JP2006155862A - Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus - Google Patents

Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus Download PDF

Info

Publication number
JP2006155862A
JP2006155862A JP2005308322A JP2005308322A JP2006155862A JP 2006155862 A JP2006155862 A JP 2006155862A JP 2005308322 A JP2005308322 A JP 2005308322A JP 2005308322 A JP2005308322 A JP 2005308322A JP 2006155862 A JP2006155862 A JP 2006155862A
Authority
JP
Japan
Prior art keywords
magnetic recording
film
recording medium
manufacturing
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005308322A
Other languages
Japanese (ja)
Inventor
Kenji Shimizu
謙治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005308322A priority Critical patent/JP2006155862A/en
Publication of JP2006155862A publication Critical patent/JP2006155862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a magnetic recording medium capable of recording and reproducing information of high density and to provide a magnetic recording and reproducing apparatus provided with the magnetic recording medium. <P>SOLUTION: In the manufacturing method of the perpendicular magnetic recording medium having at least a backing layer, a base film and a perpendicular magnetic recording film on a non-magnetic substrate, the perpendicular magnetic recording film is formed by using a film having a granular structure containing at least Co, Pt and an oxide, and the perpendicular magnetic recording film is formed using a sputtering method on a condition that substrate temperature is set in a prescribed temperature range of 100 to 170°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気記録媒体の製造方法、およびその製造方法により得られた磁気記録媒体を用いた磁気記録再生装置に関するものである。   The present invention relates to a method for manufacturing a magnetic recording medium, and a magnetic recording / reproducing apparatus using the magnetic recording medium obtained by the manufacturing method.

垂直磁気記録方式は、従来、媒体の面内方向に向けられていた磁気記録層の磁化容易軸を媒体の垂直方向に向けることにより、記録ビット間の境界である磁化遷移領域付近での反磁界が小さくなるため、記録密度が高くなるほど静磁気的に安定となって熱揺らぎ耐性が向上することから、面記録密度の向上に適した方式である。   In the perpendicular magnetic recording method, the demagnetizing field in the vicinity of the magnetization transition region, which is the boundary between recording bits, is achieved by orienting the easy axis of the magnetic recording layer that has been oriented in the in-plane direction of the medium in the perpendicular direction of the medium. Therefore, the higher the recording density, the more stable the magnetic field and the higher the resistance to thermal fluctuation, so that the method is suitable for improving the surface recording density.

また、基板と垂直磁気記録膜との間に軟磁性材料からなる裏打ち層を設けた場合には、いわゆる垂直2層媒体として機能し、高い記録能力を得ることができる。このとき、軟磁性裏打ち層は磁気ヘッドからの記録磁界を還流させる役割を果たしており、記録再生効率を向上させることができる。   Further, when a backing layer made of a soft magnetic material is provided between the substrate and the perpendicular magnetic recording film, it functions as a so-called perpendicular two-layer medium, and high recording ability can be obtained. At this time, the soft magnetic underlayer plays a role of refluxing the recording magnetic field from the magnetic head, so that the recording / reproducing efficiency can be improved.

近年垂直磁気記録膜として、酸化物を添加したグラニュラー磁気記録膜が盛んに研究されている。この膜はCoCr合金では、基板温度を200℃以上の高温に加熱することで結晶粒界にCrを偏析させていたのに対して、グラニュラー膜は加熱なしで、CoCr以上に偏析構造をとることが可能であるという特徴を持っている。(例えば、特許文献1、特許文献2参照。)。
特開2003―178412号公報 特開2004―22138号公報
In recent years, a granular magnetic recording film to which an oxide is added has been actively studied as a perpendicular magnetic recording film. This film is a CoCr alloy, and Cr is segregated at the grain boundaries by heating the substrate temperature to 200 ° C. or higher, whereas the granular film has a segregation structure higher than that of CoCr without heating. It has the feature that is possible. (For example, refer to Patent Document 1 and Patent Document 2.)
Japanese Patent Laid-Open No. 2003-178212 JP 2004-22138 A

上記のように裏打ち層を用いた垂直磁気記録媒体が提案されているが、更なる高記録密度の磁気記録媒体を得るには不十分であり、この問題を解決しかつ安易に製造が可能な磁気記録媒体が要望されていた。
本発明は、上記事情に鑑みてなされたもので、垂直磁気記録膜の成膜時の基板温度を所定の範囲にすることで、高密度の情報の記録再生が可能な磁気記録媒体の製造方法、およびその磁気記録媒体を用いた磁気記録再生装置を提供することを目的とする。
Although a perpendicular magnetic recording medium using a backing layer has been proposed as described above, it is insufficient for obtaining a magnetic recording medium having a higher recording density, and this problem can be solved and easily manufactured. A magnetic recording medium has been desired.
The present invention has been made in view of the above circumstances, and a method of manufacturing a magnetic recording medium capable of recording and reproducing high-density information by setting the substrate temperature when forming a perpendicular magnetic recording film to a predetermined range. And a magnetic recording / reproducing apparatus using the magnetic recording medium.

上記の目的を達成するために、本発明は以下の構成を採用した。すなわち本発明は
(1) 非磁性基板上に少なくとも裏打ち層と下地膜と垂直磁気記録膜を形成する垂直磁気記録媒体の製造方法において、前記垂直磁気記録膜を少なくともCoとPtと酸化物を含むグラニュラー構造からなる膜で形成し、該垂直磁気記録膜を基板温度100℃以上170℃以下の条件でスパッタリング法を用いて形成する磁気記録媒体の製造方法、
(2) 前記酸化物としてSiO 、Cr、Y、TiO 、Ta、SiOからなる群から選ばれたいずれか1種を含む(1)に記載の磁気記録媒体の製造方法、
(3) 前記酸化物の含有量を15体積%以上40体積%以下とする(1)か(3)の何れか1つに記載の磁気記録媒体の製造方法、
(4) 前記非磁性基板の平均表面粗さ(Ra)を0.4nm以下にする(1)から(3)のいずれか1つに記載の磁気記録媒体の製造方法、
(5) 前記裏打ち層を非結晶質構造の層で形成する(1)から(4)の何れか1つに記載の磁気記録媒体の製造方法、
(6) 前記下地膜をRu膜で形成する(1)から(5)の何れか1つに記載の磁気記録媒体の製造方法、
(7) 少なくとも磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気ヘッドが単磁極ヘッドであり、磁気記録媒体が、(1)から(6)の何れか1つに記載の磁気記録媒体の製造方法で製造した磁気記録媒体である磁気記録再生装置、の各発明を提供する。
In order to achieve the above object, the present invention employs the following configuration. That is, the present invention provides: (1) In a method of manufacturing a perpendicular magnetic recording medium in which at least a backing layer, an underlayer, and a perpendicular magnetic recording film are formed on a nonmagnetic substrate, the perpendicular magnetic recording film contains at least Co, Pt, and an oxide. A method of manufacturing a magnetic recording medium, which is formed of a film having a granular structure, and wherein the perpendicular magnetic recording film is formed using a sputtering method under a substrate temperature of 100 ° C. or more and 170 ° C. or less,
(2) The magnetic recording according to (1), wherein the oxide includes any one selected from the group consisting of SiO 2 , Cr 2 O 3 , Y 2 O 3 , TiO 2 , Ta 2 O 5 , and SiO. Medium manufacturing method,
(3) The method for producing a magnetic recording medium according to any one of (1) and (3), wherein the content of the oxide is 15% by volume to 40% by volume.
(4) The method of manufacturing a magnetic recording medium according to any one of (1) to (3), wherein an average surface roughness (Ra) of the nonmagnetic substrate is set to 0.4 nm or less.
(5) The method for manufacturing a magnetic recording medium according to any one of (1) to (4), wherein the backing layer is formed of a layer having an amorphous structure.
(6) The method for manufacturing a magnetic recording medium according to any one of (1) to (5), wherein the base film is formed of a Ru film.
(7) A magnetic recording / reproducing apparatus comprising at least a magnetic recording medium and a magnetic head for recording / reproducing information on the magnetic recording medium, wherein the magnetic head is a single pole head, and the magnetic recording medium is (1) To (6), each invention of a magnetic recording / reproducing apparatus which is a magnetic recording medium manufactured by the method for manufacturing a magnetic recording medium according to any one of (6) is provided.

本発明によれば、非磁性基板上に少なくとも裏打ち層と下地膜と垂直磁気記録膜を形成する垂直磁気記録媒体の製造方法において、前記垂直磁気記録膜が少なくともCoとPtと酸化物を含むグラニュラー構造で形成し、垂直磁気記録膜を基板温度100℃以上170℃以下の条件でスパッタリング法を用いて形成するので、熱揺らぎが発生することはなく、高密度の情報の記録再生が可能な磁気記録媒体を提供できる。また、その高密度の情報の記録再生が可能な磁気記録媒体を使用した磁気記録再生装置を提供することができる。   According to the present invention, in a method for manufacturing a perpendicular magnetic recording medium in which at least a backing layer, an underlayer film, and a perpendicular magnetic recording film are formed on a nonmagnetic substrate, the perpendicular magnetic recording film includes a granular material containing at least Co, Pt, and an oxide. Since a perpendicular magnetic recording film is formed by a sputtering method under a substrate temperature of 100 ° C. or more and 170 ° C. or less, there is no thermal fluctuation, and magnetic recording capable of recording / reproducing high-density information is possible. A recording medium can be provided. Further, it is possible to provide a magnetic recording / reproducing apparatus using the magnetic recording medium capable of recording / reproducing the high-density information.

図1は、本発明の磁気記録媒体の一例を示すものである。ここに示されている磁気記録媒体10は、非磁性基板1上に、裏打ち層として第1軟磁性膜2と、Ru膜3と、第2軟磁性膜4、さらに配向制御膜5と、下地膜6と、垂直磁気記録膜7と、保護膜8と潤滑膜9とが順次形成された構成となっている。
非磁性基板としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。
ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。
FIG. 1 shows an example of a magnetic recording medium of the present invention. A magnetic recording medium 10 shown here includes a first soft magnetic film 2, a Ru film 3, a second soft magnetic film 4, and an orientation control film 5 as a backing layer on a nonmagnetic substrate 1. The base film 6, the perpendicular magnetic recording film 7, the protective film 8, and the lubricating film 9 are sequentially formed.
As the nonmagnetic substrate, a metal substrate made of a metal material such as aluminum or an aluminum alloy may be used, or a nonmetal substrate made of a nonmetal material such as glass, ceramic, silicon, silicon carbide, or carbon may be used. .
As the glass substrate, there are amorphous glass and crystallized glass, and general-purpose soda lime glass and aluminosilicate glass can be used as the amorphous glass. Further, as the crystallized glass, lithium-based crystallized glass can be used.

非磁性基板は、平均表面粗さRaが0.4nm以下、好ましくは0.3nm以下であることが好ましい。平均表面粗さが上記範囲である場合、垂直磁気記録膜の成膜を、本発明の基板温度でおこなったとき、より特性の改善を得ることができるためである。また、平均表面粗さRaは0.4nm以下であることが、ヘッドを低浮上させた高記録密度記録に適している点から望ましい。
また、表面の微小うねりWaが0.3nm以下、より好ましくは0.25nm以下であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。
The nonmagnetic substrate has an average surface roughness Ra of 0.4 nm or less, preferably 0.3 nm or less. This is because, when the average surface roughness is in the above range, the characteristics can be further improved when the perpendicular magnetic recording film is formed at the substrate temperature of the present invention. Further, the average surface roughness Ra is preferably 0.4 nm or less from the viewpoint of being suitable for high recording density recording with the head flying low.
Further, the surface waviness Wa of the surface is preferably 0.3 nm or less, more preferably 0.25 nm or less from the viewpoint of being suitable for high recording density recording with the head flying low.

第1及び第2の軟磁性膜は軟磁性材料からなるもので、この材料としてはFe、Co、Niを含む材料を挙げることができる。この材料としては、FeCo合金(FeCoB、FeCoSiB、FeCoZr、FeCoZrB、FeCoZrBCuなど)、FeTa合金(FeTaN、FeTaCなど)、Co合金(CoTaZr、CoZrNb、CoBなど)を挙げることができる。
軟磁性膜は、アモルファス構造であることが特に好ましい。アモルファス構造とすることで、その上に設けられた下地膜の粒径の肥大化、配向の悪化などの悪影響を及ぼすことが無いためである。さらに、アモルファス構造とすることで、表面粗さRaが大きくなることを防ぎ、ヘッドの浮上量を低減することが可能となり、さらに高記録密度化が可能となるためである。
軟磁性膜の保磁力Hcは30(Oe)以下、好ましくは10(Oe)以下とするのが好ましい。なお、1(Oe)は、約79A/mである。
軟磁性膜の飽和磁束密度Bsは、1.0T以上、好ましくは1.3T以上とするのが好ましい。
The first and second soft magnetic films are made of a soft magnetic material, and examples of the material include materials containing Fe, Co, and Ni. Examples of this material include FeCo alloys (FeCoB, FeCoSiB, FeCoZr, FeCoZrB, FeCoZrBCu, etc.), FeTa alloys (FeTaN, FeTaC, etc.), and Co alloys (CoTaZr, CoZrNb, CoB, etc.).
It is particularly preferable that the soft magnetic film has an amorphous structure. This is because the amorphous structure does not adversely affect the grain size of the underlying film provided on the amorphous structure and the deterioration of the orientation. Furthermore, by using an amorphous structure, it is possible to prevent the surface roughness Ra from increasing, to reduce the flying height of the head, and to further increase the recording density.
The coercive force Hc of the soft magnetic film is 30 (Oe) or less, preferably 10 (Oe) or less. Note that 1 (Oe) is about 79 A / m.
The saturation magnetic flux density Bs of the soft magnetic film is 1.0T or more, preferably 1.3T or more.

裏打ち層は少なくとも2層の軟磁性膜と2層の軟磁性膜の間にRuまたはReが設けられた構成からなることが好ましい。軟磁性膜の間にRu、Reを設け、所定の厚さに設定することで、上下に設けられた軟磁性膜を反強磁性結合させることができるためである。
このような構成とすることで、垂直媒体特有の問題であるWATE(Wide Area Track Erasure)の現象をより改善することが可能となる。
裏打ち層を構成する軟磁性膜の総膜厚は20nm以上120nm以下、好ましくは30nm以上100nm以下であることが好ましい。軟磁性膜の総膜厚が20nm未満であるとOW特性が低下するために好ましくない。120nmを超えると生産性を大きく悪化させるために好ましくない。
軟磁性膜の形成方法としては、スパッタリング法を用いることができる。
裏打ち層を形成する際に、半径方向に磁界を与えた状態で成膜することもできる。
The backing layer preferably has a structure in which Ru or Re is provided between at least two soft magnetic films and two soft magnetic films. This is because by providing Ru and Re between the soft magnetic films and setting them to a predetermined thickness, the soft magnetic films provided above and below can be antiferromagnetically coupled.
By adopting such a configuration, it becomes possible to further improve the phenomenon of WATE (Wide Area Track Erasure), which is a problem peculiar to vertical media.
The total thickness of the soft magnetic film constituting the backing layer is preferably 20 nm or more and 120 nm or less, and preferably 30 nm or more and 100 nm or less. If the total thickness of the soft magnetic film is less than 20 nm, the OW characteristics are deteriorated. If it exceeds 120 nm, productivity is greatly deteriorated, which is not preferable.
As a method for forming the soft magnetic film, a sputtering method can be used.
When the backing layer is formed, the film can be formed in a state where a magnetic field is applied in the radial direction.

配向制御膜は下地膜と共に、その上に設けられる垂直磁気記録膜の配向や結晶サイズを制御するためのものである。配向制御膜に用いられる材料は、六方細密構造(hcp構造)または面心立方構造(fcc構造)を有する結晶構造であることが好ましい。fcc構造以外の構造(例えば、体心立方構造(bcc構造)やアモルファス構造)であると、垂直磁気記録膜の配向が不十分となり、その結果、SNRの低下や保磁力の低下を生じるので好ましくない。配向制御膜としては、Pt、Pd、NiCr、NiFeCr、Mgなどを挙げることができる。
配向制御膜の膜厚は1nm以上12nm以下であることが好ましい。配向制御膜が1nm未満であると、配向制御膜としての効果が不十分となり、粒径の微細化の効果を得ることができず、また配向も悪化するので好ましくない。また、配向制御膜の厚さが12nmを超えると、記録再生時における磁気ヘッドと軟磁性裏打ち層の距離が大きくなるため、OW特性や再生信号の分解能が低下するため好ましくない。
The orientation control film is used to control the orientation and crystal size of the perpendicular magnetic recording film provided on the underlying film. The material used for the orientation control film is preferably a crystal structure having a hexagonal close-packed structure (hcp structure) or a face-centered cubic structure (fcc structure). A structure other than the fcc structure (for example, a body-centered cubic structure (bcc structure) or an amorphous structure) is preferable because the orientation of the perpendicular magnetic recording film becomes insufficient, resulting in a decrease in SNR and a decrease in coercive force. Absent. Examples of the orientation control film include Pt, Pd, NiCr, NiFeCr, Mg, and the like.
The thickness of the orientation control film is preferably 1 nm or more and 12 nm or less. When the orientation control film is less than 1 nm, the effect as the orientation control film becomes insufficient, the effect of reducing the particle size cannot be obtained, and the orientation deteriorates, which is not preferable. On the other hand, if the thickness of the orientation control film exceeds 12 nm, the distance between the magnetic head and the soft magnetic backing layer at the time of recording / reproducing increases, which is not preferable because the OW characteristics and the resolution of the reproduced signal are lowered.

下地膜としてはRuを用いることが好ましい。
下地膜として、粒径微細化、配向性向上の目的で添加元素を加えてもよい。
下地膜の膜厚は3nm以上25nm以下であることが好ましい。下地膜が3nm未満であると、結晶成長が不十分になり下地膜としての効果が不十分となるため好ましくない。
また、下地膜の厚さが25nmを超えると、記録再生時における磁気ヘッドと軟磁性裏打ち層の距離が大きくなるため、OW特性や再生信号の分解能が低下するため好ましくない。
Ru is preferably used as the base film.
As the base film, an additive element may be added for the purpose of reducing the grain size and improving the orientation.
The film thickness of the base film is preferably 3 nm or more and 25 nm or less. If the base film is less than 3 nm, crystal growth is insufficient and the effect as the base film becomes insufficient, which is not preferable.
On the other hand, if the thickness of the underlying film exceeds 25 nm, the distance between the magnetic head and the soft magnetic backing layer at the time of recording / reproducing increases, which is not preferable because the OW characteristics and the resolution of the reproduced signal are lowered.

垂直磁気記録膜は磁化容易軸が基板面に対し垂直方向に有している。構成元素としては、少なくともCoとPtと酸化物を含んでおり、さらにSNR特性改善などの目的でCr、B、Cu、Ta、Zr、Mnなどの元素を添加することもできる。
垂直磁気記録膜を構成する酸化物としては、SiO 、Cr、Y、TiO、Ta、SiOを挙げることができる。酸化物の体積率は15〜40体積%であることが好ましい。酸化物の体積率が15体積%未満であると、SNR特性が不十分となるため好ましくない。酸化物の体積率が40体積%を超えると、高記録密度に対応するだけの保磁力を得ることができないため好ましくない。
The perpendicular magnetic recording film has an easy axis of magnetization perpendicular to the substrate surface. Constituent elements include at least Co, Pt, and oxide, and further elements such as Cr, B, Cu, Ta, Zr, and Mn can be added for the purpose of improving SNR characteristics.
Examples of the oxide constituting the perpendicular magnetic recording film include SiO 2 , Cr 2 O 3 , Y 2 O 3 , TiO 2 , Ta 2 O 5 , and SiO. The volume ratio of the oxide is preferably 15 to 40% by volume. If the volume ratio of the oxide is less than 15% by volume, the SNR characteristic becomes insufficient, which is not preferable. When the volume ratio of the oxide exceeds 40% by volume, it is not preferable because a coercive force sufficient for a high recording density cannot be obtained.

本発明で使用する垂直磁気記録膜は磁性結晶粒の周囲を非磁性非金属物質である酸化物で囲んだ構造をもつ、いわゆるグラニュラー構造をなしている。グラニュラー磁性膜は、非磁性非金属の粒界相が磁性粒子を物理的に分離するため、磁性粒子間の磁気的な相互作用が低下し、記録ビットの遷移領域に生じるジグザグ磁壁の形成を抑制するので、低ノイズ特性が得られる。また、このようなグラニュラー磁気記録層においては、粒界相として用いられる非磁性非金属の物質は、磁性粒子間の相互作用を低減することが可能である。   The perpendicular magnetic recording film used in the present invention has a so-called granular structure in which a magnetic crystal grain is surrounded by an oxide which is a nonmagnetic nonmetallic substance. In the granular magnetic film, the nonmagnetic nonmetallic grain boundary phase physically separates the magnetic particles, reducing the magnetic interaction between the magnetic particles and suppressing the formation of zigzag domain walls in the transition region of the recording bit. Therefore, low noise characteristics can be obtained. In such a granular magnetic recording layer, a nonmagnetic nonmetallic substance used as a grain boundary phase can reduce the interaction between magnetic grains.

垂直磁気記録膜の成膜時の基板温度は、100℃以上170℃以下であることが好ましい。基板温度と保磁力およびSNRの関係を図2に示す。図2より、100℃未満の基板温度でも、相応の保磁力とSNRが得られていることがわかる。しかしながら、温度を上記範囲にすることで、保磁力の増大が生じている。一般的に、偏析構造が進むと磁性粒子の孤立化が促進され保磁力が増大する。成膜温度を上記範囲とすることで、偏析が促進され、その結果、SNRが改善したと考えられる。また170℃を超えると、急激に保磁力およびSNRの低下が生じるので好ましくない。   The substrate temperature when forming the perpendicular magnetic recording film is preferably 100 ° C. or higher and 170 ° C. or lower. FIG. 2 shows the relationship between the substrate temperature, the coercive force, and the SNR. FIG. 2 shows that the corresponding coercive force and SNR are obtained even at a substrate temperature of less than 100.degree. However, when the temperature is in the above range, the coercive force is increased. In general, as the segregation structure advances, the isolation of magnetic particles is promoted and the coercive force increases. By setting the film forming temperature within the above range, segregation is promoted, and as a result, the SNR is considered to be improved. On the other hand, when the temperature exceeds 170 ° C., the coercive force and SNR are rapidly reduced, which is not preferable.

垂直磁気記録膜のニュークリエーション磁界(−Hn)は1.5kOe以上であることが好ましい。−Hnが1.5kOe未満であると、熱揺らぎが発生するので好ましくない。
垂直磁気記録膜の厚さは6〜18nmであることが好ましい。垂直磁気記録膜の厚さがこの範囲であると、十分な出力を確保することができ、OW特性の悪化が生じないために好ましい。
垂直磁気記録膜は、単層構造とすることもできるし、組成の異なる材料からなる2層以上の構造とすることもできる。
The nucleation magnetic field (-Hn) of the perpendicular magnetic recording film is preferably 1.5 kOe or more. If -Hn is less than 1.5 kOe, thermal fluctuations are not preferable.
The thickness of the perpendicular magnetic recording film is preferably 6 to 18 nm. When the thickness of the perpendicular magnetic recording film is within this range, it is preferable because sufficient output can be secured and OW characteristics do not deteriorate.
The perpendicular magnetic recording film can have a single layer structure, or can have a structure of two or more layers made of materials having different compositions.

保護膜は垂直磁気記録膜の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのもので、従来公知の材料を使用でき、例えばC、SiO、ZrOを含むものが使用可能である。保護層の厚さは、1nm以上5nm以下とするのがヘッドと媒体の距離を小さくできるので高記録密度の点から望ましい。 The protective film prevents corrosion of the perpendicular magnetic recording film and prevents damage to the surface of the medium when the magnetic head comes into contact with the medium. Conventionally known materials can be used. For example, C, SiO 2 , ZrO 2 can be used. What is included can be used. The thickness of the protective layer is preferably 1 nm or more and 5 nm or less because the distance between the head and the medium can be reduced, which is desirable from the viewpoint of high recording density.

潤滑膜には従来公知の材料、例えばパーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用いるのが好ましい。
基板加熱の方法に関しては、特に方法は問わない。垂直磁気記録膜成膜時の基板温度が所定の範囲になるようであれば、いかなる方法でも構わない。例えば、裏打ち膜成膜や垂直磁気記録膜の成膜前にヒーターで加熱をおこなうこともできるし、チャンバ内にヒーターを配置することで徐々に加熱することもできる。
It is preferable to use a conventionally known material such as perfluoropolyether, fluorinated alcohol, or fluorinated carboxylic acid for the lubricating film.
The method for heating the substrate is not particularly limited. Any method may be used as long as the substrate temperature at the time of forming the perpendicular magnetic recording film is within a predetermined range. For example, heating can be performed with a heater before the formation of the backing film or the perpendicular magnetic recording film, or the heating can be gradually performed by disposing the heater in the chamber.

本発明の製造方法によって得られる磁気記録媒体は、非磁性基板上に、少なくとも裏打ち層と下地膜と垂直磁気記録膜を有する垂直磁気記録媒体であって、前記垂直磁気記録膜が少なくともCoとPtと酸化物を含むグラニュラー構造からなり、該垂直磁気記録膜が基板温度100℃以上170℃以下の条件でスパッタリング法を用いて形成されているので、高密度の情報の記録再生が可能となる。   The magnetic recording medium obtained by the production method of the present invention is a perpendicular magnetic recording medium having at least a backing layer, a base film, and a perpendicular magnetic recording film on a nonmagnetic substrate, and the perpendicular magnetic recording film comprises at least Co and Pt. Since the perpendicular magnetic recording film is formed using a sputtering method under a substrate temperature of 100 ° C. or more and 170 ° C. or less, high-density information recording / reproduction is possible.

図3は、上記本発明の製造方法により得られた磁気記録媒体を用いた磁気記録再生装置の例を示すものである。ここに示す磁気記録再生装置は、本発明の製造方法により得られた磁気記録媒体10と、磁気記録媒体10を回転駆動させる媒体駆動部11と、磁気記録媒体10に情報を記録再生する磁気ヘッド12と、ヘッド駆動部13と、記録再生信号処理系14とを備えている。記録再生信号処理系14は、入力されたデータを処理して記録信号を磁気ヘッド12に送ったり、磁気ヘッド12からの再生信号を処理してデータを出力することができるようになっている。   FIG. 3 shows an example of a magnetic recording / reproducing apparatus using the magnetic recording medium obtained by the manufacturing method of the present invention. The magnetic recording / reproducing apparatus shown here includes a magnetic recording medium 10 obtained by the manufacturing method of the present invention, a medium driving unit 11 that rotationally drives the magnetic recording medium 10, and a magnetic head that records and reproduces information on the magnetic recording medium 10. 12, a head driving unit 13, and a recording / reproducing signal processing system 14. The recording / reproducing signal processing system 14 can process the input data and send the recording signal to the magnetic head 12, or can process the reproducing signal from the magnetic head 12 and output the data.

以下、実施例を示して本発明の作用効果を明確にする。ただし、本発明は以下の実施例に限定されるものではない。
(実施例1)
ガラス基板(MYG社製アモルファス基板MEL、直径2.5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C−3010)の成膜チャンバ内に収容して、到達真空度1×10−5Paとなるまで成膜チャンバ内を排気した。基板加熱をおこなった後、この基板上に第1の軟磁性膜として89Co−4Zr−7Nb(Co含有量89at%、Zr含有量4at%、Nb含有量7at%)を50nm、Ru膜を0.8nm、第2の軟磁性膜として89Co4Zr−7Nbを50nm成膜して3層構造からなる裏打ち層を形成した。これら裏打ち層の結晶構造がアモルファス構造であることをXRDで確認した。
次いで、配向制御膜として60Ni−35Cr−5Bを5nm、下地膜としてRuを15nm、垂直磁気記録膜として65Co−10Cr−15Pt−10SiOを12nm成膜した。垂直磁気記録膜成膜時の基板温度は120℃であることを、放射温度計を用いて計測した。
次いで、CVD法により厚さ4nmのC保護膜を形成した。
次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑膜を形成し、垂直磁気記録媒体を得た。
Hereinafter, an example is shown and the operation effect of the present invention is clarified. However, the present invention is not limited to the following examples.
Example 1
A glass substrate (MYG amorphous substrate MEL, diameter 2.5 inches) is housed in a film formation chamber of a DC magnetron sputtering apparatus (Anelva C-3010), and the ultimate vacuum is 1 × 10 −5 Pa. The inside of the film forming chamber was evacuated. After the substrate was heated, 89Co-4Zr-7Nb (Co content: 89 at%, Zr content: 4 at%, Nb content: 7 at%) as a first soft magnetic film on the substrate was 50 nm, and the Ru film was reduced to 0. A backing layer having a three-layer structure was formed by depositing 8 nm of 89Co4Zr-7Nb as the second soft magnetic film to a thickness of 50 nm. It was confirmed by XRD that the crystal structure of these backing layers was an amorphous structure.
Then, 5 nm of 60Ni-35Cr-5B as an orientation control film was 15nm and Ru as the base film, a 65Co-10Cr-15Pt-10SiO 2 as perpendicular magnetic recording film is 12nm deposited. The substrate temperature at the time of forming the perpendicular magnetic recording film was measured using a radiation thermometer.
Next, a C protective film having a thickness of 4 nm was formed by a CVD method.
Next, a lubricating film made of perfluoropolyether was formed by a dipping method to obtain a perpendicular magnetic recording medium.

(比較例1)
基板加熱をおこなわなかったこと以外は、実施例1に準じて磁気記録媒体を作製した。
(Comparative Example 1)
A magnetic recording medium was manufactured according to Example 1 except that the substrate was not heated.

(実施例2〜4、比較例2、3)
垂直磁気記録膜成膜時の基板温度を変えたこと以外は実施例1に準じて磁気記録媒体を作製した。
これら実施例および比較例の磁気記録媒体について、膜構造および記録再生特性を評価した。膜構造の評価には平面TEM観察を用い、垂直磁気記録膜の粒径を調べた。記録再生特性の評価は、米国GUZIK社製リードライトアナライザRWA1632、およびスピンスタンドS1701MPを用いて測定した。
記録再生特性の評価には、書き込みをシングルポール磁極、再生部にGMR素子を用いたヘッドを用いて、記録周波数条件を線記録密度900kFCIとして測定した。静磁気特性はKerr効果測定装置(ネオアーク社製)を用いて測定した。評価結果を表1に示す。
(Examples 2 to 4, Comparative Examples 2 and 3)
A magnetic recording medium was manufactured according to Example 1 except that the substrate temperature was changed during the formation of the perpendicular magnetic recording film.
The film structures and recording / reproducing characteristics of the magnetic recording media of these examples and comparative examples were evaluated. For evaluation of the film structure, the particle size of the perpendicular magnetic recording film was examined by using planar TEM observation. The recording / reproduction characteristics were evaluated using a read / write analyzer RWA1632 manufactured by GUZIK, USA, and a spin stand S1701MP.
For evaluation of the recording / reproducing characteristics, the recording frequency condition was measured at a linear recording density of 900 kFCI using a single pole magnetic pole for writing and a head using a GMR element for the reproducing portion. The magnetostatic characteristics were measured using a Kerr effect measuring device (manufactured by Neoarc). The evaluation results are shown in Table 1.

Figure 2006155862
Figure 2006155862

実施例1〜4は、比較例1および2に比較して配向、粒径は若干大きくなるが、保磁力およびSNRが上回ることが確認できた。この結果より、酸化物の偏析促進がSNRの改善をもたらしていると推測できる。比較例3は保磁力が大幅に低下した。酸化物の偏析が阻害されたことが原因と推測できる。   In Examples 1 to 4, the orientation and particle size were slightly larger than those in Comparative Examples 1 and 2, but it was confirmed that the coercive force and SNR were higher. From this result, it can be presumed that the segregation promotion of the oxide brings about the improvement of SNR. In Comparative Example 3, the coercive force significantly decreased. It can be inferred that the segregation of the oxide was inhibited.

(実施例5〜9)
垂直磁気記録膜の酸化物の材料を変えたこと以外は実施例1に録媒体を作製した。評価結果を表2に示す。
(Examples 5 to 9)
A recording medium was manufactured in Example 1 except that the material of the oxide of the perpendicular magnetic recording film was changed. The evaluation results are shown in Table 2.

Figure 2006155862
Figure 2006155862

酸化物の材料がSiO、Cr、Y、TiO、Ta、SiOのいずれかである実施例は優れた特性を得ることができた。 Examples in which the oxide material is any one of SiO 2 , Cr 2 O 3 , Y 2 O 3 , TiO 2 , Ta 2 O 5 , and SiO were able to obtain excellent characteristics.

(実施例10,11)
垂直磁気記録膜の組成を変えたこと以外は実施例1に準じて磁気記録媒体を作製した。
評価結果を表3に示す。
(Examples 10 and 11)
A magnetic recording medium was manufactured according to Example 1 except that the composition of the perpendicular magnetic recording film was changed.
The evaluation results are shown in Table 3.

Figure 2006155862
Figure 2006155862

垂直磁気記録膜に含まれる酸化物が15体積%以上40体積%以下である実施例は、優れた特性を得ることができた。   The example in which the oxide contained in the perpendicular magnetic recording film was 15 volume% or more and 40 volume% or less was able to obtain excellent characteristics.

(実施例12〜17)
裏打ち層を構成する軟磁性膜の材料を変えた以外は実施例1に準じて磁気記録媒体を作製した。評価結果を表4に示す。
(Examples 12 to 17)
A magnetic recording medium was produced according to Example 1 except that the material of the soft magnetic film constituting the backing layer was changed. The evaluation results are shown in Table 4.

Figure 2006155862
Figure 2006155862

裏打ち層がアモルファス構造であることが確認した実施例12〜16は、優れた特性を得ることができた。結晶構造である実施例17は実施例12〜16と比較すると特性が劣ることがわかる。   In Examples 12 to 16 in which the backing layer was confirmed to have an amorphous structure, excellent characteristics could be obtained. It can be seen that Example 17, which has a crystal structure, is inferior in characteristics as compared with Examples 12-16.

上記のようにして得られた磁気記録媒体を使用して、図3に示す構造の磁気記録再生装置を組み立てた。
本発明の磁気記録再生装置は、SNR特性やOW特性に優れていて、高密度の情報の記録再生が可能な磁気記録再生装置となった。
Using the magnetic recording medium obtained as described above, a magnetic recording / reproducing apparatus having the structure shown in FIG. 3 was assembled.
The magnetic recording / reproducing apparatus of the present invention has excellent SNR characteristics and OW characteristics, and has become a magnetic recording / reproducing apparatus capable of recording / reproducing high-density information.

本発明の垂直磁気記録媒体の断面構造を示す図である。It is a figure which shows the cross-section of the perpendicular magnetic recording medium of this invention. 基板温度と保持力との関係を示す図である。It is a figure which shows the relationship between a substrate temperature and holding power. 本発明の垂直磁気記録再生装置の構造を示す図である。It is a figure which shows the structure of the perpendicular magnetic recording / reproducing apparatus of this invention.

符号の説明Explanation of symbols

1・・・・・非磁性基板、2・・・・・第1軟磁性膜、3・・・・・Ru膜、4・・・・・第2軟磁性膜、5・・・・・配向制御膜、6・・・・・下地層、7・・・・・垂直磁気記録膜、8・・・・・保護層、9・・・・・潤滑膜、10・・・・・磁気記録媒体、11・・・・・媒体駆動部、12・・・・・磁気ヘッド、13・・・・・ヘッド駆動部、14・・・・・記録再生信号系
DESCRIPTION OF SYMBOLS 1 ... Nonmagnetic substrate, 2 ... 1st soft magnetic film, 3 ... Ru film, 4 ... 2nd soft magnetic film, 5 ... Orientation Control film, 6... Underlayer, 7... Perpendicular magnetic recording film, 8... Protective layer, 9... Lubricating film, 10. 11... Media drive unit, 12... Magnetic head, 13... Head drive unit, 14.

Claims (7)

非磁性基板上に少なくとも裏打ち層と下地膜と垂直磁気記録膜を形成する垂直磁気記録媒体の製造方法において、前記垂直磁気記録膜を少なくともCoとPtと酸化物を含むグラニュラー構造からなる膜で形成し、該垂直磁気記録膜を基板温度100℃以上170℃以下の条件でスパッタリング法を用いて形成することを特徴とする磁気記録媒体の製造方法。   In a method of manufacturing a perpendicular magnetic recording medium in which at least a backing layer, an underlayer, and a perpendicular magnetic recording film are formed on a nonmagnetic substrate, the perpendicular magnetic recording film is formed of a film having a granular structure containing at least Co, Pt, and an oxide. And forming the perpendicular magnetic recording film using a sputtering method under a substrate temperature of 100 ° C. or higher and 170 ° C. or lower. 前記酸化物としてSiO 、Cr、Y、TiO 、Ta、SiOからなる群から選ばれたいずれか1種を含むことを特徴とする請求項1に記載の磁気記録媒体の製造方法。 2. The oxide according to claim 1, wherein the oxide includes any one selected from the group consisting of SiO 2 , Cr 2 O 3 , Y 2 O 3 , TiO 2 , Ta 2 O 5 , and SiO. A method of manufacturing a magnetic recording medium. 前記酸化物の含有量を15体積%以上40体積%以下とすることを特徴とする請求項1または請求項2に記載の磁気記録媒体の製造方法。   3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the content of the oxide is 15 volume% or more and 40 volume% or less. 前記非磁性基板の平均表面粗さRaを0.4nm以下にすることを特徴とする請求項1から請求項3のいずれか1項に記載の磁気記録媒体の製造方法。   4. The method of manufacturing a magnetic recording medium according to claim 1, wherein an average surface roughness Ra of the nonmagnetic substrate is set to 0.4 nm or less. 5. 前記裏打ち層を非結晶質構造の層で形成することを特徴とする請求項1から請求項4の何れか1項に記載の磁気記録媒体の製造方法。   The method for manufacturing a magnetic recording medium according to claim 1, wherein the backing layer is formed of a layer having an amorphous structure. 前記下地膜をRu膜で形成することを特徴とする請求項1から請求項5の何れか1項に記載の磁気記録媒体の製造方法。   The method for manufacturing a magnetic recording medium according to claim 1, wherein the base film is formed of a Ru film. 少なくとも磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気ヘッドが単磁極ヘッドであり、磁気記録媒体が、請求項1から請求項6の何れか1項に記載の磁気記録媒体の製造方法で製造した磁気記録媒体であることを特徴とする磁気記録再生装置。

A magnetic recording / reproducing apparatus comprising at least a magnetic recording medium and a magnetic head for recording / reproducing information on the magnetic recording medium, wherein the magnetic head is a single pole head, and the magnetic recording medium is claimed in claims 1 to 4. A magnetic recording / reproducing apparatus manufactured by the method for manufacturing a magnetic recording medium according to claim 6.

JP2005308322A 2004-10-29 2005-10-24 Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus Pending JP2006155862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308322A JP2006155862A (en) 2004-10-29 2005-10-24 Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004316223 2004-10-29
JP2005308322A JP2006155862A (en) 2004-10-29 2005-10-24 Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus

Publications (1)

Publication Number Publication Date
JP2006155862A true JP2006155862A (en) 2006-06-15

Family

ID=36633926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308322A Pending JP2006155862A (en) 2004-10-29 2005-10-24 Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus

Country Status (1)

Country Link
JP (1) JP2006155862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935147B1 (en) * 2007-05-15 2010-01-06 후지쯔 가부시끼가이샤 Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184624A (en) * 1999-10-05 2001-07-06 Ohara Inc Glass ceramic substrate for information recording medium
JP2004280949A (en) * 2003-03-14 2004-10-07 Fuji Electric Device Technology Co Ltd Vertical magnetic recording medium and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184624A (en) * 1999-10-05 2001-07-06 Ohara Inc Glass ceramic substrate for information recording medium
JP2004280949A (en) * 2003-03-14 2004-10-07 Fuji Electric Device Technology Co Ltd Vertical magnetic recording medium and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935147B1 (en) * 2007-05-15 2010-01-06 후지쯔 가부시끼가이샤 Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
JP4470881B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP4219941B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2011248969A (en) Perpendicular magnetic disk
JP2005044464A (en) Perpendicular magnetic recording medium
JP4745421B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
WO2006134952A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2009211781A (en) Method of manufacturing perpendicular magnetic recording medium
JP4864391B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP4611847B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2008192249A (en) Vertical magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP4101836B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2006277950A (en) Vertical magnetic recording medium
JP5325945B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP5616606B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP4472767B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP6416041B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP4358208B2 (en) Perpendicular magnetic recording medium
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium
JP4637785B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2006155862A (en) Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus
JP6451011B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907