that the film can be flattened and the orientation can be improved more than in the case of normal film formation. This is unique to the silicidation reaction. Here, when a uniform single layer Pd—Si layer having no change in composition ratio is produced as the Pd—Si layer, a granular microcrystalline structure in which Si segregates around the Pd particles, or Pd— There is a tendency that the orthorhombic structure, which is the original structure of the Si film, or the crystal structure is not formed well and becomes amorphous. Further, the planarization effect peculiar to the silicidation reaction cannot be obtained, and therefore, it tends to be difficult to improve the orientation of the second nonmagnetic underlayer. On the other hand, a microcrystalline Pd—Si film can be obtained by stacking Pd—Si layers having different composition ratios as in the present invention. Further, in order to promote silicidation, when a film containing Pd or Si is formed, the film is preferably formed at a low pressure of about 0.5 Pa or less, more preferably about 0.3 to 0.05 Pa. Good. This prevents Si from being oxidized by impurities, thereby obtaining more active Si and promoting the silicide reaction. When this film is formed at a pressure of about 0.7 Pa, which is generally used, a part of Si is oxidized, so that the silicide reaction is suppressed and the Pd film or the Pd alloy film is not microcrystallized, or the segregated granular Pd alloy film. Tend to form. Note that the pressure described here is obtained by measuring the entire vacuum chamber used for film formation, but substantially indicates the degree of vacuum near the substrate. That is, sputtering is generally difficult to occur under a low pressure of 0.5 Pa or less, but in order to prevent this, only the pressure near the substrate is maintained using the differential exhaust method while keeping the pressure near the chamber and the target high. When lowered, the desired degree of vacuum mentioned above refers to the pressure near the substrate.
上述のような作用はPdやPd合金に独特のものであり、例えば、同じ白金族のPt等の他の物質を用いても結晶配向性の改善効果はほとんど見られない。本発明によれば、この所定の第一の非磁性下地層の上に、所定の第二の非磁性下地層、垂直磁気記録層を形成することで、記録再生特性が良好で高密度記録が可能な垂直磁気記録媒体が得ることが可能となる。 The above-described action is unique to Pd and Pd alloys. For example, even when other materials such as Pt of the same platinum group are used, the effect of improving the crystal orientation is hardly seen. According to the present invention, the predetermined second nonmagnetic underlayer and the perpendicular magnetic recording layer are formed on the predetermined first nonmagnetic underlayer so that the recording / reproduction characteristics are good and the high density recording can be performed. A possible perpendicular magnetic recording medium can be obtained.
第二の非磁性下地層は、積層された下地層の粒径および配向性を磁気記録層まで伝える機能を持っている。第二の非磁性下地層は、第一の非磁性下地層との結晶整合性が適当であること、および磁気記録層がエピタキシャル成長できるような結晶面を持つことが重要である。そのような物質として、第二の非磁性下地層表面に、六方最密構造を有するRuまたはRu合金を使用することができる。これらの物質は、その上に磁気記録層がエピタキシャル成長しやすいという利点をもつ。Ru合金を用いる場合、Cr,Co,Rh,C,SiO2,TiO2およびCr2O3から選ばれる少なくとも一種の元素との合金であることが好ましい。特に、Crとの合金を用いることが好ましい。 The second nonmagnetic underlayer has a function of transmitting the particle size and orientation of the laminated underlayer to the magnetic recording layer. It is important that the second nonmagnetic underlayer has an appropriate crystal matching with the first nonmagnetic underlayer and has a crystal plane on which the magnetic recording layer can be epitaxially grown. As such a material, Ru or Ru alloy having a hexagonal close-packed structure can be used on the surface of the second nonmagnetic underlayer. These materials have the advantage that the magnetic recording layer is easily grown epitaxially thereon. When a Ru alloy is used, it is preferably an alloy with at least one element selected from Cr, Co, Rh, C, SiO 2 , TiO 2 and Cr 2 O 3 . In particular, it is preferable to use an alloy with Cr.
なお、ここでは、Ruと、C,SiO2,TiO2またはCr2O3等との混合材料をRu合金の一部に含むものとする。 Here, a mixed material of Ru and C, SiO 2 , TiO 2, Cr 2 O 3 or the like is included in a part of the Ru alloy.
垂直磁気記録層は、第二の非磁性下地層の上にエピタキシャル的に成長させることで、下地層において得られた微細で配向性のよい結晶構造を垂直磁気記録層に導入することができる。本発明に使用される垂直磁気記録層は、CoとPtを主成分として含有することが望ましい。このような垂直磁気記録層は、比較的結晶配向性がよく、かつ熱揺らぎ耐性に優れているという利点を有する。また、垂直磁気記録層は、異なった組成の磁気記録層を2層以上積層させることもできる。また、製膜前後に加熱・冷却過程を入れてもよい。 By growing the perpendicular magnetic recording layer epitaxially on the second nonmagnetic underlayer, the fine and well-oriented crystal structure obtained in the underlayer can be introduced into the perpendicular magnetic recording layer. The perpendicular magnetic recording layer used in the present invention preferably contains Co and Pt as main components. Such a perpendicular magnetic recording layer has the advantages of relatively good crystal orientation and excellent thermal fluctuation resistance. In addition, two or more magnetic recording layers having different compositions can be stacked as the perpendicular magnetic recording layer. Moreover, you may put a heating / cooling process before and after film formation.
垂直磁気記録層を構成する物質として、例えばCoPt合金、CoCr合金、CoCrPt合金、CoCrPtB合金、CoCrPtTa合金、CoCrPt−SiO2合金、CoCrPtO合金およびCoCrPt−TiO2合金等を使用することができる。好ましくは、CoCrPt−SiO2合金、CoCrPtO合金、CoCrPt−TiO2合金を使用することができる。これらの合金は、結晶配向性が良好で、磁気異方性が大きく、かつ熱ゆらぎ耐性に優れているという利点を有する。酸素を含んだ磁気記録層は、結晶粒界相が明確になり、より磁気的相互作用を分断することができる。 As a material constituting the perpendicular magnetic recording layer, for example, a CoPt alloy, a CoCr alloy, a CoCrPt alloy, a CoCrPtB alloy, a CoCrPtTa alloy, a CoCrPt—SiO 2 alloy, a CoCrPtO alloy, a CoCrPt—TiO 2 alloy, or the like can be used. Preferably, a CoCrPt—SiO 2 alloy, a CoCrPtO alloy, or a CoCrPt—TiO 2 alloy can be used. These alloys have the advantages of good crystal orientation, large magnetic anisotropy, and excellent resistance to thermal fluctuations. In the magnetic recording layer containing oxygen, the crystal grain boundary phase becomes clear, and the magnetic interaction can be further separated.
垂直磁気記録層上には、少なくとも1層の保護膜を設けることができる。保護膜としては、例えばC,ダイアモンドライクカーボン(DLC),SiNx,SiOx,CNx、およびCHxが挙げられる。 At least one protective film can be provided on the perpendicular magnetic recording layer. Examples of the protective film include C, diamond-like carbon (DLC), SiNx, SiOx, CNx, and CHx.
軟磁性裏打ち層、シード層、下地層,第二の非磁性下地層、垂直磁気記録層、および保護膜はいずれも磁気記録媒体の分野で通常用いられる様々な蒸着技術によって形成することが可能である。ここでは、種々のスパッタリング法を蒸着技術の1つとして扱うものとする。このような蒸着技術として、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、真空蒸着法を用いることが出来る。 The soft magnetic underlayer, seed layer, underlayer, second nonmagnetic underlayer, perpendicular magnetic recording layer, and protective film can all be formed by various deposition techniques commonly used in the field of magnetic recording media. is there. Here, various sputtering methods are treated as one of the deposition techniques. As such a deposition technique, for example, a DC magnetron sputtering method, an RF magnetron sputtering method, or a vacuum deposition method can be used.
また、2種類以上の物質を混合させる場合、コンポジットターゲットを用いた単元のスパッタリング法、および、それぞれの物質のターゲットを用いた、多元同時スパッタリング法を用いることもできる。 When two or more kinds of substances are mixed, a unitary sputtering method using a composite target and a multi-source simultaneous sputtering method using targets of the respective substances can also be used.
垂直磁気記録媒体の表面、例えば磁気記録層表面、あるいは保護層表面の上には、例えばディップ法、スピンコート法等によりパーフルオロポリエーテル等の潤滑剤を塗布し、潤滑層を形成することができる。 On the surface of the perpendicular magnetic recording medium, for example, the surface of the magnetic recording layer or the surface of the protective layer, a lubricant layer such as a perfluoropolyether may be applied by, for example, a dipping method or a spin coating method to form a lubricating layer. it can.
また、図2は、本発明の一実施形態に係る垂直磁気記録媒体の構成を模式的に表す断面図である。 FIG. 2 is a cross-sectional view schematically showing the configuration of the perpendicular magnetic recording medium according to one embodiment of the present invention.
図2に示す垂直磁気記録媒体20は、軟磁性裏打ち層2と非磁性基板1との間に、例えば面内硬磁性膜及び反強磁性層等のバイアス付与層7、軟磁性裏打ち層2と第一の非磁性下地層3との間に、非磁性シード層8が設けられていること以外は、図1と同様の構成を有する。
A perpendicular
軟磁性裏打ち層2は磁区を形成しやすく、この磁区からスパイク状のノイズが発生することから、バイアス付与層7を設け、その半径方向の一方向に磁界を印加することにより、その上に形成された軟磁性裏打ち層2にバイアス磁界をかけて磁壁の発生を防ぐことができる。バイアス付与層7を積層構造として異方性を細かく分散して大きな磁区を形成しにくくすることもできる。
The soft
バイアス付与層7に用いるバイアス付与層材料としては、CoCrPt、CoCrPtB、CoCrPtTa、CoCrPtC、CoCrPtCuB、CoCrRuB、CoCrPtWC、CoCrPtWB、CoCrPtTaNd、CoSm、CoPt、CoPtO、CoCrPtO、CoPt−SiO2、及びCoCrPtO−SiO2が挙げられる。
The bias application layer material used for the
バイアス付与層は、いずれも例えばスパッタ法などの製膜方法により形成することができる。なお、バイアス付与層の結晶性改善や薄膜化のために、基板とバイアス付与層の間に、複数の非磁性層を形成しても良い。 Any of the bias applying layers can be formed by a film forming method such as sputtering. A plurality of nonmagnetic layers may be formed between the substrate and the bias application layer in order to improve the crystallinity of the bias application layer or reduce the film thickness.
また、軟磁性裏打ち層2と第一の非磁性下地層3との間に、SiまたはSi合金からなる非磁性シード層8を形成することができる。PdまたはPd合金からなる第一の非磁性下地層3の下に接触するように、Si合金からなる非磁性シード層8を形成すると、PdまたはPd合金とSiまたはSi合金との界面でシリサイド反応が起こり、Pd−Si化合物相ができる。PdまたはPd合金層の下にPd−Si化合物相ができることにより、PdまたはPd合金層が微細結晶となり易くなる。
Also, a
非磁性シード層8のSi合金に用いられる金属としては、Zr,Hf,TaおよびPdから選ばれる少なくとも一種の元素であることが望ましい。これらの金属は、Siと金属シリサイドを形成しやすく、これにより、非磁性シード層と第一の非磁性下地層の間に強固なPd−Si化合物相を形成し得る。
The metal used for the Si alloy of the
また、非磁性シード層の好ましい厚さは、1nmないし10nmである。非磁性シード層の膜厚が、1nmより薄いと、非磁性シード層の膜面内方向における組成の均一性が不十分となり、第一の非磁性下地層とのPd−Si化合物相の形成が不十分になる傾向がある。また、膜厚が10nmより厚いと、磁気ヘッドから軟磁性裏打ち層までの距離が増大し、スペーシングロスにより、磁気記録媒体の記録再生特性が低下する傾向がある。また、金属シリサイド層の生成を促進するために、ポストアニール等の熱処理を行っても良い。 The preferred thickness of the nonmagnetic seed layer is 1 nm to 10 nm. If the thickness of the nonmagnetic seed layer is less than 1 nm, the uniformity of the composition in the in-plane direction of the nonmagnetic seed layer becomes insufficient, and the formation of the Pd—Si compound phase with the first nonmagnetic underlayer is not possible. There is a tendency to become insufficient. On the other hand, if the film thickness is greater than 10 nm, the distance from the magnetic head to the soft magnetic backing layer increases, and the recording / reproduction characteristics of the magnetic recording medium tend to deteriorate due to spacing loss. Further, heat treatment such as post-annealing may be performed in order to promote the formation of the metal silicide layer.
本発明に用いられる非磁性基板として、アルミノケイ酸ガラス、化学強化ガラス、AlMg基板などのAl系の合金基板や、より高い耐熱温度を有する非磁性基板例えば結晶化ガラス基板、Si基板、C基板、Ti基板、表面が酸化したSi基板、セラミックス,及びプラスチック等を使用することができる。さらに,それら非磁性基板表面にNiP合金などのメッキが施されている場合でも同様の効果が期待される。 Nonmagnetic substrates used in the present invention include Al-based alloy substrates such as aluminosilicate glass, chemically tempered glass, and AlMg substrates, and nonmagnetic substrates having higher heat resistance such as crystallized glass substrates, Si substrates, C substrates, A Ti substrate, a Si substrate with an oxidized surface, ceramics, plastic, or the like can be used. Furthermore, the same effect is expected even when the surface of these nonmagnetic substrates is plated with NiP alloy or the like.
図3は、本発明の磁気記録再生装置の一例を一部分解した斜視図を示す。 FIG. 3 is a partially exploded perspective view showing an example of the magnetic recording / reproducing apparatus of the present invention.
図3に示されるように、本発明の垂直磁気記録装置30は、上面の開口した矩形箱状の筐体31と、複数のねじにより筐体31にねじ止めされる筐体の上端開口を閉塞する図示しないトップカバーを有している。
As shown in FIG. 3, the perpendicular
筐体31内には、本発明に係る垂直磁気記録媒体32、この垂直磁気記録媒体32を支持及び回転させる駆動手段としてのスピンドルモータ33、磁気記録媒体32に対して磁気信号の記録及び再生を行う磁気ヘッド34、磁気ヘッド34を先端に搭載したサスペンションを有し且つ磁気ヘッド34を垂直磁気記録媒体32に対して移動自在に支持するヘッドアクチュエータ35、ヘッドアクチュエータ35を回転自在に支持する回転軸36、回転軸36を介してヘッドアクチュエータ35を回転、位置決めするボイスコイルモータ37、及びヘッドアンプ回路38等が収納されている。
In the
以下、実施例を示し、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
実施例
実施例1
2.5インチ磁気ディスク用のガラス基板からなる非磁性基板を用意した。
Example Example 1
A nonmagnetic substrate made of a glass substrate for a 2.5 inch magnetic disk was prepared.
この非磁性基板を1×10−5Paの真空度の真空チャンバー内に設置し、ガス圧0.7PaのAr雰囲気中で、以下のようにしてDCマグネトロンスパッタリングを行った。 This nonmagnetic substrate was placed in a vacuum chamber with a vacuum degree of 1 × 10 −5 Pa, and DC magnetron sputtering was performed as follows in an Ar atmosphere with a gas pressure of 0.7 Pa.
まず、非磁性基板をターゲットに対向するように配置し、バイアス付与層としてCoCrPtターゲットを用いて、DC500Wをターゲットに放電し厚さ25nmになるように、CoCrPt強磁性層を製膜した。 First, a nonmagnetic substrate was disposed so as to face the target, and a CoCrPt ferromagnetic layer was formed using a CoCrPt target as a bias applying layer so that DC500W was discharged to the target to a thickness of 25 nm.
得られたCoCrPt強磁性層上に、厚さ120nmのCoZrNb軟磁性裏打ち層を形成した。 A CoZrNb soft magnetic backing layer having a thickness of 120 nm was formed on the obtained CoCrPt ferromagnetic layer.
その後、CoZrNb軟磁性裏打ち層上に、非磁性シード層として、Siターゲットを用いて、通常より低いガス圧0.1PaのAr雰囲気中で、DC500Wで放電し、軟磁性層上に、厚さ5nmになるように製膜して、Si層を形成した。 Thereafter, on the CoZrNb soft magnetic underlayer, using a Si target as a nonmagnetic seed layer, discharge was performed at DC 500 W in an Ar atmosphere having a lower gas pressure of 0.1 Pa than usual, and a thickness of 5 nm was formed on the soft magnetic layer. As a result, the Si layer was formed.
次に、第一の非磁性下地層として、Pdターゲットを用いて、通常より低いガス圧 0.1PaのAr雰囲気中で、DC500Wで放電し、Siシード層上に、厚さ5nmになるように製膜してPd層を形成した。 Next, as a first nonmagnetic underlayer, a Pd target is used and discharged at DC 500 W in an Ar atmosphere with a gas pressure of 0.1 Pa lower than usual so that the thickness is 5 nm on the Si seed layer. A Pd layer was formed by film formation.
ここで、製膜中のガス圧の設定を通常の0.7PaのAr雰囲気中に戻した。 Here, the setting of the gas pressure during film formation was returned to the normal 0.7 Pa Ar atmosphere.
次に、第二の非磁性下地層として、Ruターゲットを用いて、DC500Wで放電し、Pd第一の非磁性下地層上に、厚さ20nmになるように製膜して、Ru層を形成した。 Next, as a second nonmagnetic underlayer, a Ru target is used and discharged at 500 W DC to form a Ru layer on Pd first nonmagnetic underlayer so as to have a thickness of 20 nm. did.
その後、第二の非磁性下地層上に、(Co−16at%Pt−10at%Cr)−8mol%SiO2のコンポジットターゲットを用意し、Ru第二の非磁性下地層上に、CoPtCr−SiO2垂直磁気記録層を15nm製膜した。 Thereafter, a composite target of (Co-16 at% Pt-10 at% Cr) -8 mol% SiO 2 is prepared on the second nonmagnetic underlayer, and CoPtCr—SiO 2 is formed on the Ru second nonmagnetic underlayer. A perpendicular magnetic recording layer was formed to a thickness of 15 nm.
最後に、C保護膜を7nm製膜した。このように真空容器内で連続して製膜した基板を大気中に取り出した後、ディップ法によりパーフルオロポリエーテル系潤滑膜を1.5nmの厚さに形成し、垂直磁気記録媒体を得た。 Finally, a C protective film was formed to 7 nm. After the substrate formed continuously in the vacuum container in this manner was taken out into the atmosphere, a perfluoropolyether-based lubricating film was formed to a thickness of 1.5 nm by a dip method to obtain a perpendicular magnetic recording medium. .
得られた垂直磁気記録媒体は、図2に示す垂直磁気記録媒体と同様の断面構成を有する。 The obtained perpendicular magnetic recording medium has a cross-sectional configuration similar to that of the perpendicular magnetic recording medium shown in FIG.
得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピークを観測したが、Pd(111)ピークは観測できなかった。 When X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak and a CoCrPt (00.2) peak were observed, but a Pd (111) peak could not be observed. .
これらのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ2.5°(Ru)、3.0°(CoCrPt)であった。 When rocking curve measurement was performed on these peaks, the half-widths of the peaks were 2.5 ° (Ru) and 3.0 ° (CoCrPt), respectively.
これにより、垂直磁気記録層が良好な結晶性を有することがわかった。 Thereby, it was found that the perpendicular magnetic recording layer had good crystallinity.
また、得られた垂直磁気記録媒体に対して、断面方向の透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の結晶構造を調べた。その結果、Siシード層には、結晶格子縞は観測されておらず、非晶質であることが分かった。一方、Pd第一の非磁性下地層は、はっきりと結晶格子縞が観測されていたが、その方向は一様ではなく、微結晶構造を取っていることがわかった。 Further, the obtained perpendicular magnetic recording medium was subjected to transmission analytical electron microscope (TEM) measurement in the cross-sectional direction to examine the crystal structure of the medium of the present invention. As a result, no crystal lattice fringes were observed in the Si seed layer, indicating that the Si seed layer was amorphous. On the other hand, in the Pd first nonmagnetic underlayer, crystal lattice stripes were clearly observed, but the direction was not uniform, and it was found that the Pd first nonmagnetic underlayer had a microcrystalline structure.
Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並び、第二の非磁性下地層から記録層にかけて、エピタキシャル成長していることが分かった。 It was found that the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer had crystal lattice stripes arranged in an orderly manner in the direction perpendicular to the film surface and were epitaxially grown from the second nonmagnetic underlayer to the recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ4ないし6nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 4 to 6 nm.
得られた垂直磁気記録媒体に対し、電磁石を備えた着磁装置を用いて、円板上基板の半径方向外向きに1185A/m(15000 Oe)の磁界を印加し、バイアス付与層の強磁性層の面内半径方向への磁化を行った。着磁された垂直磁気記録媒体について、米国GUZIK社製リードライトアナライザ1632及びスピンスタンドS1701MPを用いて、記録再生特性の評価を行った。 A magnetic field of 1185 A / m (15000 Oe) is applied to the obtained perpendicular magnetic recording medium radially outward of the substrate on the disk by using a magnetizing device equipped with an electromagnet, and the bias applying layer is made ferromagnetic. Magnetization in the in-plane radial direction of the layer was performed. Recording and reproduction characteristics of the magnetized perpendicular magnetic recording medium were evaluated using a read / write analyzer 1632 and spin stand S1701MP manufactured by GUZIK.
記録再生ヘッドは、記録素子に単磁極ヘッド、再生素子に磁気抵抗効果を利用した、記録トラック幅0.25μm、再生トラック幅0.15μmのヘッドを用いた。また、測定はディスクの回転数は4200rpmで、中心より半径位置22.2mmと一定の位置で行った。その結果、媒体のSNRm(再生信号出力S: 線記録密度119kFCIにおける出力、Nm: 716kFCIで記録した際に測定したノイズのrms値(root mean square))が27.0dBという良好な媒体を得ることができた。 As the recording / reproducing head, a single magnetic pole head was used as the recording element, and a head having a recording track width of 0.25 μm and a reproducing track width of 0.15 μm using the magnetoresistive effect as the reproducing element. Further, the measurement was performed at a constant position of a radial position of 22.2 mm from the center at a rotational speed of the disk of 4200 rpm. As a result, an excellent medium having an SNRm (reproduction signal output S: output at a linear recording density of 119 kFCI, Nm: rms value of noise measured when recording at 716 kFCI) (27.0 dB) can be obtained. I was able to.
比較例1
比較の垂直磁気記録媒体として、Siシード層を形成しないで、かつPd第一の非磁性下地層を形成する際に、通常のAr圧の0.7Paで形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。
Comparative Example 1
As a comparative perpendicular magnetic recording medium, the vertical direction of Example 1 was used except that the Si seed layer was not formed and the Pd first nonmagnetic underlayer was formed at a normal Ar pressure of 0.7 Pa. A perpendicular magnetic recording medium was obtained in the same manner as the magnetic recording medium.
得られた垂直磁気記録媒体は、Siシード層がない以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。 The obtained perpendicular magnetic recording medium has the same layer structure as that of the perpendicular magnetic recording medium shown in FIG. 2 except that there is no Si seed layer.
次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピーク、さらにPd(111)ピークを観測した。 Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak, a CoCrPt (00.2) peak, and a Pd (111) peak were observed.
RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ4.2°(Ru)、5.1°(CoCrPt)であった。 When rocking curve measurement was performed on the Ru and CoCrPt peaks, the half-widths of the peaks were 4.2 ° (Ru) and 5.1 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Pd第一の非磁性下地層は、はっきりと結晶格子縞が観測されておりかつ、その方向は膜面垂直方向にほぼ一様であった。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, crystal lattice fringes were clearly observed in the first nonmagnetic underlayer of Pd, and the direction thereof was almost uniform in the direction perpendicular to the film surface.
また、Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並んでいた。 Further, in the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer, crystal lattice stripes were regularly arranged in the direction perpendicular to the film surface.
このことにより、第一の非磁性下地層のPd層から記録層にかけて、エピタキシャル成長していることが分かった。 Thus, it was found that the first nonmagnetic underlayer was epitaxially grown from the Pd layer to the recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ8ないし14nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 8 to 14 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが17.5dBであった。 When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 17.5 dB.
これにより、比較例1の従来の媒体よりも、低Ar圧でSiシード層、Pd第一の非磁性下地層を製膜した実施例1の本発明の媒体の方が、垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また記録再生特性も良いことがわかった。 As a result, the medium of the present invention of Example 1 in which the Si seed layer and the Pd first nonmagnetic underlayer were formed at a lower Ar pressure than the conventional medium of Comparative Example 1 had a perpendicular magnetic recording layer. It was found that the crystal grains were fine, the crystallinity was good, and the recording / reproduction characteristics were good.
比較例2
比較の垂直磁気記録媒体として、Siシード層を形成しないで、かつ第一の非磁性下地層としてPdの代わりにPtを用いた以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。得られた垂直磁気記録媒体は、Siシード層がないこと、またPd第一の非磁性下地層の代わりに、Pt第一の非磁性下地層を用いた以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。
Comparative Example 2
As a comparative perpendicular magnetic recording medium, perpendicular magnetic recording was performed in the same manner as the perpendicular magnetic recording medium of Example 1, except that the Si seed layer was not formed and Pt was used instead of Pd as the first nonmagnetic underlayer. A recording medium was obtained. The obtained perpendicular magnetic recording medium has no Si seed layer and the perpendicular magnetic recording shown in FIG. 2 except that the Pt first nonmagnetic underlayer is used instead of the Pd first nonmagnetic underlayer. It has the same layer structure as the medium.
次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピーク、さらにPt(111)ピークを観測した。 Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak, a CoCrPt (00.2) peak, and a Pt (111) peak were observed.
RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、
ピークの半値幅はそれぞれ4.5°(Ru)、5.5°(CoCrPt)であった。
When rocking curve measurement was performed on the Ru and CoCrPt peaks,
The half widths of the peaks were 4.5 ° (Ru) and 5.5 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Pt第一の非磁性下地層は、はっきりと結晶格子縞が観測されておりかつ、その方向は膜面垂直方向にほぼ一様であった。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, crystal lattice fringes were clearly observed in the first Pt nonmagnetic underlayer, and the direction was almost uniform in the direction perpendicular to the film surface.
また、Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並んでいた。その結果、第一の非磁性下地層のPt層から垂直磁気記録層にかけて、エピタキシャル成長していることが分かった。 Further, in the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer, crystal lattice stripes were regularly arranged in the direction perpendicular to the film surface. As a result, it was found that the first nonmagnetic underlayer was epitaxially grown from the Pt layer to the perpendicular magnetic recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ9ないし16nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 9 to 16 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが15.5dBであった。 When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 15.5 dB.
よって、比較例2の従来の媒体よりも、低Ar圧でSiシード層、Pd第一の非磁性下地層を製膜した実施例1の本発明の媒体の方が、垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また記録再生特性も良いことが分かった。 Therefore, the medium of the present invention of Example 1 in which the Si seed layer and the Pd first nonmagnetic underlayer are formed at a lower Ar pressure than the conventional medium of Comparative Example 2 is more perpendicular to the crystal of the perpendicular magnetic recording layer. It was found that the particles were fine and the crystallinity was good, and the recording / reproduction characteristics were good.
比較例4
比較の垂直磁気記録媒体として、Siシード層および第一の非磁性下地層としてPdの代わりにPtを用いて、通常のAr圧の0.7Paで形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。
Comparative Example 4
As a comparative perpendicular magnetic recording medium, perpendicular magnetic recording of Example 1 except that the Si seed layer and the first nonmagnetic underlayer were formed by using Pt instead of Pd at a normal Ar pressure of 0.7 Pa. A perpendicular magnetic recording medium was obtained in the same manner as the medium.
得られた垂直磁気記録媒体は、Pd第一の非磁性下地層の代わりにPt第一の非磁性下地層を用いた以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。 The obtained perpendicular magnetic recording medium has the same layer structure as that of the perpendicular magnetic recording medium shown in FIG. 2, except that the Pt first nonmagnetic underlayer is used instead of the Pd first nonmagnetic underlayer.
次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピーク、さらにPt(111)ピークを観測した。 Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak, a CoCrPt (00.2) peak, and a Pt (111) peak were observed.
RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、
ピークの半値幅はそれぞれ4.7°(Ru)、5.9°(CoCrPt)であった。
When rocking curve measurement was performed on the Ru and CoCrPt peaks,
The half widths of the peaks were 4.7 ° (Ru) and 5.9 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Siシード層には、結晶格子縞は観測されておらず、非晶質であることが分かった。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, no crystal lattice fringes were observed in the Si seed layer, indicating that the Si seed layer was amorphous.
Pt第一の非磁性下地層は、はっきりと結晶格子縞が観測されており、かつその方向は膜面垂直方向にほぼ一様であった。 In the Pt first nonmagnetic underlayer, crystal lattice stripes were clearly observed, and the direction thereof was almost uniform in the direction perpendicular to the film surface.
また、Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並んでいた。その結果、第一の非磁性下地層のPt層から記録層にかけて、エピタキシャル成長していることが分かった。 Further, in the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer, crystal lattice stripes were regularly arranged in the direction perpendicular to the film surface. As a result, it was found that the first nonmagnetic underlayer was epitaxially grown from the Pt layer to the recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ10ないし15nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of approximately 10 to 15 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが14.9dBであった。 When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 14.9 dB.
これにより、比較例4の従来の媒体よりも、低Ar圧でSiシード層、Pd第一の非磁性下地層を製膜した実施例1の本発明の媒体の方が、垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また記録再生特性も良いことがわかった。 As a result, the medium of the present invention of Example 1 in which the Si seed layer and the Pd first nonmagnetic underlayer were formed at a lower Ar pressure than the conventional medium of Comparative Example 4 had a perpendicular magnetic recording layer. It was found that the crystal grains were fine, the crystallinity was good, and the recording / reproduction characteristics were good.
比較例5
比較の垂直磁気記録媒体として、Siシード層および第一の非磁性下地層としてPdの代わりにPtを用いて、通常より低いAr圧の0.1Paで形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。
Comparative Example 5
The perpendicular magnetic recording medium of Example 1 was used except that, as a comparative perpendicular magnetic recording medium, Pt was used instead of Pd as the Si seed layer and the first nonmagnetic underlayer, and was formed at 0.1 Pa with an Ar pressure lower than usual. A perpendicular magnetic recording medium was obtained in the same manner as the recording medium.
得られた垂直磁気記録媒体は、Pd第一の非磁性下地層の代わりにPt第一の非磁性下地層を用いた以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。 The obtained perpendicular magnetic recording medium has the same layer structure as that of the perpendicular magnetic recording medium shown in FIG. 2, except that the Pt first nonmagnetic underlayer is used instead of the Pd first nonmagnetic underlayer.
次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピーク、さらにPt(111)ピークを観測した。 Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak, a CoCrPt (00.2) peak, and a Pt (111) peak were observed.
RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、
ピークの半値幅はそれぞれ3.7°(Ru)、3.9°(CoCrPt)であった。
When rocking curve measurement was performed on the Ru and CoCrPt peaks,
The half widths of the peaks were 3.7 ° (Ru) and 3.9 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined.
その結果、Siシード層には、結晶格子縞は観測されておらず、非晶質であることが分かった。 As a result, no crystal lattice fringes were observed in the Si seed layer, indicating that the Si seed layer was amorphous.
Pt第一の非磁性下地層は、はっきりと結晶格子縞が観測されていたが、その方向は一様ではなく、微結晶構造を取っていることがわかった。 In the first nonmagnetic underlayer of Pt, crystal lattice stripes were clearly observed, but the direction was not uniform, and it was found that the Pt first nonmagnetic underlayer had a microcrystalline structure.
また、Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並んでいた。 Further, in the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer, crystal lattice stripes were regularly arranged in the direction perpendicular to the film surface.
その結果、第二の非磁性下地層から記録層にかけて、エピタキシャル成長していることが分かった。 As a result, it was found that epitaxial growth occurred from the second nonmagnetic underlayer to the recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。
その結果、垂直磁気記録層は、およそ7ないし11nmの平均粒径を有する結晶粒子から形成されていることが分かった。
Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. .
As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 7 to 11 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが19.1dBであった。 When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 19.1 dB.
他の比較例に比べて粒径は微細になっているが、配向性の改善が不十分であった。 Although the particle size is finer than that of other comparative examples, the improvement in orientation was insufficient.
よって、比較例5の従来の媒体よりも低いAr圧で、Siシード層、Pd第一の非磁性下地層を製膜した実施例1の本発明の媒体の方が、垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また記録再生特性も良いことがわかった。 Therefore, the medium of the present invention of Example 1 in which the Si seed layer and the Pd first nonmagnetic underlayer were formed at an Ar pressure lower than that of the conventional medium of Comparative Example 5 was higher than that of the perpendicular magnetic recording layer. It was found that the particles were fine, the crystallinity was good, and the recording / reproduction characteristics were good.
実施例2
本発明の媒体の第一の非磁性下地層として、組成量の異なる2種類のターゲット、Pd−34at%Siターゲット(軟磁性側)、及びPd−5at%Siターゲット(垂直磁気記録層側)を用意した。
Example 2
As the first nonmagnetic underlayer of the medium of the present invention, two types of targets having different composition amounts, a Pd-34 at% Si target (soft magnetic side), and a Pd-5 at% Si target (perpendicular magnetic recording layer side) were used. Prepared.
第一の非磁性下地層としてPdターゲットの代わりに、上記2種類のPd−Siターゲット、Pd−34at%SiターゲットおよびPd−5at%Siターゲットを使用し、Siシード層を用いない以外は、実施例1と同様にして、垂直磁気記録媒体を作製した。 Instead of Pd target as the first nonmagnetic underlayer, the above two types of Pd-Si target, Pd-34 at% Si target and Pd-5 at% Si target were used, except that the Si seed layer was not used. In the same manner as in Example 1, a perpendicular magnetic recording medium was produced.
得られた垂直磁気記録媒体は、Siシード層がないこと、第一の非磁性下地層として、組成の異なるPd−Si層を2層形成した以外は、図2に示す垂直磁気記録媒体と同様の構成を有する。 The obtained perpendicular magnetic recording medium is the same as the perpendicular magnetic recording medium shown in FIG. 2 except that there is no Si seed layer and two Pd—Si layers having different compositions are formed as the first nonmagnetic underlayer. It has the composition of.
図4に、得られた垂直磁気記録媒体の構成を表す概略断面図を示す。
図示するように、この垂直磁気記録媒体50は、非磁性基板11上に、CoCrPt強磁性層17、CoZrNb軟磁性裏打ち層12、第一の非磁性下地層13として、Pd−34at%Si層19及びPd−5at%Si層21の積層、Ru第二の非磁性下地層14、CoPtCr−SiO2垂直磁気記録層15、C保護膜16、及び図示しない潤滑層を順次積層した構造を有する。
FIG. 4 is a schematic cross-sectional view showing the configuration of the obtained perpendicular magnetic recording medium.
As shown in the figure, this perpendicular
本発明の媒体に対して、X線回折測定を行った。 X-ray diffraction measurement was performed on the medium of the present invention.
Ru(00.2)ピークおよびCoCrPt(00.2)ピークを観測したが、Pd(111)ピークは観測できなかった。 A Ru (00.2) peak and a CoCrPt (00.2) peak were observed, but a Pd (111) peak could not be observed.
これらのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ2.6°(Ru)、3.2°(CoCrPt)であった。 When rocking curve measurement was performed on these peaks, the half-widths of the peaks were 2.6 ° (Ru) and 3.2 ° (CoCrPt), respectively.
これにより、垂直磁気記録層が良好な結晶性を有することがわかった。 Thereby, it was found that the perpendicular magnetic recording layer had good crystallinity.
得られた垂直磁気記録媒体に対して、断面方向の透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の結晶構造を調べた。その結果、軟磁性層側のPd−Si第一の非磁性下地層には、はっきりとした結晶格子縞は観測されておらず、非晶質であることが分かった。 The obtained perpendicular magnetic recording medium was subjected to transmission analytical electron microscope (TEM) measurement in the cross-sectional direction to examine the crystal structure of the medium of the present invention. As a result, no clear crystal lattice stripes were observed in the Pd—Si first nonmagnetic underlayer on the soft magnetic layer side, and it was found to be amorphous.
垂直磁性層側のPd−Si第一の非磁性下地層は、はっきりと結晶格子縞が観測されていたが、その方向は一様ではなく、微結晶構造を取っていることがわかった。 In the Pd—Si first nonmagnetic underlayer on the perpendicular magnetic layer side, crystal lattice fringes were clearly observed, but the direction was not uniform, and it was found to have a microcrystalline structure.
Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並び、第二の非磁性下地層から記録層にかけて、エピタキシャル成長していることが分かった。 It was found that the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer had crystal lattice stripes arranged in an orderly manner in the direction perpendicular to the film surface and were epitaxially grown from the second nonmagnetic underlayer to the recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ5ないし7nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 5 to 7 nm.
また、実施例1と同様に記録再生特性の評価を行ったところ、SNRmが26.0dBであり、良好な特性を持つことが分かった。 Further, when the recording / reproduction characteristics were evaluated in the same manner as in Example 1, it was found that the SNRm was 26.0 dB, and the characteristics were satisfactory.
比較例6
比較の垂直磁気記録媒体として、Siシード層を形成しないで、かつ第一の非磁性下地層としてPdの代わりにPd−5at%Siを形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。得られた垂直磁気記録媒体は、Pd第一の非磁性下地層の代わりにPd−Si第一の非磁性下地層を形成し、Siシード層を形成しない以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。
Comparative Example 6
As a comparative perpendicular magnetic recording medium, the same as the perpendicular magnetic recording medium of Example 1 except that the Si seed layer was not formed and Pd-5 at% Si was formed instead of Pd as the first nonmagnetic underlayer. Thus, a perpendicular magnetic recording medium was obtained. The obtained perpendicular magnetic recording medium is the same as the perpendicular magnetic recording shown in FIG. 2 except that a Pd—Si first nonmagnetic underlayer is formed in place of the Pd first nonmagnetic underlayer and no Si seed layer is formed. It has the same layer structure as the medium.
次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピークを観測したが、Pd(111)ピークは観測できなかった。RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ5.0°(Ru)、6.2°(CoCrPt)であった。 Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak and a CoCrPt (00.2) peak were observed, but a Pd (111) peak was observed. could not. When rocking curve measurement was performed on the Ru and CoCrPt peaks, the half-widths of the peaks were 5.0 ° (Ru) and 6.2 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Pd−Si第一の非磁性下地層は、格子縞は観測されており、微結晶状態ではあったが、微結晶の方位はランダムで、また膜に凹凸が見られ、平坦性に難があった。一方、Ru第二の非磁性下地層からCoCrPt−SiO2記録層にかけては、結晶格子縞が膜面垂直方向に並んでおりエピタキシャル成長していた。ただし、Pd−Si第一の非磁性下地層からRu第二の非磁性下地層にかけて、
特に、エピタキシャル成長はしていないため、Ru第二の非磁性下地層の初期層部において、成長方向や粒径にバラつきが観測されており、よって、Ru第二の非磁性下地層やCoCrPt−SiO2記録層の粒径には大きな粒径分散が観測されていた。
A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, the Pd—Si first nonmagnetic underlayer was observed to have lattice fringes and was in a microcrystalline state, but the orientation of the microcrystal was random, and the film was uneven, and flatness was difficult. was there. On the other hand, from the Ru second nonmagnetic underlayer to the CoCrPt—SiO 2 recording layer, crystal lattice stripes were aligned in the direction perpendicular to the film surface and epitaxially grown. However, from the Pd—Si first nonmagnetic underlayer to the Ru second nonmagnetic underlayer,
In particular, since epitaxial growth is not performed, variations in the growth direction and grain size are observed in the initial layer portion of the Ru second nonmagnetic underlayer. Therefore, the Ru second nonmagnetic underlayer and CoCrPt—SiO A large particle size dispersion was observed in the particle size of the two recording layers.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ7ないし17nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of approximately 7 to 17 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが17.5dBであった。 When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 17.5 dB.
これにより、比較例6の従来の媒体よりも、実施例2の本発明の媒体の方が、垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また、良好な記録再生特性を持つことがわかった。 As a result, the medium of the present invention of Example 2 has finer crystal grains in the perpendicular magnetic recording layer and better crystallinity than the conventional medium of Comparative Example 6, and good recording / reproduction characteristics. I found out that
比較例7
比較の垂直磁気記録媒体として、Siシード層を形成しないで、かつ第一の非磁性下地層としてPdの代わりにPd−26at%Siを形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。得られた垂直磁気記録媒体は、Pd第一の非磁性下地層の代わりにPd−Si第一の非磁性下地層を形成し、Siシード層を形成しない以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。
Comparative Example 7
As a comparative perpendicular magnetic recording medium, the same as the perpendicular magnetic recording medium of Example 1, except that the Si seed layer was not formed and Pd-26 at% Si was formed instead of Pd as the first nonmagnetic underlayer. Thus, a perpendicular magnetic recording medium was obtained. The obtained perpendicular magnetic recording medium is the same as the perpendicular magnetic recording shown in FIG. 2 except that a Pd—Si first nonmagnetic underlayer is formed in place of the Pd first nonmagnetic underlayer and no Si seed layer is formed. It has the same layer structure as the medium.
次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピークを観測したが、Pd(111)ピークは観測できなかった。RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ4.1°(Ru)、5.1°(CoCrPt)であった。 Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak and a CoCrPt (00.2) peak were observed, but a Pd (111) peak was observed. could not. When rocking curve measurement was performed on Ru and CoCrPt peaks, the half-widths of the peaks were 4.1 ° (Ru) and 5.1 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Pd−Si第一の非磁性下地層は、Pd粒子とSi粒界に偏析した偏析型のグラニュラ構造をとっていた。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, the Pd—Si first nonmagnetic underlayer had a segregated granular structure segregated at the Pd particles and the Si grain boundaries.
Pd−Si第一の非磁性下地層からCoCrPt−SiO2記録層にかけて、格子縞が整然と並んでおり、エピタキシャル成長していることが分かった。ただし、膜界面には凹凸が見られ、平坦性には難があった。 From the Pd—Si first nonmagnetic underlayer to the CoCrPt—SiO 2 recording layer, it was found that lattice fringes were regularly arranged and epitaxially grown. However, unevenness was observed at the film interface, and flatness was difficult.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ7ないし10nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 7 to 10 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが19.5dBであった。 When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 19.5 dB.
これにより、比較例7の従来の媒体よりも、実施例2の本発明の媒体の方が、
垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また良好な記録再生特性を持つことが分かった。
Thereby, the medium of the present invention of Example 2 is more preferable than the conventional medium of Comparative Example 7.
It was found that the crystal grains of the perpendicular magnetic recording layer are fine and have good crystallinity and good recording / reproducing characteristics.
比較例8
比較の垂直磁気記録媒体として、Siシード層、およびRu第二の非磁性下地層を形成しないで、かつ第一の非磁性下地層としてPdの代わりにPd−26at%Siを形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。
Comparative Example 8
As a comparative perpendicular magnetic recording medium, except that the Si seed layer and the Ru second nonmagnetic underlayer were not formed, and Pd-26 at% Si was formed instead of Pd as the first nonmagnetic underlayer, A perpendicular magnetic recording medium was obtained in the same manner as the perpendicular magnetic recording medium of Example 1.
得られた垂直磁気記録媒体は、Pd第一の非磁性下地層の代わりにPd−Si第一の非磁性下地層を形成し、Siシード層およびRu第二の非磁性下地層を形成しない以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、弱いCoCrPt(00.2)ピークを観測した。 In the obtained perpendicular magnetic recording medium, a Pd—Si first nonmagnetic underlayer was formed instead of the Pd first nonmagnetic underlayer, and no Si seed layer and Ru second nonmagnetic underlayer were formed. Has the same layer structure as that of the perpendicular magnetic recording medium shown in FIG. Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a weak CoCrPt (00.2) peak was observed.
CoCrPtのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ10.1°(CoCrPt)であった。 When rocking curve measurement was performed on the CoCrPt peak, the half-width of the peak was 10.1 ° (CoCrPt).
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Pd−Si第一の非磁性下地層は、Pd粒子とSi粒界に偏析した偏析型のグラニュラ構造をとっていた。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, the Pd—Si first nonmagnetic underlayer had a segregated granular structure segregated at the Pd particles and the Si grain boundaries.
Pd−Si第一の非磁性下地層からCoCrPt−SiO2記録層にかけて、格子縞が観測されており、エピタキシャル成長していることが分かった。ただし、膜界面には凹凸が見られ、平坦性には難があった。 Lattice fringes were observed from the Pd—Si first nonmagnetic underlayer to the CoCrPt—SiO 2 recording layer, indicating that epitaxial growth occurred. However, unevenness was observed at the film interface, and flatness was difficult.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、比較の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ14ないし20nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the comparative medium was examined. As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of approximately 14 to 20 nm.
さらに、実施例1と同様に記録再生特性の評価を行ったところ、SNRmが3.8dBであった。 Further, when the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 3.8 dB.
このことから、比較例8の従来の媒体よりも、実施例2の本発明の媒体の方が、
垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また良好な記録再生特性を持つことが分かった。
From this, the medium of the present invention of Example 2 is more preferable than the conventional medium of Comparative Example 8.
It was found that the crystal grains of the perpendicular magnetic recording layer are fine and have good crystallinity and good recording / reproducing characteristics.
比較例9
比較の垂直磁気記録媒体として、第一の非磁性下地層としてPdの代わりにPd−26at%Siを形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。
Comparative Example 9
As a comparative perpendicular magnetic recording medium, a perpendicular magnetic recording medium was obtained in the same manner as the perpendicular magnetic recording medium of Example 1 except that Pd-26 at% Si was formed instead of Pd as the first nonmagnetic underlayer. .
得られた垂直磁気記録媒体は、Pd第一の非磁性下地層の代わりにPd−Si第一の非磁性下地層を形成した以外は、図2に示す垂直磁気記録媒体と同様の層構成を有する。次に、得られた垂直磁気記録媒体に対して、X線回折測定を行ったところ、Ru(00.2)ピークおよびCoCrPt(00.2)ピークを観測したが、Pd(111)ピークは観測できなかった。 The obtained perpendicular magnetic recording medium has the same layer structure as that of the perpendicular magnetic recording medium shown in FIG. 2 except that a Pd—Si first nonmagnetic underlayer is formed instead of the Pd first nonmagnetic underlayer. Have. Next, when X-ray diffraction measurement was performed on the obtained perpendicular magnetic recording medium, a Ru (00.2) peak and a CoCrPt (00.2) peak were observed, but a Pd (111) peak was observed. could not.
RuおよびCoCrPtのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ4.2°(Ru)、5.7°(CoCrPt)であった。 When rocking curve measurement was performed on Ru and CoCrPt peaks, the half-widths of the peaks were 4.2 ° (Ru) and 5.7 ° (CoCrPt), respectively.
得られた垂直磁気記録媒体に対して、断面TEM測定を行い、比較の媒体の結晶構造を調べた。その結果、Pd−Si第一の非磁性下地層には、格子縞は観測されずほぼ非晶質状態であった。 A cross-sectional TEM measurement was performed on the obtained perpendicular magnetic recording medium, and the crystal structure of the comparative medium was examined. As a result, the Pd—Si first nonmagnetic underlayer was almost amorphous with no lattice fringes observed.
一方、Ru第二の非磁性下地層からCoCrPt−SiO2記録層にかけては格子縞が整然と並んでおり、エピタキシャル成長していることが分かった。 On the other hand, it was found that lattice stripes were regularly arranged from the Ru second nonmagnetic underlayer to the CoCrPt—SiO 2 recording layer, and epitaxial growth occurred.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。その結果、垂直磁気記録層は、およそ8ないし13nmの平均粒径を有する結晶粒子から形成されていることが分かった。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. . As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 8 to 13 nm.
実施例1と同様に記録再生特性の評価を行ったところ、SNRmが18.1dBであった。 When the recording / reproduction characteristics were evaluated in the same manner as in Example 1, the SNRm was 18.1 dB.
これにより、比較例9の従来の媒体よりも、実施例2の本発明の媒体の方が、
垂直磁気記録層の結晶粒子が微細でかつ結晶性が良好であり、また良好な記録再生特性を持つことが分かった。
Thereby, the medium of the present invention of Example 2 is more preferable than the conventional medium of Comparative Example 9.
It was found that the crystal grains of the perpendicular magnetic recording layer are fine and have good crystallinity and good recording / reproducing characteristics.
実施例3
Siターゲットの代わりに、Al−45at%Siターゲットを用いて非磁性シード層を形成すること以外は、実施例1と同様にして、垂直磁気記録媒体を作製した。
Example 3
A perpendicular magnetic recording medium was fabricated in the same manner as in Example 1 except that the nonmagnetic seed layer was formed using an Al-45 at% Si target instead of the Si target.
得られた垂直磁気記録媒体は、Siシード層の代わりにAlSiシード層が形成されていること以外は、図2に示す垂直磁気記録媒体と同様の構成を有する。 The obtained perpendicular magnetic recording medium has the same configuration as the perpendicular magnetic recording medium shown in FIG. 2 except that an AlSi seed layer is formed instead of the Si seed layer.
本発明の媒体に対して、X線回折測定を行った。 X-ray diffraction measurement was performed on the medium of the present invention.
Ru(00.2)ピークおよびCoCrPt(00.2)ピークを観測したが、Pd(111)ピークは観測できなかった。これらのピークに対してロッキングカーブ測定を行ったところ、ピークの半値幅はそれぞれ2.7°(Ru)、3.4°(CoCrPt)であった。これにより、垂直磁気記録層が良好な結晶性を有することがわかった。 A Ru (00.2) peak and a CoCrPt (00.2) peak were observed, but a Pd (111) peak could not be observed. When rocking curve measurement was performed on these peaks, the half-widths of the peaks were 2.7 ° (Ru) and 3.4 ° (CoCrPt), respectively. Thereby, it was found that the perpendicular magnetic recording layer had good crystallinity.
得られた垂直磁気記録媒体に対して、断面方向の透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の結晶構造を調べた。その結果、Pd第一の非磁性下地層は、はっきりと結晶格子縞が観測されていたが、その方向は一様ではなく、微結晶構造を取っていることがわかった。 The obtained perpendicular magnetic recording medium was subjected to transmission analytical electron microscope (TEM) measurement in the cross-sectional direction to examine the crystal structure of the medium of the present invention. As a result, crystal lattice fringes were clearly observed in the first Pd nonmagnetic underlayer, but the direction was not uniform, and it was found that the Pd first nonmagnetic underlayer had a microcrystalline structure.
Ru第二の非磁性下地層、CoCrPt−SiO2記録層は、結晶格子縞が膜面垂直方向に整然と並び、第二の非磁性下地層から記録層にかけて、エピタキシャル成長していることが分かった。 It was found that the Ru second nonmagnetic underlayer and the CoCrPt—SiO 2 recording layer had crystal lattice stripes arranged in an orderly manner in the direction perpendicular to the film surface and were epitaxially grown from the second nonmagnetic underlayer to the recording layer.
次に、得られた垂直磁気記録媒体の垂直磁気記録層に対して、透過型分析電子顕微鏡(TEM)測定を行い、本発明の媒体の垂直磁気記録層の結晶粒子の粒径分布を調べた。 Next, transmission analytical electron microscope (TEM) measurement was performed on the perpendicular magnetic recording layer of the obtained perpendicular magnetic recording medium, and the particle size distribution of the crystal grains of the perpendicular magnetic recording layer of the medium of the present invention was examined. .
その結果、垂直磁気記録層は、およそ4ないし7nmの平均粒径を有する結晶粒子から形成されていることが分かった。 As a result, it was found that the perpendicular magnetic recording layer was formed of crystal grains having an average grain size of about 4 to 7 nm.
また、実施例1と同様に記録再生特性の評価を行ったところ、SNRmが27.3dBであり、良好な特性を持つことが分かった。 Further, when the recording / reproducing characteristics were evaluated in the same manner as in Example 1, it was found that the SNRm was 27.3 dB, and the characteristics were good.
実施例4
本発明の媒体のSiシード層およびPd第一の非磁性下地層を形成する際に、DCマグネトロンスパッタリング中のAr雰囲気のガス圧を0.05Pa〜1.0Paの様々な圧力に変化させて製膜を行うこと以外は、実施例1と同様にして、垂直磁気記録媒体を作製した。
Example 4
When the Si seed layer and the Pd first nonmagnetic underlayer of the medium of the present invention are formed, the gas pressure in the Ar atmosphere during DC magnetron sputtering is changed to various pressures of 0.05 Pa to 1.0 Pa. A perpendicular magnetic recording medium was manufactured in the same manner as in Example 1 except that the film was formed.
得られた垂直磁気記録媒体は、図2に示す垂直磁気記録媒体と同様の構成を有する。本発明の媒体に対して、X線回折測定、および実施例1と同様に記録再生特性の評価を行った。記録層のピークの半値幅および、SNRmの結果を下記表1に示す。 The obtained perpendicular magnetic recording medium has the same configuration as the perpendicular magnetic recording medium shown in FIG. For the medium of the present invention, X-ray diffraction measurement and recording / reproduction characteristics were evaluated in the same manner as in Example 1. The full width at half maximum of the recording layer and the SNRm results are shown in Table 1 below.
上記表1の結果より、シード層および第一の非磁性下地層を作製する際の圧力として、0.5Pa以下で作製すると良好な特性を持つことが分かった。なお、実用的には、この圧力は、0.05Pa以上であることが好ましく、0.05Pa未満であると、安定してDCスパッタリングができなくなるため、適さない。 From the results of Table 1 above, it was found that when the seed layer and the first non-magnetic underlayer were produced at a pressure of 0.5 Pa or less, good characteristics were obtained. Practically, this pressure is preferably 0.05 Pa or more, and if it is less than 0.05 Pa, DC sputtering cannot be stably performed, which is not suitable.
実施例5
第一の非磁性下地層としてPdターゲットの代わりに、異なる組成を有する二層のPd−Si層を積層するためのターゲットを使用し、Siシード層を用いない以外は、実施例1と同様にして、垂直磁気記録媒体を作製した。
Example 5
Instead of the Pd target as the first nonmagnetic underlayer, a target for laminating two Pd—Si layers having different compositions is used, and the Si seed layer is not used. Thus, a perpendicular magnetic recording medium was manufactured.
二層のPd−Si層を積層するためのターゲットは、軟磁性側をPd−34at%Siターゲットとし、垂直磁気記録層側をPd−x at%Siターゲットとした。xは、3,5,7,10,13,17,20,26,34であるものを各々用意した。 The target for laminating two Pd—Si layers was a Pd-34 at% Si target on the soft magnetic side and a Pd-x at% Si target on the perpendicular magnetic recording layer side. Each of x was 3, 5, 7, 10, 13, 17, 20, 26, 34.
得られた垂直磁気記録媒体は、図4に示す垂直磁気記録媒体と同様の構成を有する。 The obtained perpendicular magnetic recording medium has a configuration similar to that of the perpendicular magnetic recording medium shown in FIG.
得られた媒体に対して、X線回折測定を行った。 X-ray diffraction measurement was performed on the obtained medium.
また、実施例1と同様に記録再生特性の評価を行った。 Further, the recording / reproducing characteristics were evaluated in the same manner as in Example 1.
垂直磁気記録層のピークの半値幅および、SNRmの結果を下記表2に示す。 Table 2 below shows the half width of the peak of the perpendicular magnetic recording layer and the SNRm result.
以上より、本願の媒体として、Pd−Si膜におけるSiの組成量が3ないし10at%において、良好な特性を持つことが分かった。 From the above, it was found that the medium of the present application has good characteristics when the Si content in the Pd—Si film is 3 to 10 at%.
1,11…非磁性基板、2,12…軟磁性裏打ち層、3,13…第一の非磁性下地層、4,14…第二の非磁性下地層、5,15…垂直磁気記録層、6,16…保護膜、7…バイアス付与層、8…非磁性シード層、10,20,32,50…垂直磁気記録媒体、30…垂直磁気記録装置、31…筐体、33…スピンドルモータ、34…磁気ヘッド、35…ヘッドアクチュエータ、36…回転軸、37…ボイスコイルモータ、38…ヘッドアンプ回路
DESCRIPTION OF
Claims (4)
非磁性基板上に形成された少なくとも一層の軟磁性層、
該軟磁性層上に形成され、粒径1〜3nmの結晶質の微粒子が集まった微細結晶構造を有し、第1のPd−Si層と、該第1のPd−Si層上に形成され、Si含有量が10at%未満である第2のPd−Si層とからなり、該第1のPd−Si層のSi含有量は、該第2のPd−Si層のSi含有量より多い第一の非磁性下地層、
該第一の非磁性下地層上に形成され、ルテニウムからなる第二の非磁性下地層、及び
該第二の非磁性下地層上に形成されたCoとPtを主成分として含有する垂直磁気記録層を具備することを特徴とする垂直磁気記録媒体。 Non-magnetic substrate,
At least one soft magnetic layer formed on a non-magnetic substrate;
Formed on the soft magnetic layer, having a fine crystal structure in which crystalline fine particles having a particle diameter of 1 to 3 nm are gathered, formed on the first Pd—Si layer and the first Pd—Si layer. A second Pd—Si layer having a Si content of less than 10 at%, wherein the Si content of the first Pd—Si layer is greater than the Si content of the second Pd—Si layer . A non-magnetic underlayer,
A second nonmagnetic underlayer made of ruthenium formed on the first nonmagnetic underlayer, and perpendicular magnetic recording containing Co and Pt as main components formed on the second nonmagnetic underlayer A perpendicular magnetic recording medium comprising a layer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007016637A JP4751344B2 (en) | 2007-01-26 | 2007-01-26 | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus |
US12/015,100 US8367230B2 (en) | 2007-01-26 | 2008-01-16 | Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus |
CNA2008100920037A CN101256779A (en) | 2007-01-26 | 2008-01-25 | Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007016637A JP4751344B2 (en) | 2007-01-26 | 2007-01-26 | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011030604A Division JP5075993B2 (en) | 2011-02-16 | 2011-02-16 | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008186493A JP2008186493A (en) | 2008-08-14 |
JP4751344B2 true JP4751344B2 (en) | 2011-08-17 |
Family
ID=39668352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007016637A Expired - Fee Related JP4751344B2 (en) | 2007-01-26 | 2007-01-26 | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US8367230B2 (en) |
JP (1) | JP4751344B2 (en) |
CN (1) | CN101256779A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4940417B2 (en) * | 2008-08-28 | 2012-05-30 | 株式会社東芝 | Magnetic storage device and magnetic storage medium |
US9412404B2 (en) | 2009-12-15 | 2016-08-09 | HGST Netherlands B.V. | Onset layer for perpendicular magnetic recording media |
JP4892073B2 (en) | 2010-03-30 | 2012-03-07 | 株式会社東芝 | Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus |
JP5701784B2 (en) * | 2012-01-16 | 2015-04-15 | 株式会社東芝 | Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
US9608197B2 (en) | 2013-09-18 | 2017-03-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US10454024B2 (en) | 2014-02-28 | 2019-10-22 | Micron Technology, Inc. | Memory cells, methods of fabrication, and memory devices |
US9281466B2 (en) | 2014-04-09 | 2016-03-08 | Micron Technology, Inc. | Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication |
US9269888B2 (en) * | 2014-04-18 | 2016-02-23 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9349945B2 (en) | 2014-10-16 | 2016-05-24 | Micron Technology, Inc. | Memory cells, semiconductor devices, and methods of fabrication |
US9768377B2 (en) | 2014-12-02 | 2017-09-19 | Micron Technology, Inc. | Magnetic cell structures, and methods of fabrication |
US10439131B2 (en) | 2015-01-15 | 2019-10-08 | Micron Technology, Inc. | Methods of forming semiconductor devices including tunnel barrier materials |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6221508B1 (en) | 1997-12-09 | 2001-04-24 | Hitachi, Ltd. | Magnetic recording media |
JP4626840B2 (en) | 2001-08-31 | 2011-02-09 | 富士電機デバイステクノロジー株式会社 | Perpendicular magnetic recording medium and manufacturing method thereof |
US6846582B2 (en) * | 2001-11-16 | 2005-01-25 | Hitachi Maxell, Ltd. | Magnetic recording medium, method for producing the same, and magnetic storage apparatus |
JP2003317230A (en) * | 2002-04-16 | 2003-11-07 | Ken Takahashi | Perpendicular magnetic recording medium, method for manufacturing the same, and magnetic recording device |
MY143045A (en) * | 2003-01-14 | 2011-02-28 | Showa Denko Kk | Magnetic recording medium, method of manufacturing therefor, and magnetic read/write apparatus |
JP4169663B2 (en) * | 2003-07-25 | 2008-10-22 | Hoya株式会社 | Perpendicular magnetic recording medium |
JP2005276367A (en) * | 2004-03-25 | 2005-10-06 | Toshiba Corp | Vertical magnetic recording medium and magnetic recording and reproducing device |
JP4557838B2 (en) * | 2005-08-17 | 2010-10-06 | 株式会社東芝 | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus |
-
2007
- 2007-01-26 JP JP2007016637A patent/JP4751344B2/en not_active Expired - Fee Related
-
2008
- 2008-01-16 US US12/015,100 patent/US8367230B2/en active Active
- 2008-01-25 CN CNA2008100920037A patent/CN101256779A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2008186493A (en) | 2008-08-14 |
US20080182131A1 (en) | 2008-07-31 |
US8367230B2 (en) | 2013-02-05 |
CN101256779A (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4751344B2 (en) | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus | |
JP4893853B2 (en) | Method for manufacturing perpendicular magnetic recording medium | |
JP4444182B2 (en) | Perpendicular magnetic recording medium tilted in the direction of easy magnetization, its manufacturing method, and magnetic recording / reproducing apparatus including the same | |
JP4580817B2 (en) | Perpendicular magnetic recording medium and perpendicular magnetic recording / reproducing apparatus | |
US7666531B2 (en) | Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus | |
JP4213001B2 (en) | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus | |
JP2005276367A (en) | Vertical magnetic recording medium and magnetic recording and reproducing device | |
JP4557880B2 (en) | Magnetic recording medium and magnetic recording / reproducing apparatus | |
JP2005032352A (en) | Magnetic recording medium using particle dispersion type film for base, method for manufacturing the same, and magnetic recording/reproducing device | |
JP4585214B2 (en) | Magnetic recording medium and magnetic recording / reproducing apparatus using the same | |
JP2005276364A (en) | Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device using the same | |
JP2006120231A (en) | Perpendicular magnetic recording medium | |
US20080292908A1 (en) | Perpendicular magnetic recording medium, method of manufacturing perpendicular magnetic recording medium, and magnetic recording apparatus | |
JP4557838B2 (en) | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus | |
JP5782819B2 (en) | Perpendicular magnetic recording medium | |
JP4951075B2 (en) | Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus using the same | |
US20140178714A1 (en) | Method and Manufacture Process for Exchange Decoupled First Magnetic Layer | |
JP4478834B2 (en) | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same | |
JP5075993B2 (en) | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus | |
JP5112534B2 (en) | Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus | |
JP2009004065A (en) | Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus | |
JP2010086611A (en) | Method of manufacturing perpendicular magnetic recording medium | |
JP2000195033A (en) | Magnetic storage medium | |
JP2006155862A (en) | Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus | |
JP2010153031A (en) | Magnetic recording medium, and magnetic recording and playback device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101001 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110520 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |