JPH0419585A - Measuring instrument for magnetic resonance phenomenon - Google Patents

Measuring instrument for magnetic resonance phenomenon

Info

Publication number
JPH0419585A
JPH0419585A JP12132490A JP12132490A JPH0419585A JP H0419585 A JPH0419585 A JP H0419585A JP 12132490 A JP12132490 A JP 12132490A JP 12132490 A JP12132490 A JP 12132490A JP H0419585 A JPH0419585 A JP H0419585A
Authority
JP
Japan
Prior art keywords
magnetic resonance
measuring
sample
resonance phenomena
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12132490A
Other languages
Japanese (ja)
Inventor
Katanobu Yokogawa
賢悦 横川
Yusuke Yajima
裕介 矢島
Keizo Suzuki
敬三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12132490A priority Critical patent/JPH0419585A/en
Publication of JPH0419585A publication Critical patent/JPH0419585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To analyze a fine area with high sensitivity by detecting lattice vibration induced on the surface of a sample to be measured. CONSTITUTION:The sample 1 to be measured is installed on a sample base 2, which is cooled under a vacuum, at nearly the same temperature and applied with a static magnetic field and an AC magnetic field by an electromagnet 3 and a modulating magnetic field coil 4, and an electromagnetic wave oscillator 5 emits an electromagnetic wave. Thus, the state of unpaired electrons is destroyed by the electromagnet 3 nearby the surface and transition between spin states is caused with the electromagnetic wave of the oscillator 5. At this time, when a stylus 6 which has a sharp tip diameter is put close until an inter-atomic force operates, a transmitted vibration mode reaches a piezoelectric element 8 while amplitude-amplified and converted into electric vibration. The signal is amplified 10, further synchronized with a magnetic field modulation frequency, and amplified by a lock-in amplifier 11 to obtain the high degree of detection. Thus, measurement corresponding to electron spin resonance measurement at an extremely small point becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気共鳴現象の測定装置に係り、特に信号の検
出を、原子間力を介し、格子振動の変化として行なうも
のであり、試料表面に分布するスピンを高い空間分解能
で測定するのに好適な磁気共鳴現象の測定装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for measuring magnetic resonance phenomena, and in particular detects signals as changes in lattice vibrations via atomic force. The present invention relates to a magnetic resonance phenomenon measuring device suitable for measuring spins distributed in a region with high spatial resolution.

〔従来の技術〕[Conventional technology]

従来の磁気共鳴現象の測定装置、特に電子スピン共鳴(
以下、E S R; Electron 5pin R
e5onanceと言う)現象の測定装置については、
例えば、栗田雄喜生:電子スピン共鳴入門(昭和50年
3月2日発行)第9頁〜第19頁〔講談社、東京〕に解
説されている。このESR現象の測定原理は、要約する
と、例えば静磁場中での電子の磁気モーメント(電子の
スピン)のエネルギーは量子化されて分離した準位が生
じる。この準位間のエネルギーに対応する周波数の交流
磁場または電磁波を印加すると、主として共鳴吸収を起
す。この現象を磁気共鳴と称し、磁気モーメントが電子
スピンでおる場合には電子スピン共鳴(E S R)と
言い、核スピンである場合には核磁気共鳴(NMR)と
いわれでいる現象である。
Conventional instruments for measuring magnetic resonance phenomena, especially electron spin resonance (
Hereinafter, ESR; Electron 5pin R
Regarding the measuring device for the phenomenon (called e5onance),
For example, it is explained in Yukio Kurita: Introduction to Electron Spin Resonance (published March 2, 1975), pages 9 to 19 [Kodansha, Tokyo]. The measurement principle of this ESR phenomenon can be summarized as follows: For example, the energy of the magnetic moment (electron spin) of an electron in a static magnetic field is quantized to generate separate levels. When an alternating magnetic field or electromagnetic wave of a frequency corresponding to the energy between these levels is applied, resonance absorption mainly occurs. This phenomenon is called magnetic resonance, and when the magnetic moment is electron spin, it is called electron spin resonance (ESR), and when it is nuclear spin, it is called nuclear magnetic resonance (NMR).

上記電子スピンの磁気共鳴は、主としてマイクロ波の領
域で起り、例えば半導体ではESRの共鳴周波数、線幅
2強度などの測定からバンド構造。
The above-mentioned magnetic resonance of electron spin mainly occurs in the microwave region, and for example, in semiconductors, the band structure can be determined by measuring the ESR resonance frequency, linewidth 2 intensity, etc.

結晶の不完全性、緩和機構など、物質構造の内部状態に
関する重要な情報が得られる。従がって上記ESRの測
定装置は、例えば半導体の欠陥量の計測などにおいては
今日重要な役割を果たしている。
Important information about the internal state of material structures, such as crystal imperfections and relaxation mechanisms, can be obtained. Therefore, the ESR measuring device described above is currently playing an important role in, for example, measuring the amount of defects in semiconductors.

しかし、従来のESR現象の測定装置においては、マイ
クロ波の空洞共振器中に設置された。被測定試料全体の
平均値である情報しか得ることができず、被測定試料中
の極微小な特定領域のESR現象の測定を行なうことが
できないという問題点があった。
However, in the conventional ESR phenomenon measuring device, it is installed in a microwave cavity resonator. There is a problem in that only the average value of the entire sample to be measured can be obtained, and it is not possible to measure the ESR phenomenon in a very small specific area in the sample to be measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したごとく、従来の磁気共鳴現象の測定装置におい
ては、被測定試料中の極微小な領域の分布が不可能であ
り、局所的に構造あるいは組成が異なるような被測定試
料の評価が困難であった。
As mentioned above, with conventional magnetic resonance phenomenon measurement equipment, it is impossible to measure the distribution of extremely small areas in a sample to be measured, making it difficult to evaluate samples with locally different structures or compositions. there were.

本発明の目的は、上記従来技術において不可能であった
微小領域の分析を高感度に行なうことができる磁気共鳴
現象の測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring device for magnetic resonance phenomena that can perform analysis of minute regions with high sensitivity, which was impossible in the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的は、信号の検出を被測定試料表面に誘
起される格子振動を検出する手段を設けることによって
達成される。
The above object of the present invention is achieved by providing means for detecting a signal by detecting lattice vibration induced on the surface of a sample to be measured.

磁気共鳴が起こると、スピン系の各状態間で、そのエネ
ルギー幅に相当する電磁波を吸収あるいは放射すること
によってスピンの遷移をおこす。
When magnetic resonance occurs, a spin transition occurs between each state of a spin system by absorbing or emitting electromagnetic waves corresponding to the energy width.

しかし、この遷移の中には、電磁波をともなわない無輻
射遷移と呼ばれる遷移が存在する。この無輻射遷移は、
低温状態においては、フォノンを格子に放出する。つま
りこのフォノン放出によりスピン近傍の格子が振動する
However, among these transitions, there are transitions called non-radiative transitions that do not involve electromagnetic waves. This non-radiative transition is
In cold conditions, it releases phonons into the lattice. In other words, this phonon emission causes the lattice near the spin to vibrate.

上記フォノン放出に伴う格子振動の検出には、被測定試
料の表面に原子間力が及ぶ程度まで近づけた。鋭い先端
径を有する針を用いる。つまり、針先端から原子間力を
介して振動の変位が伝えられ、この針先端に伝えられた
振動は、針中を進み、針後段に設置された圧電素子によ
り電気信号に変換される。この電気信号を増幅すること
で上記格子振動を検出することができる。
To detect the lattice vibrations associated with the phonon emission, the surface of the sample to be measured was approached to the extent that atomic force was applied. Use a needle with a sharp tip diameter. In other words, vibration displacement is transmitted from the tip of the needle via atomic force, and the vibration transmitted to the tip of the needle travels through the needle and is converted into an electrical signal by a piezoelectric element installed at the rear of the needle. The lattice vibration can be detected by amplifying this electrical signal.

本発明によるスピン系へのエネルギー供給手段としては
、電磁波(マイクロ波またはラジオ波)を被測定試料に
直接照射する場合と、検出に用いる針と圧電素子により
、原子間力を介し格子に特定の振動を与えることで、ス
ピン/軌道相互作用を媒介としてエネルギーをスピン系
に供給する二種の方法が考えられる。
As a means of supplying energy to a spin system according to the present invention, there are two methods: direct irradiation of electromagnetic waves (microwaves or radio waves) onto a sample to be measured, and the use of a needle and a piezoelectric element used for detection to provide energy to a lattice through atomic force. There are two possible methods of supplying energy to a spin system through the spin/orbit interaction by applying vibrations.

本発明における測定装置の基本構造は、原子間力顕微鏡
(AFM)あるいは走査トンネル顕微鏡(STM)の機
能を兼備することが可能であるので、これらにより極微
小領域の分析領域選択あるいは分析結果(スピンの濃度
あるいはスピン種の分布)と、AFMあるいはSTMに
おける形状測定の結果とを対応づけることができる。
The basic structure of the measurement device of the present invention can combine the functions of an atomic force microscope (AFM) or a scanning tunneling microscope (STM), so that it can be used to select an analysis area in an extremely small area or to analyze analysis results (spin concentration or distribution of spin species) and the results of shape measurement using AFM or STM.

〔作用〕[Effect]

本発明の磁気共鳴現象の測定装置は、被測定試料表面の
格子に、磁気共鳴により励起された振動を、原子間力を
介した鋭い先端径を有する針状プローブで検出すること
により、極微小領域の磁気共鳴現象を高感度に検出する
ことが可能となる。
The magnetic resonance phenomenon measuring device of the present invention detects vibrations excited by magnetic resonance in a lattice on the surface of a sample to be measured using an acicular probe with a sharp tip via atomic force. It becomes possible to detect magnetic resonance phenomena in the region with high sensitivity.

また、AFMあるいはSTMの機能を付加することが可
能であるため、微小測定領域の正確な位置決め、あるい
は分析結果の形状との対応を同時に得ることができる。
Furthermore, since it is possible to add an AFM or STM function, accurate positioning of a minute measurement area or correspondence with the shape of an analysis result can be obtained at the same time.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は、本発明による装置の一実施例の基本構成図である
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a basic configuration diagram of an embodiment of the device according to the present invention.

第1図中の被測定試料1は、真空中で試料台2に設置さ
れている。試料台2は液体ヘリウム等を用いた冷却装置
により、低温(4に以下)に冷却されている。被測定試
料1と試料台2は、良好な熱的接合が得られるように設
置されている。よって、試料台2と被測定試料1はほぼ
同一温度となる。被測定試料1には、電磁石3により静
磁場、および変調磁場コイル4により交流磁場が印加さ
れる。また被測定試料1には電磁波発振器5により、電
磁波(数MHz〜数GHz)が照射される。
A sample to be measured 1 in FIG. 1 is placed on a sample stage 2 in a vacuum. The sample stage 2 is cooled to a low temperature (below 4 ℃) by a cooling device using liquid helium or the like. The sample to be measured 1 and the sample stage 2 are installed so that good thermal bonding can be obtained. Therefore, the sample stage 2 and the sample to be measured 1 have approximately the same temperature. A static magnetic field by an electromagnet 3 and an alternating current magnetic field by a modulating magnetic field coil 4 are applied to the sample 1 to be measured. Further, the sample to be measured 1 is irradiated with electromagnetic waves (several MHz to several GHz) by an electromagnetic wave oscillator 5.

被測定試料1上に設置された針6は、非常に鋭い先端(
先端の曲率半径が小さい)を有し、この先端と被測定試
料1の表面との間で原子間力が作用する程度(数人〜数
十人)の距離になるように、ピエゾ駆動系7により設置
されている。
The needle 6 placed on the sample to be measured 1 has a very sharp tip (
Piezo drive system 7 It is installed by.

被測定試料1の表面層付近に、不対電子をもつ原子構造
が分布している時、この被測定試料1に電磁石3により
静磁場を印加すると被測定試料1中に分布している不対
電子は、ゼーマン効果により、(1)式で示すエネルギ
ー幅Eにその状態が分裂をおこす。
When an atomic structure with unpaired electrons is distributed near the surface layer of the sample to be measured 1, when a static magnetic field is applied to the sample to be measured 1 by the electromagnet 3, the unpaired electrons distributed in the sample to be measured 1 are Due to the Zeeman effect, the electron state splits into an energy width E expressed by equation (1).

E=gβH・・・(1) ここでHは、電磁石3により加えた磁束密度。E=gβH...(1) Here, H is the magnetic flux density applied by the electromagnet 3.

βはボーア磁子(9、2732X 100−21er/
gaum)、gは分裂をおこした不対電子の電子構造に
よってきまる定数である。
β is Bohr magneton (9, 2732X 100-21er/
gaum), g is a constant determined by the electronic structure of the unpaired electron that caused the splitting.

このように、不対電子の状態を分裂させた時、電磁波発
振器5より、そのエネルギー分裂幅Eに相当する電磁波
を被測定試料に照射すると、この電磁波は電子スピン共
鳴により吸収される。この時、分裂をおこした不対電子
は、電磁波を吸収あるいは放射する事によってスピン状
態間を遷移する。この電子スピン共鳴の詳しい説明は、
例えば、栗田雄喜生:電子スピン共鳴入門(昭和50年
3月2日発刊)により解説されている。
When the state of the unpaired electron is split in this way, when the electromagnetic wave oscillator 5 irradiates the sample to be measured with an electromagnetic wave corresponding to the energy split width E, this electromagnetic wave is absorbed by electron spin resonance. At this time, the unpaired electrons that have undergone splitting transition between spin states by absorbing or emitting electromagnetic waves. For a detailed explanation of this electron spin resonance,
For example, it is explained in Yukio Kurita: Introduction to Electron Spin Resonance (published March 2, 1975).

電子スピン共鳴において、不対電子のスピン状態量遷移
には、共鳴周波数と等しい電磁波を吸収あるいは放射す
る輻射遷移の他に、電磁波の吸収あるいは放射を伴なわ
ない無輻射遷移がある。この無輻射遷移は、主に格子に
熱エネルギーを与える事により生じる。つまりフォノン
を放出し、格子に振動モードを与える。この過程は、被
測定試料温度が比較的高い場合にはラマン過程が支配的
となるため、一つの不対電子が放出するフォノンは複数
のエネルギーに分散される。
In electron spin resonance, spin state quantity transitions of unpaired electrons include radiative transitions that absorb or emit electromagnetic waves equal to the resonance frequency, and nonradiative transitions that do not involve absorption or emission of electromagnetic waves. This non-radiative transition is mainly caused by applying thermal energy to the lattice. In other words, it emits phonons, giving the lattice a vibration mode. In this process, when the temperature of the sample to be measured is relatively high, the Raman process becomes dominant, so the phonon emitted by one unpaired electron is dispersed into multiple energies.

しかし、第1図に示すような本発明の装置の場合、被測
定試料1は極低温(一般的には4°に以下)になってい
る。このような場合、フォノン放出の過程は直接過程が
支配的となる。つまり一つの不対電子が放出するエネル
ギー(E)は、一つのフォノンとして放出される。この
ようなフォノン放出がおこると、格子はこのエネルギー
(E)に相当する特定の振動モードにより変化をおこす
However, in the case of the apparatus of the present invention as shown in FIG. 1, the sample to be measured 1 is at an extremely low temperature (generally below 4 degrees). In such cases, the phonon emission process is dominated by the direct process. In other words, the energy (E) emitted by one unpaired electron is emitted as one phonon. When such phonon emission occurs, the lattice changes with a specific vibration mode corresponding to this energy (E).

この時、被測定試料1は極低温であるため、他の熱的な
振動モードは、非常に低い状態となっているので、不対
電子のスピン状態量遷移により放出されたフォノンによ
る振動モードは相対的に大きく、このフォノン放出によ
る振動モードを検出する際の信号対雑音(S/N)比は
かなり高い。
At this time, since the sample to be measured 1 is at an extremely low temperature, other thermal vibrational modes are in a very low state, so the vibrational mode due to the phonon emitted by the spin state transition of the unpaired electron is It is relatively large, and the signal-to-noise (S/N) ratio in detecting vibrational modes due to this phonon emission is quite high.

以上、極低温状態の被測定試料中の不対電子周辺の格子
は、電子スピン共鳴により特定振動モードで変位をおこ
している。今、被測定試料1の極表面層に不対電子が存
在し、その周辺の格子に電子スピン共鳴により変位を与
えている時、第1図の針6をその被測定試料表面に近づ
ける。この針6と被測定試料表面の距離が、数人〜数十
人となった時、これらの間には原子間力が働き、それぞ
れに相互作用を与える。
As described above, the lattice around the unpaired electrons in the sample to be measured in an extremely low temperature state is displaced in a specific vibration mode due to electron spin resonance. Now, when unpaired electrons exist in the extreme surface layer of the sample to be measured 1 and the lattice around them is being displaced by electron spin resonance, the needle 6 in FIG. 1 is brought close to the surface of the sample to be measured. When the distance between the needle 6 and the surface of the sample to be measured becomes several to several tens of people, atomic force acts between them and causes interaction between them.

電子スピン共鳴により格子が振動状態にある位置に針6
を原子間力が作用する程度まで近づけると、この針6に
振動モードが伝達される。針6の先端部に伝達された振
動モードは、振幅増幅されながら針中を伝わり、圧電素
子8に到達する事で、この振動のエネルギーは電気信号
に変換される。
The needle 6 is placed at a position where the lattice is in a vibrating state due to electron spin resonance.
When the needle 6 is brought close to the point where an atomic force acts, a vibration mode is transmitted to the needle 6. The vibration mode transmitted to the tip of the needle 6 is amplified in amplitude while being transmitted through the needle, reaches the piezoelectric element 8, and the energy of this vibration is converted into an electrical signal.

この時、針6および圧電素子8を、冷却装置9により被
測定試料温度近くまで冷却する事で、針6から被測定試
料への熱輻射による被測定試料の温度上昇および、針中
または圧電素子中の熱振動の抑制をする。また測定に用
いる圧電素子の共振周波数は、電子スピン共鳴をおこす
のに用いた電磁波の周波数(フォノン放出による格子振
動の振動数)に等しくし、その共振点(Q値)を大きく
する事で、効率よく格子の振動モードを電気信号に変換
できる。
At this time, by cooling the needle 6 and the piezoelectric element 8 to near the temperature of the sample to be measured by the cooling device 9, the temperature of the sample to be measured increases due to heat radiation from the needle 6 to the sample to be measured, and the temperature in the needle or the piezoelectric element increases. Suppresses thermal vibration inside. In addition, the resonance frequency of the piezoelectric element used for measurement is made equal to the frequency of the electromagnetic wave used to cause electron spin resonance (the frequency of lattice vibration due to phonon emission), and the resonance point (Q value) is increased. The vibration mode of the lattice can be efficiently converted into an electrical signal.

上記により、検出された電気信号は増幅器10により適
当な電圧まで増幅される。また被測定試料1には前記で
説明したように、変調磁場コイル4により磁場変調がか
けられている。すなわち圧電素子8での電気信号にも変
調周波数と等しい周波数の変調が加わっている。よって
、増幅器1゜は、この変調周波数で最大利得が得られる
周波数特性をもつ増幅器が望ましい。また、増幅器10
からの信号を、磁場変調周波数で同期させロックイン増
幅器11で増幅する事で高い検出感度が得られる。この
磁場変調以外にも、照射する電磁波の強度に変調をかけ
この変調と同期させて検出する事で高い信号/雑音比を
得ることができることはいうまでもない。
As described above, the detected electrical signal is amplified to an appropriate voltage by the amplifier 10. Further, as described above, the sample to be measured 1 is subjected to magnetic field modulation by the modulating magnetic field coil 4. That is, the electric signal from the piezoelectric element 8 is also modulated at a frequency equal to the modulation frequency. Therefore, the amplifier 1° is desirably an amplifier having frequency characteristics such that maximum gain can be obtained at this modulation frequency. In addition, the amplifier 10
High detection sensitivity can be obtained by synchronizing the signals from the magnetic field modulation frequency with the magnetic field modulation frequency and amplifying them with the lock-in amplifier 11. In addition to this magnetic field modulation, it goes without saying that a high signal/noise ratio can be obtained by modulating the intensity of the irradiated electromagnetic waves and detecting them in synchronization with this modulation.

以上の説明により、極微小点での電子スピン共鳴測定と
対応した測定が可能である事を示した。
The above explanation has shown that measurements corresponding to electron spin resonance measurements at extremely small points are possible.

次に、本発明での最大の特徴である高分解能な、二次元
平面での不対電子分布の測定法について説明する。
Next, a method for measuring the unpaired electron distribution on a two-dimensional plane with high resolution, which is the most important feature of the present invention, will be explained.

第1図の基本構成は、一般的なAFM (原子間力顕微
鏡)または、STM(走査トンネル顕微鏡)と同等な機
能をかねそなえる事が可能である。よって、あらかじめ
、被測定試料中の分析領域をAFMあるいはSTMによ
り形状の#R測を行なうことができる。
The basic configuration shown in FIG. 1 can have the same functions as a general AFM (atomic force microscope) or STM (scanning tunneling microscope). Therefore, #R measurement of the shape of the analysis region in the sample to be measured can be performed in advance using AFM or STM.

不対電子の分布を測定する際には、上記に示したように
、あらかじめ分析領域の形状を測定し、次に針6が試料
表面と一定距離を保つように、形状測定の結果をフィー
ドバックさせながら、ピエゾ駆動系7で走査する。この
間、前記で説明した原理にもとづき、各点での電子スピ
ン共鳴測定を行ない、針6の位置と対応させ、二次元の
不対電子分布を表示部16に画像化することができる。
When measuring the distribution of unpaired electrons, as shown above, the shape of the analysis region is measured in advance, and then the shape measurement results are fed back so that the needle 6 maintains a constant distance from the sample surface. At the same time, the piezo drive system 7 scans. During this time, electron spin resonance measurements are performed at each point based on the principle explained above, and the two-dimensional unpaired electron distribution can be visualized on the display unit 16 in correspondence with the position of the needle 6.

また、AFMまたはSTMで得られた形状測定結果と合
わせ、その形状と不対電子分布の関係を知ることができ
る。
Furthermore, in combination with the shape measurement results obtained by AFM or STM, it is possible to know the relationship between the shape and the unpaired electron distribution.

以上の実施例では、電子スピン共鳴を起こすのに、電磁
波発振器5からの電磁波を用いる方法について説明した
が、次に第2の方法として電磁波を用いずにスピン系に
エネルギーを供給し、測定する方法について説明する。
In the above embodiment, the method of using electromagnetic waves from the electromagnetic wave oscillator 5 to cause electron spin resonance was explained, but next, as a second method, energy is supplied to the spin system without using electromagnetic waves, and measurement is performed. Explain the method.

装置構成は第1図とほぼ同一であるが、電磁波発振器5
は不要である。また本方法では圧電素子8を振動の検出
だけでなく、格子振動の励起にも用いる。極低温状態で
のスピン系は、その無輻射遷移によって一つのフォノン
(ゼーマン分裂幅に相当するエネルギーをもつ)を励起
するが、その逆の過程もおこりうる。つまり特定の振動
モードを格子に伝達すると、そのフォノンのエネルギー
は、スピン−軌道相互作用を介しスピン系に伝達される
The device configuration is almost the same as in Fig. 1, except that the electromagnetic wave oscillator 5
is not necessary. Furthermore, in this method, the piezoelectric element 8 is used not only for detecting vibrations but also for exciting lattice vibrations. A spin system in an extremely low temperature state excites a single phonon (with an energy corresponding to the Zeeman splitting width) through its nonradiative transition, but the reverse process can also occur. In other words, when a specific vibration mode is transmitted to the lattice, the energy of the phonon is transmitted to the spin system via spin-orbit interaction.

この原理にもとづき、まず圧電素子8に、その圧電素子
の共振周波数に相当する周波数の微小電圧を印加し、針
6の先端部に高周波の微tJs変位を与える。この状態
で針6を被測定試料表面に近づけてゆくと、ある距離で
針6先端部と被測定試料表面との間で原子間力が働き、
この原子間力を介し、高周波振動が被測定試料の表面に
伝達され、フォノンを励起する。
Based on this principle, first, a minute voltage of a frequency corresponding to the resonance frequency of the piezoelectric element 8 is applied to the piezoelectric element 8, and a minute tJs displacement of high frequency is applied to the tip of the needle 6. When the needle 6 is brought closer to the surface of the sample to be measured in this state, an atomic force acts between the tip of the needle 6 and the surface of the sample to be measured at a certain distance.
Via this atomic force, high-frequency vibrations are transmitted to the surface of the sample to be measured, exciting phonons.

この圧電素子による格子振動の励起をパルス状に行ない
、反射してきた共振周波数モードの振動を同一の圧電素
子で受信する。この時、電磁石3による磁場と格子振動
の周波数が、電子スピン共鳴の条件を満足する場合、格
子振動のエネルギーは吸収されるため、圧電素子で受信
した反射波の強度は減少する。よってこの反射波の強度
変化から、電子スピン共鳴を観測できる。
The piezoelectric element excites the lattice vibration in a pulsed manner, and the reflected resonance frequency mode vibration is received by the same piezoelectric element. At this time, if the magnetic field generated by the electromagnet 3 and the frequency of the lattice vibration satisfy the conditions for electron spin resonance, the energy of the lattice vibration is absorbed, so the intensity of the reflected wave received by the piezoelectric element decreases. Therefore, electron spin resonance can be observed from changes in the intensity of this reflected wave.

次に本発明を用いた実際の測定例を示す。Next, an actual measurement example using the present invention will be shown.

第2図に、測定に用いた試料を示す。これは単結晶Si
基板17にFIB (集束イオンビーム)装置により、
線幅0.2μmでリンを打込み、描画したものである。
Figure 2 shows the sample used for the measurement. This is single crystal Si
A FIB (focused ion beam) device is applied to the substrate 17.
Phosphorus was implanted and drawn with a line width of 0.2 μm.

描画後の基板17は約900℃の熱処理がほどこされて
おり、打込まれたリンは活性化されている。
The substrate 17 after drawing is subjected to heat treatment at about 900° C., and the implanted phosphorus is activated.

まず、この試料17のリンイオン打ち込み領域において
、第1図の装置での針6を、Si基板17表面との間で
原子間力がおよぶ程度の距離に保って固定した。次に1
 、0 G Hz  の電磁波を試料に照射し、電磁石
により静磁場の磁場強度を走査した。
First, in the phosphorus ion implantation region of this sample 17, the needle 6 of the apparatus shown in FIG. 1 was fixed at a distance such that an atomic force was exerted between it and the surface of the Si substrate 17. Next 1
, 0 GHz electromagnetic waves were irradiated onto the sample, and the magnetic field strength of the static magnetic field was scanned using an electromagnet.

第3図にこの時ロックイン増幅器より得られた走査磁場
強度に対する信号変化を示す。また、この時の試料温度
は約1.5にであった。第3図かられかるように、磁場
強度約330ガウス(Gauss)を中心に約2 、2
 Gaussはなれた二本の信号が観測された。これは
Si基板中で活性化されたリンの不対電子による信号で
ある。
FIG. 3 shows signal changes with respect to the scanning magnetic field strength obtained from the lock-in amplifier at this time. Further, the sample temperature at this time was about 1.5. As can be seen from Figure 3, the magnetic field strength is about 2,2
Two Gaussian signals separated from each other were observed. This is a signal caused by unpaired electrons of phosphorus activated in the Si substrate.

次に、上記の信号が観測される磁場強度H工に磁場強度
を固定し、ピエゾ駆動系により針6をSi基板上で走査
しながら、信号を検出しその強度分布を示した結果を第
4図と第5図に示す。第4図と第5図では走査範囲が異
なるが、両方とも予想されるリンドナーの分布をよく再
生している。
Next, the magnetic field strength is fixed at the magnetic field strength H where the above signal is observed, and the signal is detected while scanning the needle 6 on the Si substrate using the piezo drive system. As shown in Fig. and Fig. 5. Although the scan ranges in FIGS. 4 and 5 are different, both reproduce the expected Lindner distribution well.

特に、第5図においては打込み層の境界において信号強
度の変化が急でなく、なだらかに減少していることがわ
かる。これは、打ち込み後の活性化熱処理によって、リ
ン原子が拡散したことによるものと考えられる。
In particular, in FIG. 5, it can be seen that the change in signal intensity at the boundary of the implanted layer is not abrupt, but gradually decreases. This is considered to be due to the diffusion of phosphorus atoms due to the activation heat treatment after implantation.

次に、第2番目の方法として説明した。圧電素子により
格子振動を励起し、電子スピン共鳴を観測した結果を示
す。
Next, the second method was explained. The results are shown in which electron spin resonance was observed by exciting lattice vibrations using a piezoelectric element.

この方法の場合、励起用の高周波は極短時間のパルスで
印加する。このパルス印加後、時間的に少しおくれで被
測定試料表面あるいは内部あるいは各界面より反射波が
針を介し、圧電素子に受信される。
In this method, the high frequency for excitation is applied in extremely short pulses. After this pulse is applied, reflected waves are received by the piezoelectric element from the surface or inside of the sample to be measured or from each interface via the needle a little later in time.

この時、励起用に印加した高周波振動の周波数と、外部
印加磁場強度が電子スピン共鳴の条件を満足すると、印
加した高周波振動による格子振動のエネルギーがスピン
/軌道相互作用を介し、スピンのエネルギーに伝達され
る。すなわち励起用に印加した高周波振動のエネルギー
が吸収されたことになる。
At this time, when the frequency of the high-frequency vibration applied for excitation and the strength of the externally applied magnetic field satisfy the conditions for electron spin resonance, the energy of the lattice vibration due to the applied high-frequency vibration is converted to spin energy through spin/orbit interaction. communicated. In other words, the energy of the high frequency vibration applied for excitation is absorbed.

この電子スピン共鳴による高周波振動エネルギーの吸収
の結果、圧電素子で受信される反射波の強度が変化する
。よってこの反射波強度をモニターすることで、電子ス
ピン共鳴を観測できる。
As a result of this absorption of high-frequency vibration energy by electron spin resonance, the intensity of the reflected wave received by the piezoelectric element changes. Therefore, by monitoring the intensity of this reflected wave, electron spin resonance can be observed.

以上の方法により、第2図の試料を測定した結果を第6
図に示す。この結果は、1.0GHz  の高周波振動
を極短時間印加した後の反射波をモニターしたものであ
る。第6図(a)に比べ、第6図(b)の反射波強度が
減少していることがわかる。これはリンドナーのスピン
が1.0GHz  で電子スピン共鳴をおこしうる磁場
を印加したためである。なおこの第6図の結果は、第6
図に示すようなスペクトルを一周期とし、これを複数回
くりかえし取りこんだ加算平均値である。
Using the above method, the results of measuring the sample in Figure 2 are shown in Figure 6.
As shown in the figure. This result was obtained by monitoring the reflected waves after applying a high frequency vibration of 1.0 GHz for an extremely short period of time. It can be seen that the reflected wave intensity in FIG. 6(b) is reduced compared to FIG. 6(a). This is due to the application of a magnetic field capable of causing electron spin resonance at a Lind donor spin of 1.0 GHz. Note that the results shown in Figure 6 are
The spectrum shown in the figure is taken as one cycle, and is an average value obtained by repeating the spectrum several times.

以上の本発明の実施例においては、スピン系の無輻射遷
移による過程が直接過程によるものが支配的となる。こ
こで、極低温状態(約1.5に以下)の場合について説
明したが、これは単に検出に用いた圧電素子の共振周波
数と、フォノン放出による格子振動の振動数を一致とせ
ることで検出感度を向上させる目的のためである。すな
わち、もっと試料温度が高い場合例えばIOK以下(複
数の振動モードが励起される)においても、振動全体の
変化を検出することで同等の測定が可能なことはいうま
でもない。
In the above-described embodiments of the present invention, the direct process is predominant in the non-radiative transition of the spin system. Here, we have explained the case of an extremely low temperature state (approximately 1.5 or less), but this can be detected simply by matching the resonance frequency of the piezoelectric element used for detection with the frequency of the lattice vibration caused by phonon emission. This is for the purpose of improving sensitivity. That is, it goes without saying that even when the sample temperature is higher, for example below IOK (a plurality of vibration modes are excited), equivalent measurements can be made by detecting changes in the overall vibration.

また、本発明の実施例においては、電子スピン共鳴装置
への応用例について述べたが、本発明は核磁気共鳴装置
、核磁気共鳴装置などの核磁気共鳴装置への応用に対し
てもその原理を効果的に用いることができる。
Further, in the embodiments of the present invention, an example of application to an electron spin resonance apparatus has been described, but the principles of the present invention can also be applied to a nuclear magnetic resonance apparatus such as a nuclear magnetic resonance apparatus, a nuclear magnetic resonance apparatus, etc. can be used effectively.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明の磁気共鳴現象の測
定装置によれば、極微小な領域の分析を高感度に行うこ
とができる。例えば、実施例で説明した例によれば、分
解能は0.05μ以下であリ、半導体素子の評価等に充
分対応可能であることが確かめられた。
As described above in detail, according to the magnetic resonance phenomenon measuring device of the present invention, analysis of extremely small areas can be performed with high sensitivity. For example, according to the example described in the example, the resolution is 0.05 μ or less, and it has been confirmed that it is sufficiently applicable to the evaluation of semiconductor devices.

また、検出用の針を試料表面で走査しながら分析するこ
とで、スピン強度あるいはスピン種のイメージングが可
能であり、同時にそれと対応したAFMあるいはSTM
像も得られ、従来の磁気共鳴現象の測定装置の応用範囲
を飛躍的に拡大することができる。
In addition, by analyzing the sample surface while scanning it with a detection needle, it is possible to image the spin intensity or spin species, and at the same time, the corresponding AFM or STM
Images can also be obtained, dramatically expanding the range of applications of conventional magnetic resonance phenomenon measuring devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理にもとづく装置の基本構成を示
す正面図、第2図は本発明の実施例で使用した被測定試
料の説明図、第3図、第4図、第5図、第6図は1本発
明の実施例での測定結果を葉 図 第 図 力 Δ 図 (L)石敵饋なし 4)8へ埼あワ
Figure 1 is a front view showing the basic configuration of the device based on the principle of the present invention, Figure 2 is an explanatory diagram of the sample to be measured used in the embodiment of the present invention, Figures 3, 4, and 5. , Figure 6 shows the measurement results in the embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、エネルギーを分離させたスピン系に、その分離幅も
しくは分離幅近傍のエネルギーに相当する電磁波を供給
する手段あるいは、スピン軌道相互作用を介し、格子振
動のエネルギーをスピン系に伝達するような格子振動を
ひきおこす手段を有する磁気共鳴の測定装置において、
共鳴現象の検出に、試料表面に励起された振動モードを
検出し、その強度変化から磁気共鳴を測定する手段を有
してなることを特徴とする磁気共鳴現象の測定装置。 2、請求項1記載の装置において、スピン系のエネルギ
ーを分離させる手段が、磁場印加手段によることを特徴
とする磁気共鳴現象の測定装置。 3、請求項1または2記載の装置において、スピン系の
分離幅もしくは分離幅近傍のエネルギーに相当する電磁
波を供給する手段として、マイクロ波もしくはラジオ波
領域の電磁波を供給することを特徴とする磁気共鳴現象
の測定装置。 4、請求項1または2記載の装置において、スピン・軌
道相互作用を介し、格子振動のエネルギーをスピン系に
伝達するような格子振動を被測定試料表面と原子間力が
およぶ程度まで近づけた鋭い先端径を有する針を介し、
圧電素子により引きおこすことを特徴とする磁気共鳴現
象の測定装置。 5、請求項1乃至4記載の装置において、格子振動を被
測定試料表面から検出する手段として、原子間力がおよ
ぶ程度まで被測定試料表面に近づけた鋭い先端径を有す
る針を介し、圧電素子により検出することを特徴とする
磁気共鳴現象の測定装置。 6、請求項1乃至5記載の装置において、エネルギーを
分離させたスピン系に、その分離幅もしくは分離幅近傍
のエネルギーに相当する共鳴スペクトルを得る手段が、
印加する磁場の強度もしくは供給する電磁波の振動数ま
たは、格子振動を励起する際の振動数を変化させる手段
によることを特徴とする磁気共鳴現象の測定装置。 7、請求項1乃至6記載の装置において、被測定試料を
真空中にて、スピン系の無輻射遷移による格子振動のモ
ードが検出しうるような任意の低温状態にする手段を有
することを特徴とする磁気共鳴現象の測定装置。 8、請求項1乃至7記載の装置において、格子振動の検
出に用いる針または、針と圧電素子の両方を低温に冷却
することが可能な手段を有することを特徴とする磁気共
鳴現象の測定装置。 9、請求項7もしくは8記載の装置において、冷却を行
なうのに液体ヘリウムまたは電子冷却素子またはそれら
両方の併用を用いることを特徴とする磁気共鳴現象の測
定装置。 10、請求項1および2および4乃至9記載の装置にお
いて、格子振動を励起するための圧電素子と、格子振動
の変化を検出するための圧電素子を併用することを特徴
とする磁気共鳴現象の測定装置。 11、請求項1および2および4乃至10記載の装置に
おいて、格子振動の励起を極短時間のパルス状に印加す
る事を特徴とする磁気共鳴現象の測定装置。 12、請求項11記載の装置において、格子振動の変化
の検出は、請求項11で示した格子振動励起用のパルス
から時間的におくれて検出される反射波の強度変化によ
り検出する事を特徴とする磁気共鳴現象の測定装置。 13、請求項1および2および4乃至12記載の装置に
おいて、極短時間の格子振動励起用のパルスをある一定
周期でくりかえし、各周期ごとの反射波を加算し、ある
一定時間内での加算平均をとることで、信号対雑音比を
高上させることを特徴とする磁気共鳴現象の測定装置。 14、請求項1乃至3および5乃至9記載の装置におい
て、スピン系の分離幅または分離幅近傍のエネルギーに
相当する電磁波を供給する際、供給を間欠的に行ない、
検出もそれと同期して行なう事で加算平均値を得る事が
可能な装置構成であることを特徴とする磁気共鳴現象の
測定装置。 15、請求項1乃至3および5乃至9記載の装置におい
て、被測定試料に微小振幅の変調磁場を印加する事が可
能で、この変調磁場と同期してロックイン増幅器により
信号検出が可能な装置構成を特徴とする磁気共鳴現象の
測定装置。 16、請求項1乃至15記載の装置において、格子振動
の励起あるいは格子振動の検出に用いる針および圧電素
子が三次元的に駆動できる機能を有する事を特徴とする
磁気共鳴現象の測定装置。 17、請求項16記載の針および圧電素子を駆動させる
機能に原子オーダの駆動精度を有するピエゾ素子を用い
る事を特徴とする磁気共鳴現象の測定装置。 18、請求項16もしくは17記載のピエゾ素子は、同
時にAFM(原子間力顕微鏡)あるいはSTM(走査ト
ンネル顕微鏡)の機能をかねそなえることを特徴とする
磁気共鳴現象の測定装置。 19、請求項18記載のAFMもしくはSTMの機能に
より、AFMあるいはSTM観測による形状測定なら磁
気共鳴分析を行う領域の選定を行う事が可能である事を
特徴とする磁気共鳴現象の測定装置。 20、請求項1乃至19記載の装置において、磁気共鳴
分析を行ないながら針を被測定試料面上で二次元的に走
査することで、スピンの分布の二次元観測が可能なこと
を特徴とする磁気共鳴現象の測定装置。 21、請求項20記載の装置において、二次元平面内で
のスピン分布測定の結果を、ディスプレイあるいはX−
Yレコーダ上に表示することで、スピン分布の可視化が
可能なことを特徴とする磁気共鳴現象の測定装置。
[Claims] 1. A means for supplying an electromagnetic wave corresponding to the separation width or energy near the separation width to a spin system whose energy is separated, or a means for supplying energy of lattice vibration to a spin system through spin-orbit interaction. In a magnetic resonance measurement apparatus having means for causing lattice vibrations such that the lattice vibrations are transmitted to
1. An apparatus for measuring a magnetic resonance phenomenon, comprising means for detecting a vibration mode excited on a sample surface and measuring magnetic resonance from changes in intensity thereof. 2. An apparatus for measuring magnetic resonance phenomena according to claim 1, wherein the means for separating the energy of the spin system is a magnetic field applying means. 3. The magnetic device according to claim 1 or 2, characterized in that the means for supplying electromagnetic waves corresponding to the separation width or the energy near the separation width of the spin system is an electromagnetic wave in the microwave or radio wave region. A device for measuring resonance phenomena. 4. The apparatus according to claim 1 or 2, in which the lattice vibration, which transmits the energy of the lattice vibration to the spin system via spin-orbit interaction, is brought close to the surface of the sample to be measured to the extent that atomic force is exerted. Through a needle with a tip diameter of
A device for measuring magnetic resonance phenomena, which is characterized by being caused by a piezoelectric element. 5. In the apparatus according to claims 1 to 4, as a means for detecting lattice vibration from the surface of a sample to be measured, a piezoelectric element is detected through a needle having a sharp tip brought close to the surface of the sample to be measured to the extent that atomic force is applied. A measuring device for a magnetic resonance phenomenon, which is characterized by detecting a magnetic resonance phenomenon. 6. In the apparatus according to claims 1 to 5, the means for obtaining a resonance spectrum corresponding to a separation width or an energy near the separation width in a spin system whose energy is separated,
A measuring device for magnetic resonance phenomena, characterized in that it uses means for changing the intensity of an applied magnetic field, the frequency of supplied electromagnetic waves, or the frequency of exciting lattice vibrations. 7. The apparatus according to claims 1 to 6, further comprising means for bringing the sample to be measured in a vacuum into an arbitrary low temperature state such that a mode of lattice vibration due to non-radiative transition of the spin system can be detected. A device for measuring magnetic resonance phenomena. 8. An apparatus for measuring magnetic resonance phenomena according to any one of claims 1 to 7, characterized in that it has means capable of cooling the needle used for detecting lattice vibrations or both the needle and the piezoelectric element to a low temperature. . 9. An apparatus for measuring magnetic resonance phenomena according to claim 7 or 8, characterized in that liquid helium, an electronic cooling element, or a combination of both are used for cooling. 10. The apparatus according to claims 1 and 2 and 4 to 9, characterized in that a piezoelectric element for exciting lattice vibrations and a piezoelectric element for detecting changes in lattice vibrations are used together. measuring device. 11. An apparatus for measuring magnetic resonance phenomena according to claims 1 and 2 and 4 to 10, characterized in that excitation of lattice vibration is applied in the form of extremely short pulses. 12. In the apparatus according to claim 11, the change in the lattice vibration is detected by a change in the intensity of the reflected wave detected with a time delay from the pulse for excitation of the lattice vibration according to claim 11. A device for measuring magnetic resonance phenomena. 13. In the apparatus according to claims 1 and 2 and 4 to 12, the pulse for excitation of extremely short lattice vibration is repeated at a certain period, and the reflected waves of each period are added, and the addition is performed within a certain period of time. A measuring device for magnetic resonance phenomena that is characterized by increasing the signal-to-noise ratio by taking an average. 14. In the apparatus according to claims 1 to 3 and 5 to 9, when supplying the electromagnetic wave corresponding to the separation width of the spin system or the energy in the vicinity of the separation width, the supply is performed intermittently,
An apparatus for measuring magnetic resonance phenomena, characterized in that the apparatus is configured to be capable of obtaining an average value by performing detection in synchronization with the detection. 15. The apparatus according to claims 1 to 3 and 5 to 9, which is capable of applying a modulated magnetic field of minute amplitude to the sample to be measured, and capable of detecting a signal using a lock-in amplifier in synchronization with this modulated magnetic field. A measuring device for magnetic resonance phenomena characterized by its configuration. 16. An apparatus for measuring magnetic resonance phenomena according to any one of claims 1 to 15, characterized in that the needle and piezoelectric element used for excitation of lattice vibration or detection of lattice vibration have a function of being able to drive three-dimensionally. 17. An apparatus for measuring magnetic resonance phenomena, characterized in that a piezo element having a driving precision on the atomic order is used for the function of driving the needle and piezoelectric element according to claim 16. 18. An apparatus for measuring magnetic resonance phenomena, characterized in that the piezo element according to claim 16 or 17 simultaneously functions as an AFM (atomic force microscope) or an STM (scanning tunneling microscope). 19. An apparatus for measuring magnetic resonance phenomena, characterized in that the function of AFM or STM according to claim 18 makes it possible to select a region for magnetic resonance analysis in the case of shape measurement by AFM or STM observation. 20. The apparatus according to claims 1 to 19, characterized in that the spin distribution can be observed two-dimensionally by scanning the needle two-dimensionally over the surface of the sample to be measured while performing magnetic resonance analysis. A device for measuring magnetic resonance phenomena. 21. In the apparatus according to claim 20, the results of spin distribution measurement within a two-dimensional plane are displayed on a display or on an X-
A measuring device for magnetic resonance phenomena, characterized in that spin distribution can be visualized by displaying it on a Y recorder.
JP12132490A 1990-05-14 1990-05-14 Measuring instrument for magnetic resonance phenomenon Pending JPH0419585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12132490A JPH0419585A (en) 1990-05-14 1990-05-14 Measuring instrument for magnetic resonance phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12132490A JPH0419585A (en) 1990-05-14 1990-05-14 Measuring instrument for magnetic resonance phenomenon

Publications (1)

Publication Number Publication Date
JPH0419585A true JPH0419585A (en) 1992-01-23

Family

ID=14808435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12132490A Pending JPH0419585A (en) 1990-05-14 1990-05-14 Measuring instrument for magnetic resonance phenomenon

Country Status (1)

Country Link
JP (1) JPH0419585A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036395A1 (en) * 1998-12-17 2000-06-22 Japan Science And Technology Corporation Magnetic resonance exchange interaction force microscope and method for measuring exchange interaction force using the same
EP1830172A2 (en) * 2006-03-01 2007-09-05 Jeol Ltd. Magnetic resonance force microscope
JP2011242295A (en) * 2010-05-19 2011-12-01 Kyoto Univ Spectrometer, measuring apparatus and data processing method
CN103592468A (en) * 2013-11-16 2014-02-19 中北大学 Ferromagnetic resonance magnet exchange force microscope test system
CN114112130A (en) * 2021-09-30 2022-03-01 河海大学 Device and method for repeatedly measuring stress intensity factor of crack tip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036395A1 (en) * 1998-12-17 2000-06-22 Japan Science And Technology Corporation Magnetic resonance exchange interaction force microscope and method for measuring exchange interaction force using the same
EP1830172A2 (en) * 2006-03-01 2007-09-05 Jeol Ltd. Magnetic resonance force microscope
EP1830172A3 (en) * 2006-03-01 2007-11-21 Jeol Ltd. Magnetic resonance force microscope
JP2011242295A (en) * 2010-05-19 2011-12-01 Kyoto Univ Spectrometer, measuring apparatus and data processing method
CN103592468A (en) * 2013-11-16 2014-02-19 中北大学 Ferromagnetic resonance magnet exchange force microscope test system
CN114112130A (en) * 2021-09-30 2022-03-01 河海大学 Device and method for repeatedly measuring stress intensity factor of crack tip

Similar Documents

Publication Publication Date Title
US5319977A (en) Near field acoustic ultrasonic microscope system and method
Von Gutfeld et al. 20‐MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces
EP0726444B1 (en) Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
Rosencwaig Thermal-wave imaging
Balk et al. Techniques for scanning electron acoustic microscopy
WO2013011869A1 (en) Property measuring device for object to be measured and property measuring method for object to be measured
CN110462417A (en) Scanning sensor including the defect that spins
Argyle et al. Experimental study of domain wall response to sinusoidal and pulsed fields
US7109706B2 (en) Integrated EWP-STM spin resonance microscope
US2617854A (en) Induced voltage flaw detector
Cargill III Electron‐acoustic microscopy
Balk Scanning electron acoustic microscopy
Meckenstock Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: Resolution in the nanometer range
JPH0419585A (en) Measuring instrument for magnetic resonance phenomenon
JPH0337931B2 (en)
EP0872707A1 (en) Apparatus for measuring exchange force
Davies Scanning electron acoustic microscopy and its applications
Lekavicius et al. Magnetometry Based on Silicon-Vacancy Centers in Isotopically Purified 4 H-SiC
CN108469447B (en) Probe type electron spin detection method based on microwave phase modulation spectrum technology
Meckenstock et al. Scanning thermal microwave resonance microscopy of Ni nanodots
JPH0432788A (en) Method and instrument for measuring magnetic resonance phenomenon
EP4163645A1 (en) Metrology device and method
SU1326972A1 (en) Method of investigating substange by electronic paramagnetic resonance method
Church et al. Polarization detection of trapped electrons via interaction with polarized atoms
JP3566567B2 (en) Magnetic resonance type exchange interaction force microscope and observation method using the same