JPH05126928A - Temperature-jump nuclear magnetic resonance device - Google Patents

Temperature-jump nuclear magnetic resonance device

Info

Publication number
JPH05126928A
JPH05126928A JP3292813A JP29281391A JPH05126928A JP H05126928 A JPH05126928 A JP H05126928A JP 3292813 A JP3292813 A JP 3292813A JP 29281391 A JP29281391 A JP 29281391A JP H05126928 A JPH05126928 A JP H05126928A
Authority
JP
Japan
Prior art keywords
microwave
coil
temperature
sample
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3292813A
Other languages
Japanese (ja)
Inventor
Kazuyuki Akasaka
赤坂一之
Akira Naito
晶 内藤
Tsukasa Imanari
司 今成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP3292813A priority Critical patent/JPH05126928A/en
Publication of JPH05126928A publication Critical patent/JPH05126928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To change the temperature of a sample in a short time and, at the same time, to efficiently receive NMR signals. CONSTITUTION:This temperature-jump nuclear magnetic resonance device is provided with a coil 5 for microwaves which is coaxially arranged in a transmission-reception coil 4 and a driving and control means which drives and controls a microwave oscillator. When microwaves are radiated against a sample by driving the coil 5, with pulses the temperature of the sample can be raised in a short time and NMR signal can be efficiently received.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は短時間で試料温度を上昇
させ、例えば固相、液相間の状態相関2次元核磁気共鳴
(NMR)測定を行えるようにした温度ジャンプ核磁気
共鳴測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a temperature jump nuclear magnetic resonance measuring apparatus capable of raising a sample temperature in a short time and performing, for example, a two-dimensional nuclear magnetic resonance (NMR) measurement of a state correlation between a solid phase and a liquid phase. It is about.

【0002】[0002]

【従来の技術】従来、NMR測定において試料温度を変
えて分析することが行われている。このようなNMR測
定においては、空気や窒素等の気体温度を制御して試料
に吹きつけることにより試料温度を可変するようにして
いる。
2. Description of the Related Art Conventionally, in NMR measurement, analysis has been performed by changing the sample temperature. In such NMR measurement, the temperature of a gas such as air or nitrogen is controlled and blown onto the sample to change the sample temperature.

【0003】[0003]

【発明が解決しようとする課題】このような試料温度を
変える場合に、温度を急変させて分析する場合があり、
上記方法によって温度を急変させようとすると、別々に
温度制御された2つの気体を切り換えることが必要であ
るが、気体送風部の熱容量などのために短時間に温度を
昇降させることは困難てあった。
When changing the sample temperature as described above, the temperature may be changed suddenly for analysis.
If the temperature is to be suddenly changed by the above method, it is necessary to switch the two gases whose temperature is controlled separately, but it is difficult to raise or lower the temperature in a short time because of the heat capacity of the gas blower. It was

【0004】本発明は上記課題を解決するためのもの
で、短時間に温度を変えることができるとともに、効率
的にNMR信号を受信することが可能な温度ジャンプ核
磁気共鳴測定装置を提供することを目的とする。
The present invention is intended to solve the above problems and provides a temperature jump nuclear magnetic resonance measurement apparatus capable of changing the temperature in a short time and efficiently receiving an NMR signal. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は、静磁場内に配
置された試料を温度制御し、送受信コイルより電磁波を
照射して核磁気共鳴信号を検出する核磁気共鳴測定装置
において、送受信コイルの内側に同軸に配置され、マイ
クロ波発振器に接続されたマイクロ波用コイルと、マイ
クロ波発振器を駆動制御するための駆動制御手段とを備
え、マイクロ波用コイルをパルス駆動し、試料に対して
マイクロ波を照射するようにしたことを特徴とする。ま
た、本発明は、静磁場内に配置された試料を温度制御
し、送受信コイルより電磁波を照射して核磁気共鳴信号
を検出する核磁気共鳴測定装置において、送受信コイル
に接続されたマイクロ波発振器と、マイクロ波発振器を
駆動制御するための駆動制御手段とを備え、送受信コイ
ルを用いて試料に対してマイクロ波を照射するようにし
たことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention provides a nuclear magnetic resonance measuring apparatus for controlling the temperature of a sample placed in a static magnetic field and irradiating an electromagnetic wave from the transmitting / receiving coil to detect a nuclear magnetic resonance signal. A microwave coil connected coaxially to the microwave oscillator and a drive control means for driving and controlling the microwave oscillator are provided coaxially inside the, and the microwave coil is pulse-driven to the sample. It is characterized in that it is irradiated with microwaves. Further, the present invention relates to a nuclear magnetic resonance measuring apparatus which controls a temperature of a sample placed in a static magnetic field and radiates an electromagnetic wave from a transmission / reception coil to detect a nuclear magnetic resonance signal, and a microwave oscillator connected to the transmission / reception coil. And a drive control means for driving and controlling the microwave oscillator, and the transmission / reception coil is used to irradiate the sample with microwaves.

【0006】[0006]

【作用】本発明はNMR送受信コイルの内側に、これと
同軸にマイクロ波コイルを配置し、マイクロ波をパルス
的に照射することにより短時間に試料温度を上昇させて
反応を開始させ、その後の反応の進行に伴うNMR信号
の変化を時間を追って逐一記録するか、あるいはあらか
じめ試料に対して気体を送風することによって相転移近
傍に試料温度を上昇させておき、短時間のマイクロ波照
射により試料温度をジャンプさせ、固相、液相間の状態
相関2次元核磁気共鳴測定を行うことが可能となる。
According to the present invention, a microwave coil is arranged inside the NMR transmitter / receiver coil coaxially therewith, and the sample temperature is raised in a short time by irradiating microwaves in a pulsed manner to start the reaction. The change in the NMR signal with the progress of the reaction is recorded step by step, or the temperature of the sample is raised near the phase transition by blowing a gas to the sample in advance, and the sample is irradiated by microwave for a short time. By jumping the temperature, it becomes possible to perform a two-dimensional nuclear magnetic resonance measurement of the state correlation between the solid phase and the liquid phase.

【0007】[0007]

【実施例】図1は本発明のNMR装置構成を示す図、図
2はタイムチャートを示す図、図3は検出器の詳細図で
ある。図中、1は検出器、2は送風管、3は試料管、4
は送受信コイル、5はマイクロ波用コイル、6はヒー
タ、7はNMR分光計、8はマイクロ波発生装置、9は
温度制御装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the structure of an NMR apparatus of the present invention, FIG. 2 is a diagram showing a time chart, and FIG. 3 is a detailed diagram of a detector. In the figure, 1 is a detector, 2 is a blower tube, 3 is a sample tube, 4
Is a transmitting / receiving coil, 5 is a microwave coil, 6 is a heater, 7 is an NMR spectrometer, 8 is a microwave generator, and 9 is a temperature controller.

【0008】検出器1内に挿入された送風管2内に試料
管3が配置され、送受信コイル4の内側にマイクロ波用
コイル5が試料管3に近接して設けられている。マイク
ロ波用コイル5はマイクロ波発生装置8で駆動されるよ
うになっており、マイクロ波発生装置8は受信コイルか
らの信号が入力されるNMR分光計7に内蔵のパルサー
(図示せず)から制御されるようになっている。また、
送風管2内にはヒータ6が設けられ温度制御装置9によ
り駆動制御されており、図示しない送風装置から送られ
る空気が温められて試料部へ吹きつけられるようになっ
ている。
A sample tube 3 is arranged in a blower tube 2 inserted in a detector 1, and a microwave coil 5 is provided inside the transmission / reception coil 4 close to the sample tube 3. The microwave coil 5 is driven by a microwave generator 8. The microwave generator 8 is driven by a pulser (not shown) built in the NMR spectrometer 7 to which a signal from the receiving coil is input. It is controlled. Also,
A heater 6 is provided in the blower tube 2 and is driven and controlled by a temperature control device 9 so that air sent from a blower device (not shown) is warmed and blown to the sample portion.

【0009】NMRの送受信コイル4とマイクロ波用コ
イル5は、図3に示すように互いに同軸で、マイクロ波
用コイル5が送受信コイル4の内側に配置される。マイ
クロ波用コイルを送受信コイルの内側に配置する理由
は、マイクロ波の照射効率を上げるためと、マイクロ波
照射により送受信コイル表面でアーク放電が生ずるのを
防止するためである。もし、送受信コイルをマイクロ波
用コイル内側に配置すると、マイクロ波の電界の強い部
分に配置されることになりコイル表面から放電してしま
うことになる。また、送受信コイル4とマイクロ波用コ
イル5を同軸以外の、例えば直交させて配置すると、マ
イクロ波用コイルには銅板等が入っているため受信信号
がシールドされてしまい受信効率が悪くなってしまう
が、同軸配置とすることにより、マイクロ波用コイルに
よるシールド効果を最小限にして受信効率を良くするこ
とができる。なお、照射マイクロ波は、NMR信号の数
百メガヘルツに対して2ギガヘルツ程の高周波であるの
で、図示するようにマイクロ波コイルのターン数はせい
ぜい1ターン程度にしてマイクロ波に共振するように
し、強いパワーが入れられるようにする。
The NMR transmitting / receiving coil 4 and the microwave coil 5 are coaxial with each other as shown in FIG. 3, and the microwave coil 5 is arranged inside the transmitting / receiving coil 4. The reason why the microwave coil is arranged inside the transmission / reception coil is to increase the microwave irradiation efficiency and to prevent arc discharge from occurring on the surface of the transmission / reception coil due to microwave irradiation. If the transmission / reception coil is arranged inside the microwave coil, it will be arranged in a portion where the electric field of the microwave is strong, and the coil surface will be discharged. If the transmission / reception coil 4 and the microwave coil 5 are arranged other than coaxial, for example, they are orthogonal to each other, a reception signal is shielded because the microwave coil contains a copper plate or the like, and reception efficiency deteriorates. However, the coaxial arrangement can minimize the shield effect of the microwave coil and improve the reception efficiency. Since the irradiation microwave has a high frequency of about 2 GHz with respect to several hundreds of megahertz of the NMR signal, the number of turns of the microwave coil is set to about 1 turn so as to resonate with the microwave as shown in the figure. Be able to put in strong power.

【0010】このようなNMR装置において、温度制御
装置9により、例えば固体状態から液体状態に相転移す
る近傍の温度にまで試料温度を上昇させておく。そし
て、図2のタイムチャートに示すように、第1の90°
パルス{(π/2)x}20で固体状態の試料を励起し
て期間t1の間でスピンを展開し、第2の90パルス
{(π/2)−x}21でスピンをz軸に戻す。この転
移期間の間にNMR分光計のパルサーにより図2(b)
に示すようにマイクロ波発生装置を駆動してマイクロ波
を照射し、試料を、例えば固体状態から液体状態へと相
転移させ、第3の90°パルス{(π/2)x}22で
励起した後、期間t2の間液体のFID信号を観測す
る。期間t1の間、固体状態で展開した磁化の挙動は、
転移期間を経て期間t2におけるFID信号に位相及び
振幅情報として手渡される。したがって、マイクロ波発
生装置の駆動を繰り返し行ってマイクロ波を照射し、期
間t1を変数として固体状態から液体状態にしてFID
信号を観測することにより、集合データS(t1,t
2)を得れば、固相、液相間の状態相関2DNMRスペ
クトルを得ることができる。本発明のマイクロ波照射に
より試料によっては10℃/msec程度の速さで温度
ジャンプが可能になる。
In such an NMR apparatus, the temperature controller 9 raises the sample temperature to a temperature in the vicinity of a phase transition from a solid state to a liquid state, for example. Then, as shown in the time chart of FIG. 2, the first 90 °
The pulse {(π / 2) x} 20 excites the solid-state sample to develop the spin during the period t1, and the second 90 pulse {(π / 2) −x} 21 causes the spin to be on the z-axis. return. During this transition period, FIG.
The microwave generator is driven to irradiate the microwave as shown in Fig. 3, the sample is caused to undergo a phase transition from a solid state to a liquid state, and excited by a third 90 ° pulse {(π / 2) x} 22. After that, the FID signal of the liquid is observed for the period t2. During the period t1, the behavior of the magnetization developed in the solid state is
The phase and amplitude information is handed to the FID signal in the period t2 after the transition period. Therefore, the microwave generator is repeatedly driven to irradiate microwaves, and the FID is changed from the solid state to the liquid state by using the period t1 as a variable.
By observing the signal, the aggregate data S (t1, t
If 2) is obtained, a state correlation 2D NMR spectrum between the solid phase and the liquid phase can be obtained. Depending on the sample, the microwave irradiation of the present invention enables a temperature jump at a speed of about 10 ° C./msec.

【0011】なお、上記実施例においては、送受信コイ
ルとマイクロ波用コイルとを別個に設けるようにしてい
るが、マイクロ波用コイルによるシールド効果を完全に
なくすことができないためS/N比向上のためには好ま
しくはない。そこで、例えば水溶液試料等に対して、送
受信コイルとマイクロ波コイルとを単一コイルで兼用す
ればS/N比を上げることが可能であり、このようにし
ても送受信信号とマイクロ波の周波数領域が十分離れて
いるために問題は生じない。
In the above embodiment, the transmission / reception coil and the microwave coil are separately provided, but the shield effect of the microwave coil cannot be completely eliminated, so that the S / N ratio is improved. This is not preferable for. Therefore, for example, for an aqueous solution sample or the like, it is possible to increase the S / N ratio by using a single coil for the transmission / reception coil and the microwave coil. Are sufficiently far apart that there is no problem.

【0012】[0012]

【発明の効果】以上のように本発明によれば、試料の温
度制御にマイクロ波を使用することにより、時間遅れが
生ずることなく時間制御が容易となり、マイクロ波コイ
ルを印加周波数に共振させることにより、試料に対して
選択的に大きなエネルギーを入れることが可能となる。
また、マイクロ波コイルを送受信コイルの内側に同軸に
配置することにより、マイクロ波の照射効率を向上させ
るとともに、送受信コイルでの放電を防止するととも
に、受信効率を向上させることが可能となる。
As described above, according to the present invention, by using the microwave for controlling the temperature of the sample, the time control is facilitated without causing the time delay, and the microwave coil is resonated with the applied frequency. This makes it possible to selectively apply large energy to the sample.
Further, by arranging the microwave coil coaxially inside the transmission / reception coil, it is possible to improve microwave irradiation efficiency, prevent discharge in the transmission / reception coil, and improve reception efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明のNMR装置構成を示す図であ
る。
FIG. 1 is a diagram showing the configuration of an NMR apparatus of the present invention.

【図2】 タイムチャートを示す図である。FIG. 2 is a diagram showing a time chart.

【図3】検出器の詳細図である。FIG. 3 is a detailed view of a detector.

【符号の説明】[Explanation of symbols]

1…検出器、2…送風管、3…試料管、4…送受信コイ
ル、5…マイクロ波用コイル、6…ヒータ、7…NMR
分光計、8…マイクロ波発生装置、9…温度制御装置。
1 ... Detector, 2 ... Blower tube, 3 ... Sample tube, 4 ... Transmitting / receiving coil, 5 ... Microwave coil, 6 ... Heater, 7 ... NMR
Spectrometer, 8 ... Microwave generator, 9 ... Temperature controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静磁場内に配置された試料を温度制御
し、送受信コイルより電磁波を照射して核磁気共鳴信号
を検出する核磁気共鳴測定装置において、送受信コイル
の内側に同軸に配置され、マイクロ波発振器に接続され
たマイクロ波用コイルと、マイクロ波発振器を駆動制御
するための駆動制御手段とを備え、マイクロ波用コイル
をパルス駆動し、試料に対してマイクロ波を照射するよ
うにしたことを特徴とする温度ジャンプ核磁気共鳴測定
装置。
1. A nuclear magnetic resonance measuring apparatus for controlling a temperature of a sample placed in a static magnetic field and irradiating an electromagnetic wave from a transmission / reception coil to detect a nuclear magnetic resonance signal, which is coaxially arranged inside the transmission / reception coil, A microwave coil connected to the microwave oscillator and drive control means for driving and controlling the microwave oscillator were provided, and the microwave coil was pulse-driven to irradiate the sample with the microwave. A temperature jump nuclear magnetic resonance measuring apparatus characterized by the above.
【請求項2】 静磁場内に配置された試料を温度制御
し、送受信コイルより電磁波を照射して核磁気共鳴信号
を検出する核磁気共鳴測定装置において、送受信コイル
に接続されたマイクロ波発振器と、マイクロ波発振器を
駆動制御するための駆動制御手段とを備え、送受信コイ
ルを用いて試料に対してマイクロ波を照射するようにし
たことを特徴とする温度ジャンプ核磁気共鳴測定装置。
2. A nuclear magnetic resonance measuring apparatus for detecting a nuclear magnetic resonance signal by irradiating an electromagnetic wave from a transmitting / receiving coil to control the temperature of a sample arranged in a static magnetic field, and a microwave oscillator connected to the transmitting / receiving coil. A temperature jump nuclear magnetic resonance measurement apparatus comprising: a drive control unit for driving and controlling a microwave oscillator, wherein a microwave is applied to a sample by using a transmission / reception coil.
JP3292813A 1991-11-08 1991-11-08 Temperature-jump nuclear magnetic resonance device Pending JPH05126928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3292813A JPH05126928A (en) 1991-11-08 1991-11-08 Temperature-jump nuclear magnetic resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3292813A JPH05126928A (en) 1991-11-08 1991-11-08 Temperature-jump nuclear magnetic resonance device

Publications (1)

Publication Number Publication Date
JPH05126928A true JPH05126928A (en) 1993-05-25

Family

ID=17786686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3292813A Pending JPH05126928A (en) 1991-11-08 1991-11-08 Temperature-jump nuclear magnetic resonance device

Country Status (1)

Country Link
JP (1) JPH05126928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203154A (en) * 2007-02-21 2008-09-04 Osaka Univ Gas adsorption characteristic measuring device for pore particulate, and measuring method therefor
WO2019048822A1 (en) * 2017-09-06 2019-03-14 University College Cardiff Consultants Ltd Microwave resonance cavity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203154A (en) * 2007-02-21 2008-09-04 Osaka Univ Gas adsorption characteristic measuring device for pore particulate, and measuring method therefor
WO2019048822A1 (en) * 2017-09-06 2019-03-14 University College Cardiff Consultants Ltd Microwave resonance cavity
US11294018B2 (en) 2017-09-06 2022-04-05 University College Cardiff Consultants Limited Microwave resonance cavity

Similar Documents

Publication Publication Date Title
EP0578686B1 (en) Nqr methods and apparatus
US4951688A (en) Hyperthermic power delivery system
US5233300A (en) Detection of explosive and narcotics by low power large sample volume nuclear quadrupole resonance (NQR)
CA2142429C (en) Remote tone burst electromagnetic acoustic transducer pulser
EP0302742B1 (en) Methods of obtaining images representing the distribution of paramagnetic molecules in solution
US6885265B2 (en) Hybrid mode stirred and mode tuned chamber
US5327091A (en) Electronic mode stirring
JPH05126928A (en) Temperature-jump nuclear magnetic resonance device
GB2289344A (en) NQR substance detection using multiple coils
FI80795C (en) FARING EQUIPMENT FOR THE PURPOSE OF EXPLOITATION OF AUXILIARY EQUIPMENT.
JPS6245498B2 (en)
US20160097722A1 (en) Plasma diagnostic method and apparatus using raman scattering
JP3483169B2 (en) MRI equipment
Klimenko et al. Resonant enhancement of dielectronic recombination by a microwave field
JPS6145472B2 (en)
WO2006084313A1 (en) Detection of nuclear quadrupole resonance signals in substances
JPS6258455B2 (en)
JPH0419585A (en) Measuring instrument for magnetic resonance phenomenon
Djuth et al. Observations of HF‐enhanced ion waves in the ionosphere
US20050110495A1 (en) Method and apparatus for multiple spectroscopy analysis by using nuclear magnetic resonance
JPS61118648A (en) Nuclear magnetic resonance apparatus
JP2961229B1 (en) Magnetic resonance imaging system using gradient of radio wave magnetic field strength
JPH0135296B2 (en)
WO1987004334A1 (en) Nmr imaging method and apparatus therefor
JP3002476B2 (en) Dangerous goods inspection equipment using electromagnetic waves

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990713