JPH05126798A - Method and device for measuring transformation rate - Google Patents

Method and device for measuring transformation rate

Info

Publication number
JPH05126798A
JPH05126798A JP3286730A JP28673091A JPH05126798A JP H05126798 A JPH05126798 A JP H05126798A JP 3286730 A JP3286730 A JP 3286730A JP 28673091 A JP28673091 A JP 28673091A JP H05126798 A JPH05126798 A JP H05126798A
Authority
JP
Japan
Prior art keywords
magnetic
metal plate
magnetic flux
transformation rate
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3286730A
Other languages
Japanese (ja)
Other versions
JP2663767B2 (en
Inventor
Seigo Ando
静吾 安藤
Yasuhiro Matsufuji
泰大 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP28673091A priority Critical patent/JP2663767B2/en
Publication of JPH05126798A publication Critical patent/JPH05126798A/en
Application granted granted Critical
Publication of JP2663767B2 publication Critical patent/JP2663767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To precisely and simply measure a transformation rate in electric and magnetic characteristics accompanying heat treatment and the like on a metal plate of a steel plate and the like by bringing the device into contact therewith. CONSTITUTION:With a magnetizer 22 near the one hand face of an inspectionintended metal plate 25, the magnetizer 22 producing a magnetic flux for magnetizing the metal plate is arranged so that a pair of magnetic poles 23a, 23b may be opposed to each other. A pair of magnetic sensors 26a, 26b are arranged at right angles with the metal plate sandwiched at each opposed position of each magnetic pole in the direction of each magnetic induction and a subtraction magnetic flux DELTAPHI between each magnetic flux penetrating the metal plate detected with the magnetic sensors is found to measure a transformation rate of the metal plate by means of the subtraction magnetic flux value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は相互誘導方法を用いて鋼
板等の金属板における変態率を測定する変態率測定方法
及び変態率測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transformation rate measuring method and a transformation rate measuring apparatus for measuring a transformation rate in a metal sheet such as a steel sheet using a mutual induction method.

【0002】[0002]

【従来の技術】製鉄所で製造される鋼板の各種機械的特
性及び物理的特性に大きく影響を与える最終的な組織を
常に一定状態に維持するとは高い品質を維持するために
非常に重要な事項である。
2. Description of the Related Art Maintaining a final structure that has a great influence on various mechanical properties and physical properties of steel sheets manufactured in steel mills in a constant state is a very important matter for maintaining high quality. Is.

【0003】例えば、磁気的特性のうち透磁率は、硬
度,結晶粒度等の機械的特性に対して高い相関関係を有
している。このため、透磁率と機械的特性との相関関係
を予め測定しておけば、透磁率の測定を行う事によっ
て、鋼板の機械的特性をある程度推定することが可能と
なる。
For example, magnetic permeability among magnetic characteristics has a high correlation with mechanical characteristics such as hardness and grain size. Therefore, if the correlation between magnetic permeability and mechanical properties is measured in advance, the mechanical properties of the steel sheet can be estimated to some extent by measuring the magnetic permeability.

【0004】また、製造工程管理においても、熱間鋼の
熱処理過程でオーステナイト相からフェライト相に変態
するが、その変態時期や変態率を正確に監視できれは、
熱間圧延ライン,熱処理ラインを用いた各種鋼材の製造
分野において極めて大きな製造品質上の効果を期待でき
る。また、製造工程で実際に連続して流れている鋼板に
対して磁気的特性の測定を行うためには、非接触でかつ
オンライン状態でこれらの測定を実施する必要がある。
Also in the control of the manufacturing process, the austenite phase transforms to the ferrite phase during the heat treatment process of hot steel. If the transformation timing and transformation rate can be accurately monitored,
In the field of manufacturing various steel products using a hot rolling line and a heat treatment line, an extremely large effect on manufacturing quality can be expected. Further, in order to measure the magnetic properties of a steel sheet that actually flows continuously in the manufacturing process, it is necessary to perform these measurements in a non-contact and online state.

【0005】そして、この相変態の測定においては、当
然磁気的特性が変化するので、この磁気的変化を検出す
ればよい。従来、このような鋼板における磁気的特性を
非接触でかつオンライン状態で測定する場合、検査対象
の鋼板を通過する磁束の減衰率が鋼板の磁気的特性によ
り変化するという性質を利用する図6に示す変態率測定
装置が提唱されている(特開昭56−82443号公
報)。
In the measurement of this phase transformation, the magnetic characteristics naturally change, so this magnetic change may be detected. Conventionally, when the magnetic characteristics of such a steel sheet are measured in a non-contact and online state, the property that the attenuation rate of the magnetic flux passing through the steel sheet to be inspected changes depending on the magnetic characteristics of the steel sheet is shown in FIG. The transformation rate measuring device shown below has been proposed (JP-A-56-82443).

【0006】すなわち、検査対象としての鋼板1の一方
面側に所定距離d1をあけて磁化鉄心2と励磁コイル3
からなる磁化器4が、一対の磁極4a,4bが鋼板1に
対向するように配設されている。磁化器4の励磁コイル
3には磁化電源5から励磁電流が印加される。そして、
この鋼板1の他方側に距離d2 だけ離間して磁気検出素
子6が配設されている。また、鋼板1の表面温度は温度
計7で測定される。磁気検出素子6にて検出された磁束
は演算装置8へ送信される。
That is, a magnetized iron core 2 and an excitation coil 3 are provided with a predetermined distance d 1 on one side of a steel plate 1 to be inspected.
The magnetizer 4 made of is arranged so that the pair of magnetic poles 4a and 4b face the steel plate 1. An exciting current is applied to the exciting coil 3 of the magnetizer 4 from the magnetizing power supply 5. And
A magnetic detecting element 6 is arranged on the other side of the steel plate 1 with a distance d 2 between them. The surface temperature of the steel sheet 1 is measured by the thermometer 7. The magnetic flux detected by the magnetic detection element 6 is transmitted to the arithmetic unit 8.

【0007】このような構成の変態率測定装置によれ
ば、磁化器4の一方の磁極4aから出力された磁束の大
部分は鋼板1内を通過して他方の磁極4bに入力される
が、磁化器4の発生磁界が大きい場合は、磁化器4の一
方の磁極4aから出力された磁束9の一部はこの鋼板1
を貫通して反対側の空間を経由して、再度鋼板1を逆方
向に貫通して他方の磁極4bに入力する。
According to the transformation rate measuring device having such a configuration, most of the magnetic flux output from one magnetic pole 4a of the magnetizer 4 passes through the steel plate 1 and is input to the other magnetic pole 4b. When the magnetic field generated by the magnetizer 4 is large, a part of the magnetic flux 9 output from the one magnetic pole 4 a of the magnetizer 4 is part of the steel plate 1.
Through the space on the opposite side, the steel plate 1 is again penetrated in the opposite direction and input to the other magnetic pole 4b.

【0008】そして、鋼板1の変態率が変化すると、鋼
板1の透磁率等の磁気特性が変化して、鋼板1を貫通す
る磁束9の強度Φが変化する。したがって、予め既知の
変態率を有する試験用鋼板における基準磁束強度を求め
ておき、測定された磁束強度Φと基準磁束強度とを比較
することによって変態率が求まる。また、鋼板1を一定
方向へ移動させながら、磁気検出素子6で鋼板1の反対
側に漏れた磁束9の強度Φを連続測定して、その磁束強
度Φが大きく変化した地点を鋼板上の変態率の変化地点
と見なすことが可能である。
When the transformation rate of the steel sheet 1 changes, the magnetic characteristics such as the magnetic permeability of the steel sheet 1 change, and the strength Φ of the magnetic flux 9 penetrating the steel sheet 1 changes. Therefore, the transformation rate can be obtained by previously obtaining the reference magnetic flux strength of the test steel sheet having the known transformation rate and comparing the measured magnetic flux strength Φ with the reference flux strength. Further, while moving the steel sheet 1 in a certain direction, the strength Φ of the magnetic flux 9 leaked to the opposite side of the steel sheet 1 is continuously measured by the magnetic detection element 6, and the point at which the magnetic flux strength Φ largely changes is transformed on the steel sheet. It can be considered as a rate change point.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図6に
示した従来の変態率測定装置においてもまだ次のような
課題があった。
However, the conventional transformation rate measuring apparatus shown in FIG. 6 still has the following problems.

【0010】すなわち、磁気検出素子6には前述した磁
化器4の各磁極4a,4bから出力されて鋼板1を貫通
した磁束9の他に周辺機器から出力される浮遊磁束が検
出される。特に、この変態率測定装置を前述した製鉄工
場における製造ラインに設置した場合においては、周囲
に多数のモータや各種電気機器が配設されているので、
これらの機器から周囲に漏れる磁束が大きい。これらの
磁束が前記磁気検出素子6に交差すると、磁気検出素子
6から検出される前記正規の磁束9に起因する信号成分
にこれらの浮遊磁束に起因する信号が雑音成分として重
畳する。
That is, in addition to the magnetic flux 9 output from the magnetic poles 4a and 4b of the magnetizer 4 and penetrating the steel plate 1, the magnetic detection element 6 detects stray magnetic flux output from peripheral equipment. In particular, when this transformation rate measuring device is installed in the production line of the above-mentioned steel manufacturing plant, since many motors and various electric devices are arranged in the surroundings,
The magnetic flux leaking from these devices to the surroundings is large. When these magnetic fluxes intersect with the magnetic detection element 6, the signals caused by these floating magnetic fluxes are superimposed as noise components on the signal components caused by the regular magnetic flux 9 detected by the magnetic detection element 6.

【0011】したがって、磁気検出素子6の出力信号の
なかに占める正規磁束9による信号成分比率が小さくな
って、出力信号全体のS/Nが低下して、磁束9の磁束
強度Φにおける微細な変化を正確に検出できない。した
がって、鋼板1の変態率の測定精度が低下する。
Therefore, the signal component ratio of the normal magnetic flux 9 in the output signal of the magnetic detection element 6 is reduced, the S / N of the entire output signal is reduced, and the magnetic flux intensity Φ of the magnetic flux 9 is minutely changed. Cannot be detected accurately. Therefore, the measurement accuracy of the transformation rate of the steel sheet 1 is reduced.

【0012】このような不都合を解消するためには、磁
気検出素子6と鋼板1との間の距離d2 を短く設定し
て、磁気検出素子6に交差する磁束9の数を多くすれば
よいが、鋼板1は振動しながらかなりの速度で移動して
いるので、過度に磁気検出素子6を接近させると、接触
事故等が発生する懸念がある。また、鋼板1の温度が高
い場合は、過度に接近させると、磁気検出素子6の磁気
検出特性が変化したり、検出信号の信号レベルが変動す
る懸念がある。
In order to eliminate such an inconvenience, the distance d 2 between the magnetic detection element 6 and the steel plate 1 may be set short and the number of magnetic fluxes 9 intersecting the magnetic detection element 6 may be increased. However, since the steel plate 1 is moving at a considerable speed while vibrating, there is a concern that a contact accident or the like may occur if the magnetic detection element 6 is brought too close. Further, when the temperature of the steel sheet 1 is high, there is a concern that the magnetic detection characteristics of the magnetic detection element 6 may change or the signal level of the detection signal may change if the steel plate 1 is brought too close.

【0013】本発明はこのような事情に鑑みてなされた
ものであり、検査対象の金属板を挟んで磁化器の一対の
磁極と一対の磁気センサとを互いに対向させて配置する
ことによって、外部の浮遊磁束に起因する雑音成分を相
殺でき、金属板を貫通した磁束の強度を正確に検出で
き、変態率の測定精度を大幅に向上できる変態率測定方
法及びその装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a pair of magnetic poles of a magnetizer and a pair of magnetic sensors are arranged so as to face each other with a metal plate to be inspected interposed therebetween. It is possible to cancel the noise component caused by the stray magnetic flux of, can accurately detect the intensity of the magnetic flux penetrating the metal plate, and to provide a transformation rate measuring method and its device, which can significantly improve the transformation rate measurement accuracy. To do.

【0014】[0014]

【課題を解決するための手段】上記課題を解消するため
に本発明の変態率測定方法によれば、検査対象の金属板
の一方面に近接してこの金属板を磁化する磁束を発生す
る磁化器を一対の磁極が金属板に対向するように配設
し、金属板を挟んで各磁極の各対向位置でかつ各磁気感
応方向が金属板に直交する方向に一対の磁気センサを配
設し、この一対の磁気センサにて検出された金属板を貫
通した各磁束相互間の減算磁束を求め、この減算磁束値
でもって金属板の変態率を測定する。
In order to solve the above-mentioned problems, according to the transformation rate measuring method of the present invention, the magnetization for generating a magnetic flux that magnetizes the metal plate to be inspected is close to one surface of the metal plate to be inspected. A pair of magnetic sensors are arranged so that the pair of magnetic poles face the metal plate, and the pair of magnetic sensors are arranged at the respective facing positions of the respective magnetic poles with the metal plate sandwiched therebetween and in the directions in which the respective magnetically sensitive directions are orthogonal to the metal plate. The subtraction magnetic flux between the magnetic fluxes penetrating the metal plate detected by the pair of magnetic sensors is obtained, and the transformation rate of the metal plate is measured by the subtraction magnetic flux value.

【0015】また、本発明の変態率測定装置は、検査対
象の金属板の一方面に一対の磁極が対向するように配設
され、金属板を磁化する磁束を発生する磁化器と、金属
板を挟んで各磁極の各対向位置でかつ各磁気感応方向が
金属板に直交する方向に配設され、金属板を貫通した磁
束を検出する一対の磁気センサと、この一対の磁気セン
サの各検出信号を減算する減算回路と、減算回路にて得
られた減算磁束値に基づいて金属板の変態率を求める信
号処理部とを備えたものである。
Further, the transformation rate measuring apparatus of the present invention is provided with a magnetizer, which is provided with a pair of magnetic poles facing one surface of a metal plate to be inspected, and which generates a magnetic flux for magnetizing the metal plate, and a metal plate. A pair of magnetic sensors for detecting magnetic flux penetrating the metal plate, which are arranged at opposite positions of each magnetic pole with the magnetic poles sandwiched therebetween and in a direction in which each magnetic sensitive direction is orthogonal to the metal plate, and each detection of the pair of magnetic sensors. It is provided with a subtraction circuit for subtracting a signal, and a signal processing unit for obtaining the transformation rate of the metal plate based on the subtraction magnetic flux value obtained by the subtraction circuit.

【0016】[0016]

【作用】このように構成された変態率測定方法及びその
装置の動作原理を図2を用いて説明する。
The operation principle of the transformation rate measuring method and apparatus thus constructed will be described with reference to FIG.

【0017】図2において、磁化器10の各磁極10
a,10bは検査対象の金属板12の一方面に対向して
いる。そして、金属板11を挟んだ各磁極10a,10
bの対向位置には一対の磁気センサ13a,13bが配
設されている。各磁気センサ13a,13bの磁気感応
方向は図中Y方向で示す金属板11と直交する方向に設
定されている。そして、例えば磁化器10の一方の磁極
10aから出力された磁束の大部分は金属板11内を経
由して他方の磁極10bに入力される。しかし、磁化器
10の磁極10aから出力された磁束の一部は金属板1
1を貫通する。金属板11を貫通した磁束14は金属板
11の反対側の空間を経由して、再度金属板11を逆方
向に貫通して他方の磁極10bに入力する。
In FIG. 2, each magnetic pole 10 of the magnetizer 10 is shown.
a and 10b face one surface of the metal plate 12 to be inspected. Then, the magnetic poles 10a and 10 with the metal plate 11 sandwiched therebetween.
A pair of magnetic sensors 13a and 13b are arranged at positions facing each other. The magnetic sensitive direction of each magnetic sensor 13a, 13b is set to the direction orthogonal to the metal plate 11 shown by the Y direction in the drawing. Then, for example, most of the magnetic flux output from one magnetic pole 10a of the magnetizer 10 is input to the other magnetic pole 10b via the inside of the metal plate 11. However, a part of the magnetic flux output from the magnetic pole 10a of the magnetizer 10 is part of the metal plate 1.
Penetrate 1 The magnetic flux 14 penetrating the metal plate 11 passes through the space on the opposite side of the metal plate 11 and again penetrates the metal plate 11 in the opposite direction and is input to the other magnetic pole 10b.

【0018】各磁気センサ13a,13bは金属板11
を貫通した磁束14のY方向成分の磁束強度Φa,Φb
を検出する。この変態率測定装置の周囲の機器から出力
される浮遊磁束が存在すると、この浮遊磁束の前記Y方
向の磁束強度Φnが各磁気センサ13a,13bにて検
出される。したがって、各磁気センサ13a,13bで
検出される各Y方向の磁束強度ΦA ,ΦB は下記のよう
になる。 ΦA =Φa+Φn ΦB =Φb+Φn したがって、各磁気センサ13a,13bで検出された
各磁束強度ΦA ,ΦBの磁束強度差ΔΦを算出すると浮
遊磁束強度Φnは相殺される。 ΔΦ=Φa−Φb
Each magnetic sensor 13a, 13b is a metal plate 11
Intensity of the Y direction component of the magnetic flux 14 penetrating the
To detect. If there is stray magnetic flux output from equipment around the transformation rate measuring device, the magnetic flux intensity Φn of the stray magnetic flux in the Y direction is detected by the magnetic sensors 13a and 13b. Therefore, the magnetic flux intensities Φ A and Φ B in the Y direction detected by the magnetic sensors 13a and 13b are as follows. Φ A = Φa + Φn Φ B = Φb + Φn Therefore, when the magnetic flux intensity difference ΔΦ between the magnetic flux intensities Φ A and Φ B detected by the magnetic sensors 13a and 13b is calculated, the stray magnetic flux intensity Φn is offset. ΔΦ = Φa−Φb

【0019】各磁気センサ13a,13bは磁化器10
の各磁極10a,10bの対向位置に配設されているの
で、磁束14の磁束強度Φa,Φbは値が等しくて極性
が互いに逆となる(Φb=−Φa)。よって、各磁気セ
ンサ13a,13bで検出された磁束強度ΦA ,ΦB
磁束強度差ΔΦを算出することによって、浮遊磁束が含
まれない正しい磁束強度を測定できる。 ΔΦ=−Φb=2Φa このように、各磁気センサにて検出された浮遊磁束を相
殺できるので、高いS/Nでもって金属板の変態率を測
定できる。
The magnetic sensors 13a and 13b are magnetizers 10, respectively.
Since the magnetic fluxes Φa and Φb of the magnetic flux 14 have the same value and the polarities are opposite to each other (Φb = −Φa), since the magnetic poles 10a and 10b are arranged at opposite positions. Therefore, by calculating the magnetic flux intensity difference ΔΦ between the magnetic flux intensities Φ A and Φ B detected by the magnetic sensors 13a and 13b, it is possible to measure the correct magnetic flux intensity including no stray magnetic flux. ΔΦ = −Φb = 2Φa In this way, the stray magnetic flux detected by each magnetic sensor can be canceled out, so that the transformation rate of the metal plate can be measured with a high S / N.

【0020】[0020]

【実施例】以下本発明の一実施例を図面を用いて説明す
る。図1は実施例の変態率測定方法を適用した変態率測
定装置の概略構成を示す模式図である。なお、この実施
例の変態率測定装置は製鉄工場における熱処理ラインに
組込まれ、高速で連続移動される鋼板の変態率を測定す
るために用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a schematic configuration of a transformation rate measuring device to which the transformation rate measuring method of the embodiment is applied. The transformation rate measuring apparatus of this example is incorporated in a heat treatment line in a steelmaking factory and used to measure the transformation rate of a steel sheet continuously moved at high speed.

【0021】磁化電源21は一定周波数f1 を有した交
流の励磁電流Iを出力する。磁化電源21から出力され
た励磁電流Iは磁化器22の磁化鉄心23に巻装された
励磁コイル24に印加される。この磁化器22は、略コ
字型形状を有した磁化鉄心23の各磁極23a,23b
が検査対象の金属板としての鋼板25の下面に距離La
(リフトオフ)だけ離れて対向するように配設されてい
る。なお、鋼板25は紙面に対して直交する方向に搬送
される。
The magnetizing power source 21 outputs an alternating exciting current I having a constant frequency f 1 . The exciting current I output from the magnetizing power source 21 is applied to the exciting coil 24 wound around the magnetized iron core 23 of the magnetizer 22. The magnetizer 22 includes magnetic poles 23a and 23b of a magnetized iron core 23 having a substantially U shape.
Is a distance La to the lower surface of the steel plate 25 as the metal plate to be inspected.
They are arranged so as to face each other apart by (lift-off). The steel plate 25 is conveyed in a direction orthogonal to the paper surface.

【0022】鋼板25の上面に距離Lbだけ離れた位置
で、かつ磁化器22の各磁極23a,23bに対抗する
位置に同一構成の一対の磁気センサ26a,26bが配
設されている。各磁気センサ26a,26bの各出力信
号a1 ,a2 はそれぞれ磁気検出回路27a,27bへ
入力される。各磁気センサ26a,26bの各出力信号
1 ,a2 は磁気検出回路27a,27bにて各磁気セ
ンサ26a,26bに交差する各磁束の強度ΦA ,ΦB
に対応した検出信号b1 ,b2 に変換される。各磁気検
出回路27a,27bから出力された各検出信号b1
2 は次の差動増幅器28へ入力される。この差動増幅
器28は各検出信号b1 ,b2 の差信号cを検出して次
の信号処理部29へ送出する。
A pair of magnetic sensors 26a and 26b having the same structure are provided on the upper surface of the steel plate 25 at a position separated by a distance Lb and at positions facing the magnetic poles 23a and 23b of the magnetizer 22. The output signals a 1 and a 2 of the magnetic sensors 26a and 26b are input to the magnetic detection circuits 27a and 27b, respectively. The output signals a 1 and a 2 of the magnetic sensors 26a and 26b are strengths Φ A and Φ B of magnetic fluxes that intersect the magnetic sensors 26a and 26b in the magnetic detection circuits 27a and 27b.
Are converted into detection signals b 1 and b 2 . Each detection signal b 1 output from each magnetic detection circuit 27a, 27b,
b 2 is input to the next differential amplifier 28. The differential amplifier 28 detects the difference signal c between the detection signals b 1 and b 2 and sends it to the next signal processing unit 29.

【0023】信号処理部29は例えば増幅器と記録計と
で構成されており、入力された差信号cに含まれる磁束
強度ΔΦから予め実験的に求められている校正曲線を用
いて、変態率Aを求めて記録計に出力する。記録計は変
態率Aの経時変化を記録する。
The signal processing unit 29 is composed of, for example, an amplifier and a recorder, and the transformation rate A is calculated by using a calibration curve which is experimentally obtained in advance from the magnetic flux intensity ΔΦ contained in the input difference signal c. Is output to the recorder. The recorder records the change in the transformation rate A over time.

【0024】前記磁気センサ26a,26bとして特開
平1−308982号公報に記載された過飽和型の磁気
センサを採用している。すなわち、この磁気センサ26
a,26bにおいては、強磁性体材料で形成された棒状
コア30a,30bに検出コイル31a,31bが巻装
されている。また、この検出コイル26a,26bにそ
れぞれ同一構成の各高周波電源32a,32bから抵抗
33a,33bを介して高周波励磁電流が継続して流さ
れている。各棒状コア30a,30bは過飽和域まで励
磁された状態である。したがって、各検出コイル31
a,31bの両端の出力電圧波形の振幅値は一定とな
る。
As the magnetic sensors 26a and 26b, the supersaturation type magnetic sensor described in Japanese Patent Laid-Open No. 1-308982 is adopted. That is, this magnetic sensor 26
In a and 26b, detection coils 31a and 31b are wound around rod-shaped cores 30a and 30b made of a ferromagnetic material. Further, high-frequency exciting currents are continuously applied to the detection coils 26a and 26b from the high-frequency power sources 32a and 32b having the same structure via the resistors 33a and 33b. Each of the rod-shaped cores 30a and 30b is in a state of being excited to a supersaturation region. Therefore, each detection coil 31
The amplitude value of the output voltage waveform across a and 31b is constant.

【0025】このような過飽和に励磁された棒状コア3
0a,30bに外部磁束が接近すると、前記両端電圧波
形の振幅値は変化しないが、正負の各波高値Va,−V
bが変化する。そこで、前記磁気検出回路27a,27
b内において、この各波高値Va,−Vbを検波器で検
波して直流に変換して、加算器で加算することによっ
て、差電圧(Va−Vb)を求める。すなわち、この差
電圧(Va−Vb)がこの磁気センサ26a,26bに
加えられた外部磁束に対応する。よって、各磁気検出回
路27a,27bからそれぞれの磁気センサ26a,2
6bに印加された各磁束の磁束強度ΦA ,ΦB に対応し
た検出信号b1 ,b2 が出力される。なお、この磁気セ
ンサ26a,26bにおける各磁気検出回路27a,2
7bから出力される各検出信号b1 ,b2 の周波数応答
性能は前記励磁電流Iの周波数f1より十分高い。した
がって、差動増幅器28から出力される差信号cは各磁
束強度ΦA ,ΦBの差の磁束強度ΔΦを示す。 ΔΦ=ΦA −ΦB
The rod-shaped core 3 excited by such supersaturation
When the external magnetic flux approaches 0a and 30b, the amplitude value of the voltage waveform at both ends does not change, but the positive and negative peak values Va and -V are obtained.
b changes. Therefore, the magnetic detection circuits 27a, 27
In b, each of the peak values Va and -Vb is detected by a detector, converted into direct current, and added by an adder to obtain a differential voltage (Va-Vb). That is, the difference voltage (Va-Vb) corresponds to the external magnetic flux applied to the magnetic sensors 26a and 26b. Therefore, from the magnetic detection circuits 27a and 27b to the magnetic sensors 26a and 2b, respectively.
The detection signals b 1 and b 2 corresponding to the magnetic flux intensities Φ A and Φ B of the magnetic fluxes applied to 6b are output. The magnetic detection circuits 27a, 2 in the magnetic sensors 26a, 26b.
The frequency response performance of each of the detection signals b 1 and b 2 output from 7b is sufficiently higher than the frequency f 1 of the exciting current I. Therefore, the difference signal c output from the differential amplifier 28 indicates the magnetic flux intensity ΔΦ which is the difference between the magnetic flux intensities Φ A and Φ B. ΔΦ = Φ A −Φ B

【0026】このように構成された変態率測定装置にお
いて、磁化電源21を起動すると、磁化器22によって
鋼板25が磁化される。そして、例えば一方の磁極23
aから出力された磁束の大部分は鋼板25内を経由して
た他方の磁極23bに入力するが、一部の磁束は鋼板2
5を貫通して、鋼板25の磁気センサ26a,26b側
の空間を経由して再度鋼板25を逆方向に貫通して他方
の磁極23bへ入力される。
In the transformation rate measuring device having such a structure, when the magnetizing power supply 21 is activated, the magnetizer 22 magnetizes the steel plate 25. Then, for example, one magnetic pole 23
Most of the magnetic flux output from a is input to the other magnetic pole 23b passing through the steel plate 25, but a part of the magnetic flux is applied to the steel plate 2.
5 is passed through and passes through the space of the steel plate 25 on the side of the magnetic sensors 26a and 26b and again penetrates the steel plate 25 in the opposite direction and is input to the other magnetic pole 23b.

【0027】そして、各磁気センサ26a,26bの磁
気感応方向は鋼板25に直交しているので、各磁気セン
サ26a,26bは、鋼板25を貫通した磁束の鋼板2
5に直交する方向の各強度Φa,Φbおよび周囲の電気
機器から出力される浮遊磁束のうちの鋼板25に直交す
る方向の磁束強度Φnを検出する。よって、前述したよ
うに、各磁気センサ26a,26bにて検出される磁束
強度ΦA ,ΦB は下記のようになる。 ΦA =Φa+Φn ΦB =Φb+Φn
Since the magnetic sensitive directions of the magnetic sensors 26a and 26b are orthogonal to the steel plate 25, the magnetic sensors 26a and 26b have the magnetic flux of the steel plate 2 which penetrates the steel plate 25.
The respective strengths Φa and Φb in the direction orthogonal to 5 and the magnetic flux strength Φn in the direction orthogonal to the steel plate 25 among the stray magnetic fluxes output from the surrounding electric devices are detected. Therefore, as described above, the magnetic flux intensities Φ A and Φ B detected by the magnetic sensors 26a and 26b are as follows. Φ A = Φa + Φn Φ B = Φb + Φn

【0028】よって、差動増幅器28にて得られる磁束
強度差(減算磁束)ΔΦ(=Φa−Φb)から浮遊磁束
強度Φnの成分を除去できる。また、各磁気センサ26
a,26bは磁化器22の各磁極23a,23bの対向
位置に配設されているので、磁束強度Φa,Φbは値が
等しくて極性が互いに逆となる(Φb=−Φa)。よっ
て、各磁気センサ26a,26bで検出された磁束
ΦA ,ΦB の磁束強度差ΔΦを算出することによって、
浮遊磁束が含まれない正しい磁束強度を測定できる。 ΔΦ=Φa−Φb=2Φa
Therefore, the component of the stray magnetic flux intensity Φn can be removed from the magnetic flux intensity difference (subtraction magnetic flux) ΔΦ (= Φa−Φb) obtained by the differential amplifier 28. In addition, each magnetic sensor 26
Since a and 26b are arranged at the opposite positions of the magnetic poles 23a and 23b of the magnetizer 22, the magnetic flux intensities Φa and Φb have the same value and the polarities are opposite to each other (Φb = -Φa). Therefore, by calculating the magnetic flux intensity difference ΔΦ between the magnetic fluxes Φ A and Φ B detected by the magnetic sensors 26a and 26b,
It is possible to measure the correct magnetic flux strength that does not include stray magnetic flux. ΔΦ = Φa−Φb = 2Φa

【0029】したがって、この磁束強度差ΔΦが鋼板2
5の変態率Aに対応した値となる。信号処理部29はこ
の磁束強度差ΔΦから校正曲線を用いて変換された変態
率Aの時間変換を記録する。
Therefore, this magnetic flux intensity difference ΔΦ is the steel plate 2
The value corresponds to the transformation rate A of 5. The signal processing unit 29 records the time conversion of the transformation rate A converted from this magnetic flux intensity difference ΔΦ using a calibration curve.

【0030】図3は、0〜100%の既知の変態率Aを
有する多数の試験用鋼板に対して実施例装置で変態率測
定した場合における差動増幅器27の磁束強度差ΔΦに
対応する差信号cの出力レベル(mV)と前記変態Aと
の関係を特性図である。但し、試験用鋼板の厚さTは
5.6mmであり、各磁極23a,23bから各磁気セン
サ26a,26bまでの距離Bは500mmであり、磁化
器22の磁化周波数f1は10Hzに設定している。ま
た、高周波電源32a,32bから出力される高周波信
号の平均電圧em は3mVである。そして、図中実線で
示す特性はリフトオフLaが100mmの条件下の特性で
あり、破線で示す特性はリフトオフLaが100mm条件
下の特性であである。したがって、この図3の特性が校
正特性となる。
FIG. 3 shows a difference corresponding to the magnetic flux intensity difference ΔΦ of the differential amplifier 27 when the transformation rate is measured by the apparatus of the embodiment for a large number of test steel sheets having a known transformation rate A of 0 to 100%. It is a characteristic view of the relationship between the output level (mV) of the signal c and the transformation A. However, the thickness T of the test steel plate is 5.6 mm, the distance B from each magnetic pole 23a, 23b to each magnetic sensor 26a, 26b is 500 mm, and the magnetizing frequency f 1 of the magnetizer 22 is set to 10 Hz. ing. The average voltage e m of the high-frequency signal outputted high-frequency power source 32a, from 32b is 3 mV. The characteristics indicated by the solid line in the figure are characteristics under the condition that the lift-off La is 100 mm, and the characteristics indicated by broken lines are characteristics under the condition that the lift-off La is 100 mm. Therefore, the characteristic of FIG. 3 becomes the calibration characteristic.

【0031】図3の特性に示すように、変態率が0〜1
00%の変化範囲に対して出力電圧は83〜240mV
と非常に広い測定レンジが得られた。したがって、磁気
センサ26a,26bと鋼板25との間の距離Lbを、
たとえ大きく設定しても十分高い検出レベルを確保でき
る。また、リフトオフLaが100〜125mm(25
%)も変化したとしても、出力信号レベルは変態率Aに
換算して5%未満であり、非常に良好な値が得られた。
また、図3のグラフには示していないが、前述したよう
に浮遊磁束の成分が除されているるので、高い繰返し測
定精度を確保できた。
As shown in the characteristics of FIG. 3, the transformation rate is 0 to 1
Output voltage is 83-240mV for the range of change of 00%
And a very wide measurement range was obtained. Therefore, the distance Lb between the magnetic sensors 26a and 26b and the steel plate 25 is
Even if it is set large, a sufficiently high detection level can be secured. The lift-off La is 100 to 125 mm (25
%), The output signal level converted to the transformation rate A was less than 5%, and a very good value was obtained.
Further, although not shown in the graph of FIG. 3, since the component of the stray magnetic flux is removed as described above, high repeatability measurement accuracy can be secured.

【0032】図4において、磁化器22の励磁コイル2
4に印加する励磁電流Iの励磁周波数f1 を0Hz(直
流)から240Hzまで変化させた場合における実施例装
置の差動増幅器28の出力レベル変化と、実施例の過飽
和型の磁気センサ26a,26bの代りに、過飽和型磁
気センサでない従来の通常のサーチコイル型磁気センサ
を用いた場合の出力レベル変化との比較を示す。なお、
従来のサーチコイル型磁気センサは、フェライトコアに
コイルを巻装して、外部磁界によってサーチコイルに発
生する誘起電圧を検出する磁気センサである。サーチコ
イル型磁気センサは、図4に示すように、検出感度が測
定磁束の周波数に大きく依存し、約220Hz以下の周波数
では、過飽和型磁気センサより大きく低下する。なお、
このサーチコイル型磁気センサにおけるコイル巻数は15
00回である。
In FIG. 4, the exciting coil 2 of the magnetizer 22
Change of the output level of the differential amplifier 28 of the apparatus of the embodiment when the excitation frequency f 1 of the excitation current I applied to 4 is changed from 0 Hz (DC) to 240 Hz, and the supersaturated magnetic sensors 26a and 26b of the embodiment. Instead of, a comparison with the output level change when using a conventional ordinary search coil type magnetic sensor that is not a supersaturation type magnetic sensor is shown. In addition,
A conventional search coil type magnetic sensor is a magnetic sensor in which a coil is wound around a ferrite core and an induced voltage generated in the search coil by an external magnetic field is detected. As shown in FIG. 4, in the search coil type magnetic sensor, the detection sensitivity largely depends on the frequency of the measured magnetic flux, and at a frequency of about 220 Hz or less, the detection sensitivity is much lower than that of the supersaturation type magnetic sensor. In addition,
The number of coil turns in this search coil type magnetic sensor is 15
It is 00 times.

【0033】これに対して、本実施例の過飽型磁気セン
サの検出感度は巻数に依存せず、この従来のサーチコイ
ル型磁気センサより遥かに少ないコイル巻数(この実施
例では200 回)で済む。
On the other hand, the detection sensitivity of the oversaturated magnetic sensor of the present embodiment does not depend on the number of turns, and the number of coil turns is far smaller than that of the conventional search coil type magnetic sensor (200 turns in this example). I'm done.

【0034】一般に励磁周波数f1 は検査目的や鋼板2
5の厚みTに応じて最適周波数に設定される。そして、
検査目的が変態率測定であり、鋼板25の厚みTが1〜
10mmの範囲においては、励磁周波数f1 は数Hz 〜数
十Hz の範囲に設定される場合が多い。そこで、図4の
周波数特性図に示すように、磁気センサ26a,26b
に過飽和型磁気センサを用いることによって、広い周波
数範囲で一定した出力信号レベルが得られる。図5は本
発明の他の実施例に係わる変態率測定装置の概略構成図
である。図1の実施例と同一部分には同一符号が付して
ある。
Generally, the excitation frequency f 1 is determined by the inspection purpose and the steel plate 2
The optimum frequency is set according to the thickness T of 5. And
The inspection purpose is transformation rate measurement, and the thickness T of the steel plate 25 is 1 to
In the range of 10 mm, the excitation frequency f 1 is often set in the range of several Hz to several tens of Hz. Therefore, as shown in the frequency characteristic diagram of FIG. 4, the magnetic sensors 26a and 26b are
By using a supersaturation type magnetic sensor, a constant output signal level can be obtained in a wide frequency range. FIG. 5 is a schematic configuration diagram of a transformation rate measuring device according to another embodiment of the present invention. The same parts as those in the embodiment of FIG. 1 are designated by the same reference numerals.

【0035】この実施例においては、磁化器22の各磁
極23a,23bにそれぞれ対向して配設された各磁気
センサ34a,34bの各棒状コア35a,35bにそ
れぞれ検出コイル36a,36bが巻装されている。な
お、各検出コイル36a,36bの巻回方向は同一方向
である。そして、高周波電源32から出力される高周波
信号は抵抗33を介して一方の磁気センサ34aの検出
コイル36aの巻始端子Stに印加される。検出コイル
36aの巻終端子Enは他方の磁気センサ36bの検出
コイル34bのの検出コイル36bの巻終端子Enに接
続されている。そして、検出コイル36bの巻始端子S
tは接地されている。
In this embodiment, the detection coils 36a and 36b are wound around the rod-shaped cores 35a and 35b of the magnetic sensors 34a and 34b, which are arranged to face the magnetic poles 23a and 23b of the magnetizer 22, respectively. Has been done. The winding directions of the detection coils 36a and 36b are the same. The high frequency signal output from the high frequency power supply 32 is applied to the winding start terminal St of the detection coil 36a of the one magnetic sensor 34a via the resistor 33. The winding terminator En of the detection coil 36a is connected to the winding terminator En of the detection coil 36b of the detection coil 34b of the other magnetic sensor 36b. Then, the winding start terminal S of the detection coil 36b
t is grounded.

【0036】磁気センサ34aの巻始端子Stから取出
される出力信号aは磁気検出回路27へ入力される。磁
気検出回路27は出力信号aから磁束強度を検出して次
の信号処理部29へ送出する。
The output signal a extracted from the winding start terminal St of the magnetic sensor 34a is input to the magnetic detection circuit 27. The magnetic detection circuit 27 detects the magnetic flux intensity from the output signal a and sends it to the next signal processing unit 29.

【0037】このような構成の変態率測定装置におい
て、各磁気センサ34a,34bは外部磁界に対して互
いに逆方向に信号レベルがシフトするように作用する。
したがって、各磁気センサ34a,34bで検出された
浮遊磁束強度Φnは互いに逆極性となる。よって、直列
接続された磁気センサ34a,34bの出力信号a内に
おいては浮遊磁束強度Φnは互いに相殺される。また、
磁化器22から鋼板25を貫通した磁束は互いに逆方向
に各磁気センサ36a,36bに作用するので、出力信
号aには各磁束の加算強度2Φaの情報が含まれる。
In the transformation rate measuring device having such a structure, the magnetic sensors 34a and 34b act so that the signal levels shift in opposite directions with respect to the external magnetic field.
Therefore, the stray magnetic flux intensities Φn detected by the magnetic sensors 34a and 34b have opposite polarities. Therefore, the stray magnetic flux intensities Φn cancel each other out in the output signals a of the magnetic sensors 34a, 34b connected in series. Also,
Since the magnetic flux penetrating the steel plate 25 from the magnetizer 22 acts on the magnetic sensors 36a and 36b in opposite directions, the output signal a includes information on the added intensity 2Φa of each magnetic flux.

【0038】したがって、この実施例においては、各磁
気センサ34a,34bの各検出コイル36a,36b
との間の配線が減算回路を構成する。よって、図1の差
動増幅器28を除去して、磁気検出回路27の出力信号
gを直接信号処理部29へ印加することが可能となる。
Therefore, in this embodiment, the detection coils 36a and 36b of the magnetic sensors 34a and 34b are detected.
The wiring between and forms a subtraction circuit. Therefore, it becomes possible to remove the differential amplifier 28 of FIG. 1 and directly apply the output signal g of the magnetic detection circuit 27 to the signal processing unit 29.

【0039】したがって、図1の実施例とほぼ同様の効
果を得ることができる。さらに、この実施例において
は、図1の実施例に比較して、高周波電源32を1台で
実施でき、かつ差動増幅器28を除去できるので、装置
全体を小型軽量に、かつ低い製造費で製造できる。
Therefore, it is possible to obtain substantially the same effect as that of the embodiment of FIG. Further, in this embodiment, as compared with the embodiment of FIG. 1, the high frequency power source 32 can be implemented by one unit and the differential amplifier 28 can be removed, so that the entire device can be made small and lightweight and at low manufacturing cost. Can be manufactured.

【0040】なお、本発明は上述した実施例に限定され
るものではない。実施例装置においては、磁気センサ2
6として温度特性や検出感度特性が優れている過飽和型
の磁気センサを用いたが、例えば温度保証回路が附加さ
れたホール素子を用いた半導体磁気センサであってもよ
い。また、検出感度は小さいか通常のサーチコイル型の
磁気センサを用いても本願発明の効果は十分達成でき
る。
The present invention is not limited to the above embodiment. In the apparatus of the embodiment, the magnetic sensor 2
A supersaturation type magnetic sensor having excellent temperature characteristics and detection sensitivity characteristics is used as 6, but a semiconductor magnetic sensor using a Hall element with a temperature guarantee circuit may be used, for example. Further, the effect of the present invention can be sufficiently achieved even if the detection sensitivity is low or an ordinary search coil type magnetic sensor is used.

【0041】[0041]

【発明の効果】以上説明したように本発明の変態率測定
方法および変態率測定装置によれば、検査対象の金属板
を挟んで磁化器の一対の磁極と一対の磁気センサとを互
いに対向させて配置している。したがって、各磁気セン
サの各出力の差を取ることによって、外部の浮遊磁束に
起因する雑音成分を相殺できる。また、金属板を貫通し
た磁束は各磁気センサに互いに逆方向に作用するので、
差を取ることによって、金属板を貫通した磁束を2倍の
感度で検出できる。よって、金属板を貫通した磁束の強
度を高いS/Nでもって正確に検出できるので、結果と
して金属板の変態率をより精度よく測定できる。
As described above, according to the transformation rate measuring method and transformation rate measuring apparatus of the present invention, the pair of magnetic poles of the magnetizer and the pair of magnetic sensors are opposed to each other with the metal plate to be inspected interposed therebetween. Are arranged. Therefore, by taking the difference between the outputs of the magnetic sensors, the noise component caused by the external stray magnetic flux can be canceled. In addition, since the magnetic flux penetrating the metal plate acts on each magnetic sensor in opposite directions,
By taking the difference, the magnetic flux penetrating the metal plate can be detected with twice the sensitivity. Therefore, the intensity of the magnetic flux penetrating the metal plate can be accurately detected with a high S / N ratio, and as a result, the transformation rate of the metal plate can be more accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係わる変態率測定方法を
適用した変態率測定装置の概略構成を示す模式図、
FIG. 1 is a schematic diagram showing a schematic configuration of a transformation rate measuring apparatus to which a transformation rate measuring method according to an embodiment of the present invention is applied,

【図2】 本発明の動作原理を示す図、FIG. 2 is a diagram showing the operating principle of the present invention,

【図3】 実施例装置にて測定されたサンプル鋼板の変
態率と出力電圧レベルとの関係を示す図、
FIG. 3 is a diagram showing a relationship between a transformation rate of a sample steel sheet and an output voltage level measured by an apparatus of Example,

【図4】 実施例装置に採用される異なる種類の磁気セ
ンサの周波数特性を示す図、
FIG. 4 is a diagram showing frequency characteristics of different types of magnetic sensors used in the embodiment apparatus;

【図5】 本発明の他の実施例に係わる変態率測定装置
の概略構成を示す模式図、
FIG. 5 is a schematic diagram showing a schematic configuration of a transformation rate measuring apparatus according to another embodiment of the present invention,

【図6】 従来の変態率測定装置の概略構成を示す模式
図。
FIG. 6 is a schematic diagram showing a schematic configuration of a conventional transformation rate measuring device.

【符号の説明】[Explanation of symbols]

21…磁化電源、22…磁化器、23…磁化鉄心、23
a,23b…磁極、24…励磁コイル、25…鋼板、2
6a,26b,34a,34b…磁気センサ、27,2
7a,27b…磁気検出回路、28…差動増幅器、29
…信号処理部、32,32a,32b…高周波電源。
21 ... Magnetization power source, 22 ... Magnetizer, 23 ... Magnetized iron core, 23
a, 23b ... magnetic pole, 24 ... exciting coil, 25 ... steel plate, 2
6a, 26b, 34a, 34b ... Magnetic sensor, 27, 2
7a, 27b ... Magnetic detection circuit, 28 ... Differential amplifier, 29
... Signal processing unit, 32, 32a, 32b ... High-frequency power source.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検査対象の金属板の一方面に近接してこ
の金属板を磁化する磁束を発生する磁化器を一対の磁極
が前記金属板に対向するように配設し、前記金属板を挟
んで前記各磁極の各対向位置でかつ各磁気感応方向が前
記金属板に直交する方向に一対の磁気センサを配設し、
この一対の磁気センサにて検出された前記金属板を貫通
した各磁束相互間の減算磁束を求め、この減算磁束値で
もって前記金属板の変態率を測定する変態率測定方法。
1. A magnetizer for generating a magnetic flux that magnetizes the metal plate in close proximity to one surface of the metal plate to be inspected is arranged such that a pair of magnetic poles face the metal plate, and the metal plate is attached to the metal plate. A pair of magnetic sensors are arranged at opposite positions of the magnetic poles and in a direction in which each magnetic sensitive direction is orthogonal to the metal plate.
A transformation rate measuring method for obtaining a subtraction magnetic flux between the respective magnetic fluxes penetrating the metal plate detected by the pair of magnetic sensors and measuring the transformation rate of the metal plate with the subtraction magnetic flux value.
【請求項2】 検査対象の金属板の一方面に一対の磁極
が対向するように配設され、前記金属板を磁化する磁束
を発生する磁化器と、前記金属板を挟んで前記各磁極の
各対向位置でかつ各磁気感応方向が前記金属板に直交す
る方向に配設され、前記金属板を貫通した磁束を検出す
る一対の磁気センサと、この一対の磁気センサの各検出
信号を減算する減算回路と、減算回路にて得られた減算
磁束値に基づいて前記金属板の変態率を求める信号処理
部とを備えた変態率測定装置。
2. A magnetizer, which is arranged so that a pair of magnetic poles face each other on one surface of a metal plate to be inspected, and which generates a magnetic flux that magnetizes the metal plate, and each of the magnetic poles sandwiching the metal plate. A pair of magnetic sensors, which are arranged at opposite positions and in which magnetic sensitive directions are orthogonal to the metal plate, detect magnetic flux penetrating the metal plate, and subtract each detection signal of the pair of magnetic sensors. A transformation rate measuring device comprising: a subtraction circuit; and a signal processing unit that obtains a transformation rate of the metal plate based on a subtraction magnetic flux value obtained by the subtraction circuit.
JP28673091A 1991-10-31 1991-10-31 Transformation rate measuring method and apparatus Expired - Fee Related JP2663767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28673091A JP2663767B2 (en) 1991-10-31 1991-10-31 Transformation rate measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28673091A JP2663767B2 (en) 1991-10-31 1991-10-31 Transformation rate measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH05126798A true JPH05126798A (en) 1993-05-21
JP2663767B2 JP2663767B2 (en) 1997-10-15

Family

ID=17708278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28673091A Expired - Fee Related JP2663767B2 (en) 1991-10-31 1991-10-31 Transformation rate measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2663767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526655A (en) * 2018-06-01 2021-10-07 サントル・ドゥ・ルシェルシェ・メタリュルジク・アエスベエル−セントルム・フォール・リサーチ・イン・デ・メタルルージエ・フェーゼットヴェー Equipment for in-line measurement of the proportion of austenite in steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526655A (en) * 2018-06-01 2021-10-07 サントル・ドゥ・ルシェルシェ・メタリュルジク・アエスベエル−セントルム・フォール・リサーチ・イン・デ・メタルルージエ・フェーゼットヴェー Equipment for in-line measurement of the proportion of austenite in steel

Also Published As

Publication number Publication date
JP2663767B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US4414856A (en) Method and apparatus for measuring static and dynamic torques in a contact free manner
CA1316714C (en) Torque detecting apparatus
GB1590682A (en) Method of producing steel strip material involving obtaining a profile or other characteristic indicating quality of a coil of steel strip material and continuous testing apparatus for determining the magnetic characteristics of a strip of moving material including a method of obtaining a profile indicative of the quality of the strip throughout its entire length and flux inducing and pick up device therefor and continuous testing apparatus for determining the magnetic characteristics of a moving workpiece
JPS6352345B2 (en)
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP2663767B2 (en) Transformation rate measuring method and apparatus
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
JP2000266727A (en) Carburized depth measuring method
JPH05281063A (en) Measuring device for tension of steel material
JPH07190991A (en) Transformation rate-measuring method and device
Moses et al. AC Barkhausen noise in electrical steels: Influence of sensing technique on interpretation of measurements
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JPS62229038A (en) Stress measuring apparatus
JP2617570B2 (en) Magnetic measuring device
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
JPH0815229A (en) High resolution eddy current flaw detector
JPH09166582A (en) Electromagnetic flaw detection method
JPH05107229A (en) Method and apparatus for measuring rate of transformation
JPH01269049A (en) Method of inspecting deterioration of metallic material
RU2672978C1 (en) Method for detecting defects in a long-dimensional ferromagnetic object
JP3166986B2 (en) Current sensor
JPH0750711Y2 (en) Magnetic flaw detector for thin steel strip
JPH03277962A (en) Magnetic flaw detecting apparatus
JPS62174651A (en) Method and device for deciding hardness of magnetic body
JPH02311776A (en) Apparatus and method for measuring magnetic characteristics of steel material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees