JPH0512719Y2 - - Google Patents

Info

Publication number
JPH0512719Y2
JPH0512719Y2 JP14116289U JP14116289U JPH0512719Y2 JP H0512719 Y2 JPH0512719 Y2 JP H0512719Y2 JP 14116289 U JP14116289 U JP 14116289U JP 14116289 U JP14116289 U JP 14116289U JP H0512719 Y2 JPH0512719 Y2 JP H0512719Y2
Authority
JP
Japan
Prior art keywords
insulating layer
heat insulating
heat
opening
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14116289U
Other languages
Japanese (ja)
Other versions
JPH0380296U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14116289U priority Critical patent/JPH0512719Y2/ja
Publication of JPH0380296U publication Critical patent/JPH0380296U/ja
Application granted granted Critical
Publication of JPH0512719Y2 publication Critical patent/JPH0512719Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、粉末焼結合金、セラミツクス等の被
処理物を、真空及び高圧ガス雰囲気の高温下で熱
処理する熱間静水圧加圧装置(以下HIP装置とい
う)に関するものである。
[Detailed description of the invention] (Field of industrial application) The present invention is a hot isostatic pressing device ( (hereinafter referred to as HIP device).

(従来の技術) HIP装置は、第8図に例示するように、高圧ガ
スを封入する高圧容器41と上蓋42及び下蓋4
3とで区画される高圧室44内に、断熱層45
と、ヒータ46と、被処理体47の載置台48等
を配設したものが一般的である。そして、HIP装
置の処理サイクルタイムの短縮を図るため、冷却
時に高圧室44内に強制的に又は自然対流による
撹拌流を生起させて高温ガスと高圧容器41内壁
及び上蓋42との間で熱交換し、高温ガスを急速
冷却する方法が開発されている。ところで、この
ように高温ガスを急速冷却する際に、高温ガスと
高圧容器41内壁及び上蓋42との熱交換量が過
大となり、高圧容器41内壁面の温度が、安全許
容上限値を上回るという問題がある。
(Prior Art) As illustrated in FIG. 8, a HIP device includes a high-pressure container 41 that seals high-pressure gas, an upper lid 42, and a lower lid 4.
A heat insulating layer 45 is provided in the high pressure chamber 44 divided by
Generally, a heater 46, a mounting table 48 for the object to be processed 47, etc. are provided. In order to shorten the processing cycle time of the HIP device, a stirring flow is generated in the high-pressure chamber 44 during cooling by forced or natural convection to exchange heat between the high-temperature gas and the inner wall of the high-pressure container 41 and the upper lid 42. However, methods have been developed to rapidly cool high-temperature gases. By the way, when rapidly cooling the high-temperature gas in this way, the amount of heat exchange between the high-temperature gas and the inner wall of the high-pressure vessel 41 and the upper lid 42 becomes excessive, causing the problem that the temperature of the inner wall surface of the high-pressure vessel 41 exceeds the safe allowable upper limit. There is.

従来、第8図に示すように、高圧容器41内壁
上部に遮熱板49を配設して、熱交換量の大きい
高圧室44内上部の過昇温を防止している(実開
昭63−83595号公報参照)。
Conventionally, as shown in FIG. 8, a heat shield plate 49 is disposed on the upper part of the inner wall of the high-pressure chamber 41 to prevent excessive temperature rise in the upper part of the high-pressure chamber 44, which has a large amount of heat exchanged. -Refer to Publication No. 83595).

また、第9図に示すように、高圧室44上部に
ヒートシンク50を配設し、高圧室44内の高温
ガスをヒートシンク50を通過させた後、高圧室
44外へ放出することにより、高圧室44内の熱
が一度に高圧室44外に放出されるのを防止し、
時間的に平均化して高温ガスの放出を行なうよう
にしている(特開昭58−87032号公報参照)。
In addition, as shown in FIG. 9, a heat sink 50 is disposed above the high pressure chamber 44, and after the high temperature gas in the high pressure chamber 44 passes through the heat sink 50, it is released to the outside of the high pressure chamber 44. Preventing the heat inside the high pressure chamber 44 from being released outside the high pressure chamber 44 at once,
The high-temperature gas is released by averaging it over time (see Japanese Patent Laid-Open No. 87032/1983).

(考案が解決しようとする課題) 従来技術において、第8図、第9図に矢印で示
すように、高温ガスが高圧室44内を、上から下
へと流して熱交換すると、高温ガスが高圧室44
内上部壁面に当たるので、必然的に熱交換量が大
きくなり、高圧容器41上部内壁及び上蓋42内
壁の過昇温を招来し、高圧容器41下部壁面との
熱交換量が少なくなり、全体として伝熱面積の割
りには冷却能率が低下するという問題がある。
(Problem to be solved by the invention) In the prior art, when high-temperature gas flows from top to bottom in the high-pressure chamber 44 to exchange heat, as shown by the arrows in FIGS. 8 and 9, the high-temperature gas Hyperbaric chamber 44
Since it hits the inner upper wall surface, the amount of heat exchange will inevitably increase, leading to excessive temperature rise of the upper inner wall of the high pressure vessel 41 and the inner wall of the upper cover 42, and the amount of heat exchange with the lower wall surface of the high pressure vessel 41 will decrease, resulting in a decrease in overall heat transfer. There is a problem in that the cooling efficiency decreases in proportion to the thermal area.

本考案は、上述のような実状に鑑みてなされた
もので、その目的とするところは、高圧室内上部
内壁の過昇温を生起させることなく高温ガスの急
速冷却を行ない処理サイクルタイムの短縮を図り
うるHIP装置を提供するにある。
The present invention was developed in view of the above-mentioned circumstances, and its purpose is to rapidly cool high-temperature gas without causing excessive temperature rise on the upper inner wall of the high-pressure chamber, thereby shortening the processing cycle time. The goal is to provide a HIP device that can be used for various purposes.

(課題を解決するための手段) 本考案では、上記目的を達成するために、次の
技術的手段を講じた。
(Means for Solving the Problems) In the present invention, the following technical measures were taken in order to achieve the above object.

すなわち、本考案は、高圧容器1と上蓋2及び
下蓋3とで区画される高圧室4内に、その上部に
通気開口21を備えた倒立コツプ状の断熱層18
と、該断熱層18の内側にヒータ19とを配設し
炉室Fとなし、該炉室F内に被処理体14を配
し、該被処理体14に高温高圧の圧媒ガスを作用
させて熱間静水圧加圧処理をおこなう装置であつ
て、熱間静水圧加圧処理後に、前記炉室F内の高
温の圧媒ガスを、前記通気開口21から前記断熱
層18と高圧容器1との間に導くとともに、再び
前記断熱層18下方から前記炉室F内に戻して循
環させることで、該高温の圧媒ガスを冷却する熱
間静水圧加圧装置において、 前記高圧容器1と断熱層18との間に、断熱層
18を覆う遮熱ケーシング20を配設し、該ケー
シング20の周壁に複数の通気孔23を周方向の
間隔を有して設けるとともに、該通気孔23を高
さ方向に複数段にわたつて設けたことを特徴とし
ている。
That is, the present invention provides an inverted cup-shaped heat insulating layer 18 with a ventilation opening 21 in the upper part of the high-pressure chamber 4 divided by the high-pressure container 1, the upper lid 2, and the lower lid 3.
A heater 19 is arranged inside the heat insulating layer 18 to form a furnace chamber F, an object to be processed 14 is placed in the furnace chamber F, and a high temperature and high pressure pressure medium gas is applied to the object to be processed 14. This is an apparatus for performing hot isostatic pressure treatment, and after the hot isostatic pressure treatment, the high temperature pressure medium gas in the furnace chamber F is passed through the ventilation opening 21 to the heat insulation layer 18 and the high pressure vessel. In a hot isostatic pressurizing device that cools the high-temperature pressure medium gas by guiding it between the high-pressure vessel 1 and circulating it again from below the heat insulating layer 18 into the furnace chamber F, the high-pressure vessel 1 A heat insulating casing 20 covering the insulating layer 18 is disposed between the casing 20 and the insulating layer 18, and a plurality of ventilation holes 23 are provided at intervals in the circumferential direction on the peripheral wall of the casing 20. It is characterized by being provided in multiple stages in the height direction.

また、本考案は、前記ケーシング20の通気孔
23は、下段の通気孔23の開口面積が上段の通
気孔23の開口面積より大きくなるようにしたこ
とを特徴とする。
Further, the present invention is characterized in that the opening area of the lower ventilation hole 23 is larger than the opening area of the upper ventilation hole 23 of the ventilation hole 23 of the casing 20.

また、本考案では、前記通気孔23は、ケーシ
ング20の上部より下部の数が多くなるようにし
たことを特徴とする。
In addition, the present invention is characterized in that the number of the vent holes 23 at the bottom of the casing 20 is greater than that at the top.

さらに、前記通気孔23の開口面積を変更可能
な通気孔開度調節機構27を設けたことを特徴と
する。
Furthermore, the present invention is characterized in that a vent opening degree adjusting mechanism 27 is provided which can change the opening area of the vent hole 23.

そして、本考案は、前記高圧室4内の下部に仕
切壁16aを設けて上部高圧室4aと下部高圧室
4bに二分し、前記仕切壁16aに通気開口34
を設けて開閉手段35により開閉可能にしたこと
を特徴とする。
In the present invention, a partition wall 16a is provided at the lower part of the high pressure chamber 4 to divide it into an upper high pressure chamber 4a and a lower high pressure chamber 4b, and a ventilation opening 34 is provided in the partition wall 16a.
It is characterized in that it can be opened and closed by an opening and closing means 35.

(作用) 本考案によれば、被処理体14の処理完了後に
おいて、炉室F内の高温ガスは、断熱層18の通
気開口21を開くことによつて、強制又は自然循
環により、通気開口21から断熱層18と遮熱ケ
ーシング20との間を流下しながら、通気孔23
から高圧容器1と遮熱ケーシング20の間に上下
方向に分散して流入し、こゝで、高温ガスは高圧
容器1内壁と接触して熱交換が行なわれた後、断
熱層18内炉室Fへ循環し、炉室F内ガス又は被
処理体14から吸熱して再び高温ガスとなつて通
気開口21から断熱層18外へ流出し、前述の過
程を繰り返す。したがつて、高温ガスと高圧容器
1内壁との熱交換量は、高圧容器1内壁上下方向
で平均化され、局所的な高圧容器1内壁及び上蓋
2の過昇温を防止できると共に、高圧容器1内壁
の伝熱面積を無駄なく効果的に利用でき、冷却能
力が高まり、急速冷却が可能となり、処理サイク
ルタイムが短縮される。
(Function) According to the present invention, after the processing of the object to be processed 14 is completed, the high-temperature gas in the furnace chamber F is released through forced or natural circulation by opening the ventilation opening 21 of the heat insulating layer 18. 21 and flowing down between the heat insulating layer 18 and the heat shield casing 20, the air vent 23
The high-temperature gas flows vertically and dispersedly between the high-pressure vessel 1 and the heat-insulating casing 20, and after coming into contact with the inner wall of the high-pressure vessel 1 and exchanging heat, the high-temperature gas flows into the furnace chamber in the heat-insulating layer 18. It circulates to F, absorbs heat from the gas in the furnace chamber F or the object to be processed 14, becomes high-temperature gas again, flows out of the heat insulating layer 18 through the ventilation opening 21, and repeats the above-described process. Therefore, the amount of heat exchanged between the high-temperature gas and the inner wall of the high-pressure vessel 1 is averaged in the vertical direction of the inner wall of the high-pressure vessel 1, and it is possible to prevent local excessive temperature rise of the inner wall of the high-pressure vessel 1 and the upper lid 2. 1. The heat transfer area of the inner wall can be used effectively without waste, increasing cooling capacity, enabling rapid cooling, and shortening processing cycle time.

(実施例) 以下、本考案の実施例を図面に基づき説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図及び第2図は、本考案の第1実施例を示
し、1は円筒状の高圧容器、2は上蓋、3は下蓋
で、両蓋2,3は高圧容器1に着脱自在に取付け
られ、高圧室4が区画形成されている。
1 and 2 show a first embodiment of the present invention, in which 1 is a cylindrical high-pressure container, 2 is an upper lid, 3 is a lower lid, and both lids 2 and 3 are detachably attached to the high-pressure container 1. A high pressure chamber 4 is defined.

高圧容器1には、外周面に冷媒通路5を形成す
る凹溝が設けられた周壁ライナー6を、その内壁
に嵌着してあり、高温ガスの急速冷却を行ないう
るようにしてある。
The high-pressure vessel 1 has a circumferential wall liner 6 provided with grooves forming refrigerant passages 5 on its outer circumferential surface fitted to its inner wall, so that high-temperature gas can be rapidly cooled.

上蓋2の中央には、弁体挿通孔7が設けられ、
上蓋2の下面には弁体挿通孔17の外周に、上面
に冷媒通路8を備えた上壁ライナー9が固着され
ており、弁体挿通孔7には棒状の弁体10が摺動
可能に挿通されている。この弁体10の上端は、
上蓋2は上面中央に固着した弁操作シリンダ11
内に挿入され、ピストン12が固着されている。
A valve body insertion hole 7 is provided in the center of the upper lid 2,
An upper wall liner 9 having a refrigerant passage 8 on the upper surface is fixed to the outer periphery of a valve body insertion hole 17 on the lower surface of the upper lid 2, and a rod-shaped valve body 10 is slidable in the valve body insertion hole 7. It is inserted. The upper end of this valve body 10 is
The upper lid 2 has a valve operating cylinder 11 fixed to the center of the upper surface.
The piston 12 is inserted into the piston 12 and fixed thereto.

下蓋3上には、中央にガス強制循環フアン13
が設けられ、該フアン13の外側にこれを覆うよ
うに被処理体14の載置台15が設けられ、さら
に該載置台15の外周にリング状の支持板16が
支持脚17を介して設けられている。
On the lower lid 3, there is a gas forced circulation fan 13 in the center.
A mounting table 15 for the object to be processed 14 is provided on the outside of the fan 13 so as to cover it, and a ring-shaped support plate 16 is provided on the outer periphery of the mounting table 15 via support legs 17. ing.

18は断熱層、19はヒータ、20は遮熱ケー
シングで、これらは支持板16上に載設されてい
る。
18 is a heat insulating layer, 19 is a heater, and 20 is a heat shielding casing, which are placed on the support plate 16.

断熱層18は倒立コツプ状を呈し、内周壁面に
ヒータ19が装着されて炉室Fが形成されると共
に、頂壁18a中央に通気開口21が設けられて
おり、この通気開口21は弁体10の下端部によ
つて開閉自在とされている。
The heat insulating layer 18 has an inverted cup shape, and a heater 19 is attached to the inner peripheral wall surface to form a furnace chamber F, and a ventilation opening 21 is provided in the center of the top wall 18a, and this ventilation opening 21 is connected to the valve body. It can be opened and closed by the lower end of 10.

遮熱ケーシング20は、気体透過性のない材料
により倒立コツプ状に形成され、断熱層18の下
側を除く全面を所望の間隙をもつて覆うように、
支持板16上に載設されており、頂板20a中央
には弁体挿通孔22が設けられ、周壁には複数の
通気孔23が周方向の間隔を有して設けられてい
るとともに、該通気孔23は高さ方向にわたつて
複数段設けられている。
The heat shield casing 20 is formed of a gas-impermeable material into an inverted cup shape, and covers the entire surface of the heat insulating layer 18 except for the lower side with a desired gap.
It is mounted on a support plate 16, and a valve body insertion hole 22 is provided in the center of the top plate 20a, and a plurality of ventilation holes 23 are provided in the peripheral wall at intervals in the circumferential direction. The pores 23 are provided in multiple stages in the height direction.

そして、断熱層18及びヒータ19は、遮熱ケ
ーシング20と共に、被処理体14の収容、取出
し時には高圧室4外に取出しうるようになつてい
る。
The heat insulating layer 18 and the heater 19 can be taken out of the high pressure chamber 4 together with the heat insulating casing 20 when the object to be processed 14 is housed or taken out.

24,25は仕切板で、前記支持脚17に上下
間隔を保持して固着され、上部仕切板24の中央
に形成された通孔26は、ガス循環路とされてい
る。
Partition plates 24 and 25 are fixed to the supporting legs 17 with a vertical interval maintained therebetween, and a through hole 26 formed in the center of the upper partition plate 24 is used as a gas circulation path.

更に、前記遮熱ケーシング20の通気孔23
は、第2図に示すように、高さ方向に複数段に設
けられ、しかも、上段よりも下段の開口面積が順
次大きくなつているとともに、上段よりも下段の
孔数を順次多くしてあり、熱交換量が上下方向で
平均化しうるようになつている。
Furthermore, the ventilation hole 23 of the heat shield casing 20
As shown in Figure 2, the holes are provided in multiple stages in the height direction, and the opening area of the lower stage is sequentially larger than that of the upper stage, and the number of holes in the lower stage is sequentially larger than that of the upper stage. , the amount of heat exchanged can be averaged in the vertical direction.

また、前記通気孔23は、上下方向でそれぞれ
同一直径とし、下段が上段よりも順次孔数を多く
して、上段よりも下段の方の総開口面積が大きく
なるようにしてもよいし、上下方向で同一孔数と
し、下段が上段よりも開口面積が大きくしてもよ
い。
The ventilation holes 23 may have the same diameter in the vertical direction, and the number of holes may be sequentially larger in the lower tier than in the upper tier, so that the total opening area of the lower tier is larger than that of the upper tier. The number of holes may be the same in both directions, and the opening area of the lower stage may be larger than that of the upper stage.

上記第1実施例において、HIP処理するとき
は、開閉弁体10により断熱層18の通気開口2
1を閉じて行ない、HIP処理後、冷却するに際し
て、まず、弁体10をその操作シリンダ11を作
動させて上昇させ、断熱層18の通気開口21を
開くと、高圧室4内の高温ガスは第1図に矢印で
示すように対流循環し、ガス強制循環フアン13
を運転開始することによつて強制循環する。すな
わち炉室F内高温ガスは、通気開口21から断熱
層18と遮熱ケーシング20の間を通つて流下す
ると共に、通気孔23から遮熱ケーシング20と
高圧容器1との間に流出し、冷媒によつて冷却さ
れているライナー6,9に接触し、上下方向全高
にわたつて熱交換が平均的に行なわれ、支持板1
6の下側から両仕切板24,25の間から通孔2
6を通つて断熱層18内炉室Fに至り、再び通気
開口21を通つて循環される。このようにして、
高温ガスは、高圧容器1及び上蓋2等を局所的に
過昇温させることなく、伝熱面積を有効に利用で
き冷却能率が高められる。そして、急速冷却が局
所的な過昇温を伴なうことなく効率的に行なわ
れ、処理サイクルタイムの短縮が図られる。
In the first embodiment, when performing the HIP process, the opening/closing valve body 10 controls the ventilation openings 2 of the heat insulating layer 18.
1 is closed and cooled down after the HIP process, first, the valve body 10 is raised by operating its operation cylinder 11 and the ventilation opening 21 of the heat insulating layer 18 is opened. Gas is circulated by convection as shown by the arrow in FIG.
forced circulation by starting the operation. That is, the high temperature gas in the furnace chamber F flows down from the ventilation opening 21 through between the heat insulation layer 18 and the heat shield casing 20, and flows out from the ventilation hole 23 between the heat shield casing 20 and the high pressure vessel 1, and the refrigerant The support plate 1 contacts the liners 6 and 9 which are cooled by
Through hole 2 is inserted from between both partition plates 24 and 25 from the bottom of 6.
6 to the inner furnace chamber F of the heat insulating layer 18, and is circulated again through the ventilation opening 21. In this way,
The high-temperature gas can effectively utilize the heat transfer area without locally overheating the high-pressure container 1, the upper lid 2, etc., and the cooling efficiency can be increased. Then, rapid cooling is performed efficiently without local excessive temperature rise, and the processing cycle time is shortened.

なお、上記第1実施例において、ガス強制循
環フアン13を採用しているが、これを省略し
て、高圧室4内の高温ガスを自然対流によつて循
環させ冷却することができること勿論である。
In the first embodiment, the forced gas circulation fan 13 is employed, but it is of course possible to omit this and circulate and cool the high temperature gas in the high pressure chamber 4 by natural convection.

上記第一実施例においては、通気開口21を断
熱層18の頂壁18aに設けているが、該通気開
口21の位置は、断熱層18の実質的に上部であ
つて、該断熱層18と遮熱ケーシング20との間
の間隙に、高温ガスを流下せしめうる位置であれ
ばよい。
In the first embodiment, the ventilation opening 21 is provided in the top wall 18a of the heat insulating layer 18, but the position of the vent opening 21 is substantially above the heat insulating layer 18, Any position may be sufficient as long as it allows high-temperature gas to flow down into the gap between the heat shield casing 20 and the heat shield casing 20.

すなわち、断熱層18の周壁部上部であつても
よいのである。なお、この場合、遮熱ケーシング
20を、上下両端に内側に向いたフランジ部を有
する円筒状とし、断熱層18に外嵌した構造とし
てもよい。
That is, it may be located at the upper part of the peripheral wall of the heat insulating layer 18. In this case, the heat shielding casing 20 may have a cylindrical shape with inwardly facing flanges at both the upper and lower ends, and may have a structure in which the heat shielding casing 20 is fitted onto the heat insulating layer 18.

第3図及び第4図は、本考案の第2実施例を示
し、第1実施例と異なるところは、遮熱ケーシン
グ20の通気孔23の開口面積を変更可能な通気
孔開度調節機構27を配設した点である。
3 and 4 show a second embodiment of the present invention, which differs from the first embodiment in that a vent opening adjustment mechanism 27 that can change the opening area of the vent 23 of the heat shield casing 20 The point is that the .

この通気孔開度調節機構27は、通気開口28
を備えかつ遮熱ケーシング20の外側に上下動自
在に外嵌されたスライド筒29と、スライド筒2
9を上下動可能に下蓋3上に支持するそソレノイ
ド機構30とからなつている。そして、通気開口
28は、遮熱ケーシング20の通気孔23に対応
して、それぞれ通気孔23と同形同寸に形成さ
れ、スライド筒29の上昇限においては、通気孔
23と通気開口28が完全に一致して第5図イに
例示するように、全開状態となり、スライド筒2
9の下降途中では第5図ロに示すように中途開き
状態となり、スライド筒29の下降限において第
5図ハで示すように、通気孔23が全閉状態とな
るように構成されている。
This ventilation hole opening adjustment mechanism 27
and a slide tube 29 fitted on the outside of the heat shield casing 20 so as to be movable up and down;
9 is supported on the lower lid 3 so as to be movable up and down. The ventilation openings 28 are formed to have the same shape and size as the ventilation holes 23 in correspondence with the ventilation holes 23 of the heat shielding casing 20, and at the upper limit of the slide tube 29, the ventilation holes 23 and the ventilation openings 28 are formed. As shown in FIG. 5A, the slide cylinder 2 is fully opened and
During the downward movement of the slide cylinder 29, the vent hole 23 is partially opened as shown in FIG.

なお、第4図は、ソレノイド機構30を下蓋3
に設けた凹部31に嵌入固定し、該ソレノイド機
構30とスライド筒29との間に仕切板32を設
け、ソレノイド軸33を貫通させたものであり、
作用的には第3図の場合と全く同じである。
In addition, in FIG. 4, the solenoid mechanism 30 is attached to the lower lid 3.
A partition plate 32 is provided between the solenoid mechanism 30 and the slide tube 29, and a solenoid shaft 33 is passed through the solenoid mechanism 30.
The operation is exactly the same as the case shown in FIG.

第2実施例においては、被処理体14の処理終
了直後の冷却開始当初、スライド筒29を下降限
から若干上昇させて通気孔23の開口面積を小さ
くしておき、ガス流通量を制限して放熱量を抑制
し、過昇温を防ぎ、冷却過程の進行に伴ないガス
温度が低下すると、適当なタイミングでソレノイ
ド機構30によりスライド筒29を順次上昇させ
る。そして最終的にスライド筒29を上昇限にお
いて固定し、通気孔23を全開状態とする。この
ようにして、ガス温度が高い間はガス流通量を少
なくし、ガス温度が低下するにつれて順次ガス流
通量が多くすることができ、冷却過程全域にわた
つて略同じ放熱量での冷却が可能となる。
In the second embodiment, at the beginning of cooling immediately after the processing of the object to be processed 14 is completed, the slide cylinder 29 is slightly raised from the lower limit to reduce the opening area of the vent hole 23, thereby restricting the gas flow rate. The amount of heat dissipated is suppressed to prevent excessive temperature rise, and when the gas temperature decreases as the cooling process progresses, the solenoid mechanism 30 sequentially raises the slide cylinder 29 at an appropriate timing. Finally, the slide cylinder 29 is fixed at its upper limit, and the ventilation hole 23 is fully opened. In this way, the gas flow rate can be reduced while the gas temperature is high, and gradually increased as the gas temperature decreases, making it possible to cool with approximately the same amount of heat radiation throughout the entire cooling process. becomes.

なお、第2実施例において、スライド筒29を
第6図に矢印で示す周方向に回転させて、通気孔
23の開口面積を変更可能とすることができ、ス
ライド筒29は、支持板16上に回動自在に支持
し、ソレノイド機構又は他の駆動手段により回動
することができる。この場合においても、スライ
ド筒29の操作は上述と同様に行なわれる。
In the second embodiment, the opening area of the ventilation hole 23 can be changed by rotating the slide tube 29 in the circumferential direction shown by the arrow in FIG. It can be rotatably supported by a solenoid mechanism or other driving means. In this case as well, the slide tube 29 is operated in the same manner as described above.

第7図は、本考案の第3実施例を示し、第1実
施例と異なるところは、支持板16を大きくして
仕切壁16aとし、これによつて高圧室4内を上
下に二分して、上下部高圧室4a,4bを連通す
る通気開口34を複数個設け、該通気開口34に
開閉手段35を夫々配設し、断熱層18の通気開
口21は常時開放状態とした点である。
FIG. 7 shows a third embodiment of the present invention, which differs from the first embodiment in that the support plate 16 is enlarged to form a partition wall 16a, which divides the inside of the high pressure chamber 4 into upper and lower halves. , a plurality of ventilation openings 34 are provided to communicate the upper and lower high pressure chambers 4a, 4b, opening and closing means 35 are provided in each of the ventilation openings 34, and the ventilation opening 21 of the heat insulating layer 18 is kept open at all times.

なお、前記仕切壁16aの外周とライナー6と
の間にシール部材36が嵌装されている。そし
て、仕切壁16aの下側には仕切板37が設けら
れ、この仕切板37を開閉手段35の弁棒35a
が貫通しており、開閉手段35の駆動機構である
ソレノイド35bが下蓋3に設けた凹部38に嵌
入固定されている。
Note that a sealing member 36 is fitted between the outer periphery of the partition wall 16a and the liner 6. A partition plate 37 is provided below the partition wall 16a, and the valve rod 35a of the opening/closing means 35 is provided on the partition plate 37.
passes through the lower lid 3, and a solenoid 35b, which is a driving mechanism for the opening/closing means 35, is fitted and fixed in a recess 38 provided in the lower lid 3.

また、遮熱ケーシング20には、その頂板20
aにも通気孔23を設けてあり、より効率よく冷
却することができる。
The heat shield casing 20 also includes a top plate 20 thereof.
Ventilation holes 23 are also provided in a, allowing for more efficient cooling.

上記第3実施例においては、HIP処理中、前記
通気開口34は開閉手段35の弁棒35aにより
閉じられて炉室F内のガス循環は行われず、HIP
処理後に、通気開口34が開かれ、炉室F内ガス
の循環経路が形成される。その後は、第1実施例
と同様の過程を経て炉室F内の冷却が行われる。
In the third embodiment, during the HIP process, the ventilation opening 34 is closed by the valve stem 35a of the opening/closing means 35, and gas circulation within the furnace chamber F is not performed.
After the treatment, the ventilation opening 34 is opened and a circulation path for the gas in the furnace chamber F is formed. Thereafter, the inside of the furnace chamber F is cooled through the same process as in the first embodiment.

この第3実施例によれば、ガス強制循環フアン
13、開閉手段35等の機械類を下部の低温域に
集中配置しているので、機械の寿命、耐熱性等の
点で有利であり、上部に開閉手段を備えていない
ので上蓋2の上壁ライナー9の面積を大きくで
き、冷却効率の向上を図ることができる。
According to this third embodiment, the machinery such as the gas forced circulation fan 13 and the opening/closing means 35 are concentrated in the lower low temperature region, which is advantageous in terms of machine life, heat resistance, etc. Since the opening/closing means is not provided, the area of the upper wall liner 9 of the upper lid 2 can be increased, and the cooling efficiency can be improved.

なお、上記各実施例において、断熱層18の下
端と遮熱ケーシング20下端の接続は、必ずしも
気密に接続しなくてもよいが、ガス流れのシヨー
トカツトを行なう点からも気密接続が好ましい。
In each of the embodiments described above, the lower end of the heat insulating layer 18 and the lower end of the heat shield casing 20 do not necessarily have to be connected airtightly, but an airtight connection is preferable from the viewpoint of shortcutting the gas flow.

本考案は、上記実施例に限定されるものではな
く、例えば、遮熱ケーシング20は、二重断熱層
の外側断熱層に通気孔を設けて構成することがで
き、また、通気孔23、通気開口28の形状も適
宜変更することができる。
The present invention is not limited to the above-mentioned embodiments. For example, the heat shielding casing 20 can be constructed by providing a vent hole in the outer heat insulating layer of the double heat insulating layer, and the vent hole 23, The shape of the opening 28 can also be changed as appropriate.

(考案の効果) 本考案にかかるHIP装置は、上述のように、高
圧容器1と断熱層18との間に、断熱層18を覆
う遮熱ケーシング20を配設し、該ケーシング2
0の周壁に複数の通気孔23を周方向の間隔を有
して設けるとともに、該通気孔23を高さ方向に
複数段にわたつて設けたものであるから、高圧室
4内上壁及び周壁の過昇温を生起せしめることな
く、高温ガスを断熱層18の内側の炉室F内外を
循環させて高圧容器1壁と接触させ、急速冷却を
行なうことができ、しかも、高温ガスと高圧容器
1内壁との熱交換量が上下方向で平均化され、高
圧容器1内壁の伝熱面積を無駄なく有利利用でき
るので冷却能力を大幅に向上させ、処理サイクル
タイムの短縮を図り、処理効率を向上させること
が可能である。
(Effects of the invention) As described above, the HIP device according to the invention includes a heat insulating casing 20 that covers the heat insulating layer 18 between the high pressure vessel 1 and the heat insulating layer 18.
A plurality of ventilation holes 23 are provided on the peripheral wall of the high pressure chamber 4 at intervals in the circumferential direction, and the ventilation holes 23 are provided in multiple stages in the height direction. The high-temperature gas can be circulated in and out of the furnace chamber F inside the heat insulating layer 18 and brought into contact with the wall of the high-pressure vessel 1 for rapid cooling without causing an excessive temperature rise in the high-pressure vessel. The amount of heat exchanged with the inner wall of the high-pressure vessel 1 is averaged in the vertical direction, and the heat transfer area of the inner wall of the high-pressure vessel 1 can be used advantageously without wasting it, greatly increasing the cooling capacity, shortening the processing cycle time, and improving processing efficiency. It is possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案の第1実施例を示す
もので、第1図は中央縦断面図、第2図は遮熱ケ
ーシングの正面図、第3図〜第5図は本考案の第
2実施例を示し、第3図は中央縦断面図、第4図
はスライド筒駆動ソレノイドの取付構造の他の例
を示す要部拡大断面図、第5図イ〜ハは遮熱ケー
シングの通気孔開度調節状況説明図、第6図は第
3図のA−A線断面図、第7図は本考案の第3実
施例の中央縦断面図、第8図及び第9図はそれぞ
れ従来例を示し第7図は中央縦断面図、第9図は
略線的断面図である。 1……高圧容器、2……上蓋、3……下蓋、4
……高圧室、4a,4b……上下部高圧室、14
……被処理体、16a……仕切壁、18……断熱
層、19……ヒータ、20……遮熱ケーシング、
21,34……通気開口、23……通気孔、27
……通気孔開度調節機構、35……開閉手段、F
……炉室。
Figures 1 and 2 show the first embodiment of the present invention, in which Figure 1 is a central vertical cross-sectional view, Figure 2 is a front view of the heat shield casing, and Figures 3 to 5 are the first embodiment of the present invention. Fig. 3 is a central vertical sectional view, Fig. 4 is an enlarged sectional view of the main part showing another example of the mounting structure of the slide tube drive solenoid, and Fig. 5 A to C show a heat shield casing. FIG. 6 is a sectional view taken along the line A-A in FIG. 3, FIG. 7 is a central vertical sectional view of the third embodiment of the present invention, and FIGS. FIG. 7 is a central vertical sectional view, and FIG. 9 is a schematic sectional view, respectively, showing a conventional example. 1...High pressure container, 2...Upper lid, 3...Lower lid, 4
...High pressure chamber, 4a, 4b...Upper and lower high pressure chamber, 14
...Object to be treated, 16a...Partition wall, 18...Insulating layer, 19...Heater, 20...Heat-insulating casing,
21, 34...Vent opening, 23...Vent hole, 27
...Vent opening adjustment mechanism, 35...Opening/closing means, F
...furnace room.

Claims (1)

【実用新案登録請求の範囲】 (1) 高圧容器1と上蓋2及び下蓋3とで区画され
る高圧室4内に、その上部に通気開口21を備
えた倒立コツプ状の断熱層18と、該断熱層1
8の内側にヒータ19とを配設し炉室Fとな
し、該炉室F内に被処理体14を配し、該被処
理体14に高温高圧の圧媒ガスを作用させて熱
間静水圧加圧処理をおこなう装置であつて、熱
間静水圧加圧処理後に、前記炉室F内の高温の
圧媒ガスを、前記通気開口21から前記断熱層
18と高圧容器1との間に導くとともに、再び
前記断熱層18下方から前記炉室F内に戻して
循環させることで、該高温の圧媒ガスを冷却す
る熱間静水圧加圧装置において、 前記高圧容器1と断熱層18との間に、断熱
層18を覆う遮熱ケーシング20を配設し、該
ケーシング20の周壁に複数の通気孔23を周
方向の間隔を有して設けるとともに、該通気孔
23を高さ方向に複数段にわたつて設けたこと
を特徴とする熱間静水圧加圧装置。 (2) 前記ケーシング20の通気孔23は、下段の
通気孔23の開口面積が、上段の通気孔23の
開口面積より大きくなるようにしたことを特徴
とする請求項(1)記載の熱間静水圧加圧装置。 (3) 前記ケーシング20の通気孔23は、ケーシ
ング20の上部より下部の数が多くなるように
したことを特徴とする請求項(1)記載の熱間静水
圧加圧装置。 (4) 前記通気孔23の開口面積を変更可能な通気
孔開度調節機構27を備えていることを特徴と
する請求項(1),(2)又は(3)記載の熱間静水圧加圧
装置。 (5) 前記高圧室4内の下部に仕切壁16aを設け
て上部高圧室4aと下部高圧室4bに二分し、
前記仕切壁16aに通気開口34を設けて開閉
手段35により開閉可能にしたことを特徴とす
る請求項(1),(2),(3)又は(4)記載の熱間静水圧加
圧装置。
[Claims for Utility Model Registration] (1) An inverted cup-shaped heat insulating layer 18 with a ventilation opening 21 in the upper part of the high-pressure chamber 4 divided by the high-pressure container 1 and the upper lid 2 and lower lid 3; The heat insulation layer 1
A heater 19 is disposed inside the chamber 8 to form a furnace chamber F, a workpiece 14 is placed inside the furnace chamber F, and a high-temperature, high-pressure pressure medium gas is applied to the workpiece 14 to heat the workpiece 14. This is an apparatus for performing hydrostatic pressurization, and after hot isostatic pressurization, high-temperature pressure medium gas in the furnace chamber F is pumped between the heat insulating layer 18 and the high-pressure vessel 1 through the ventilation opening 21. In a hot isostatic pressurizing device that cools the high-temperature pressure medium gas by guiding it and circulating it again from below the heat insulating layer 18 into the furnace chamber F, the high pressure vessel 1 and the heat insulating layer 18 are A heat insulating casing 20 covering the heat insulating layer 18 is disposed in between, and a plurality of ventilation holes 23 are provided in the peripheral wall of the casing 20 at intervals in the circumferential direction, and the ventilation holes 23 are arranged in the height direction. A hot isostatic pressurizing device characterized by being provided in multiple stages. (2) The hot-heat heating system according to claim 1, wherein the opening area of the lower ventilation hole 23 of the casing 20 is larger than the opening area of the upper ventilation hole 23. Hydrostatic pressure device. (3) The hot isostatic pressurizing device according to claim (1), wherein the number of vent holes 23 in the casing 20 is greater in the lower part of the casing 20 than in the upper part. (4) The hot isostatic press according to claim (1), (2) or (3), further comprising a vent opening adjustment mechanism 27 that can change the opening area of the vent hole 23. Pressure device. (5) A partition wall 16a is provided at the lower part of the high pressure chamber 4 to divide it into an upper high pressure chamber 4a and a lower high pressure chamber 4b,
The hot isostatic pressurizing device according to claim 1, wherein the partition wall 16a is provided with a ventilation opening 34 and can be opened and closed by an opening and closing means 35. .
JP14116289U 1989-12-06 1989-12-06 Expired - Lifetime JPH0512719Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14116289U JPH0512719Y2 (en) 1989-12-06 1989-12-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14116289U JPH0512719Y2 (en) 1989-12-06 1989-12-06

Publications (2)

Publication Number Publication Date
JPH0380296U JPH0380296U (en) 1991-08-16
JPH0512719Y2 true JPH0512719Y2 (en) 1993-04-02

Family

ID=31688084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14116289U Expired - Lifetime JPH0512719Y2 (en) 1989-12-06 1989-12-06

Country Status (1)

Country Link
JP (1) JPH0512719Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970450B1 (en) * 2009-06-11 2010-07-20 정해진 Portable illumination device with recharge able property

Also Published As

Publication number Publication date
JPH0380296U (en) 1991-08-16

Similar Documents

Publication Publication Date Title
EP2222428B1 (en) Hot isostatic pressing arrangement
US7011510B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
US4349333A (en) Hot isostatic press with rapid cooling
US4359336A (en) Isostatic method for treating articles with heat and pressure
JP4280981B2 (en) Cooling gas air path switching device for vacuum heat treatment furnace
EP2661361B1 (en) Pressing arrangement
EP0502704B1 (en) Cooling system and cooling method for hot isostatic pressurizing equipment
CN215766416U (en) Uniform heating device for ceramic material processing
JPH0512719Y2 (en)
JPH0726787B2 (en) Hot isostatic pressurizing device and cooling operation method of the device
JP6891348B2 (en) Methods for processing articles and methods for high-pressure processing of articles
JPH09133470A (en) Hot isotropic pressure application device and cooling method of the device
JP2007309548A (en) Hot isotropic pressurizing device
JPH0829069A (en) Cooling method for hot isotropic pressure device
WO2012149979A1 (en) Pressing arrangement
JPH0122144B2 (en)
JPH089596Y2 (en) Hot isotropic pressure press
JPH0334638Y2 (en)
JPH0210092Y2 (en)
JPH0512718Y2 (en)
JPH0744953Y2 (en) Hot isotropic pressure press
JP5722416B2 (en) Hot isostatic press
JP2702248B2 (en) Cooling method and cooling device in hot isostatic pressing device
JPH0672744B2 (en) Sintering furnace
JPH0480592A (en) Hot and hydrostatic pressurizing device