JPH05126780A - Measurement of solution concentraton - Google Patents

Measurement of solution concentraton

Info

Publication number
JPH05126780A
JPH05126780A JP31173991A JP31173991A JPH05126780A JP H05126780 A JPH05126780 A JP H05126780A JP 31173991 A JP31173991 A JP 31173991A JP 31173991 A JP31173991 A JP 31173991A JP H05126780 A JPH05126780 A JP H05126780A
Authority
JP
Japan
Prior art keywords
calibration
solution
output potential
sample
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31173991A
Other languages
Japanese (ja)
Other versions
JP3096823B2 (en
Inventor
Hisashi Takayama
久司 高山
Ichiro Yokoyama
一郎 横山
Taisuke Nakano
泰介 中野
Tatsu Ueda
達 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP03311739A priority Critical patent/JP3096823B2/en
Publication of JPH05126780A publication Critical patent/JPH05126780A/en
Application granted granted Critical
Publication of JP3096823B2 publication Critical patent/JP3096823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a measuring method of solution concentration which enables a very quick measurement without losing accuracy of the measurement. CONSTITUTION:In a measuring method of solution concentration where the solution concentration is calculated from output voltage of sample solution using a measuring device of solution concentration by ion electrode method, measurements of sample solutions 2 or 4 are repeated succedingly to the first calibration by calibration liquid. One single output voltage C1 obtained from the calibration is used for solution concentration calculation of output voltages S1 and S2 of each sample 1 or 2 before and/or after the calibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、臨床検査等における各
種体液等の試料溶液の濃度を、イオン電極法により電極
の出力電位から求める溶液濃度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solution concentration measuring method for obtaining the concentration of a sample solution such as various body fluids in a clinical test or the like from the output potential of the electrode by the ion electrode method.

【0002】[0002]

【従来の技術】イオン電極法は、各種のイオン選択性の
電極を用いて、その目的とするイオンを含む溶液につい
ての電極の出力電位から、検量線法その他の方法により
目的イオンの濃度を定量する方法であり、塩素その他の
各種イオンの外、固定化酵素膜をイオン電極に組み合わ
せることにより臨床検査における各種体液の分析にも応
用されている。
2. Description of the Related Art The ion electrode method uses various ion-selective electrodes to quantify the concentration of the target ion from the output potential of the solution containing the target ion by a calibration curve method or other method. In addition to chlorine and various other ions, it is also applied to the analysis of various body fluids in clinical tests by combining an immobilized enzyme membrane with an ion electrode.

【0003】かかるイオン電極法による通常の溶液濃度
測定装置では、測定毎における電極の出力電位のシフト
やドリフト等を校正して正確な測定データーを得るため
に、従来から1つの試料溶液について1回の校正を行な
っていた。つまり、測定操作としては、試料溶液の測定
に先立って必ず校正操作を行うことを繰り返すので、校
正液と試料溶液を交互に測定していた。
In such a conventional solution concentration measuring apparatus using the ion electrode method, in order to obtain accurate measurement data by calibrating the shift or drift of the electrode output potential in each measurement, conventionally, once for one sample solution. Was being calibrated. That is, as the measurement operation, the calibration operation is always repeated prior to the measurement of the sample solution, so that the calibration solution and the sample solution are alternately measured.

【0004】即ち、従来の校正と測定による時間に沿っ
た出力電位の波形を示せば図2のようになり、内部校正
液による一点校正の出力電位C3を得た後1つの試料溶
液を測定して出力電位S5を得る。その後も同様に校正
と各試料溶液の測定を繰り返して、順に校正液の出力電
位C4、次の試料溶液の出力電位S6、校正液の出力電位
5、更に次の試料溶液の出力電位S7が得られる。
That is, the waveform of the output potential with time according to the conventional calibration and measurement is shown in FIG. 2, and one sample solution is measured after the output potential C 3 of the one-point calibration with the internal calibration liquid is obtained. The output potential S 5 is obtained. After that, the calibration and the measurement of each sample solution are repeated in the same manner, and the output potential C 4 of the calibration solution, the output potential S 6 of the next sample solution, the output potential C 5 of the calibration solution, and the output potential of the next sample solution are sequentially obtained. S 7 is obtained.

【0005】この様に校正液と試料溶液を交互に測定
し、得られた校正液の出力電位を用いて(基準にし
て)、その校正直後の試料溶液の出力電位から当該試料
溶液の濃度が算出される。図2の出力電位の波形で言え
ば、校正液の出力電位C3を用いてその直後の1つの試
料溶液の出力電位S5から当該試料溶液の濃度を算出
し、以下同様に校正液の出力電位C4を用いて次の試料
溶液の出力電位S6から、及び校正液の出力電位C5を用
いて更に次の試料溶液の出力電位S7から、それぞれの
試料溶液の濃度が算出される。
In this way, the calibration liquid and the sample solution are alternately measured, and the output potential of the obtained calibration liquid is used (as a reference) to determine the concentration of the sample solution from the output potential of the sample solution immediately after the calibration. Is calculated. Speaking of the waveform of the output potential in FIG. 2, the concentration of the sample solution is calculated from the output potential S 5 of one sample solution immediately after that using the output potential C 3 of the calibration solution, and the output of the calibration solution is similarly calculated. The concentration of each sample solution is calculated from the output potential S 6 of the next sample solution using the potential C 4 and from the output potential S 7 of the next sample solution using the output potential C 5 of the calibration solution. ..

【0006】しかしながら、かかる従来の方法では、1
つの試料溶液の測定とその校正との間で時間的ギャップ
が少ないので正確な測定を行うことが出来るものの、各
試料溶液毎にその測定に先立って1回の校正を行う必要
があるので、1つの試料溶液の測定に要する時間が長く
なり、濃度測定の処理速度が極めて遅いという欠点があ
った。
However, in such a conventional method, 1
Although there is a small time gap between the measurement of one sample solution and its calibration, accurate measurement can be performed, but it is necessary to perform one calibration before each measurement for each sample solution. There is a drawback that the time required to measure two sample solutions becomes long and the processing speed of concentration measurement is extremely slow.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、測定の正確さを損なうことなく、従来より
も迅速な測定が可能な溶液濃度測定方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above conventional circumstances, it is an object of the present invention to provide a solution concentration measuring method capable of measuring more rapidly than before without impairing the accuracy of the measurement.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明のイオン電極法による溶液濃度測定装置を用
いて試料溶液の出力電位からその溶液濃度を算出する溶
液濃度測定方法においては、校正液による1回の校正に
続いて2ないし4の試料溶液を測定することを繰り返
し、校正により得られた1つの出力電位を当該校正の前
後各1ないし2の試料溶液の溶液濃度の算出に用いるこ
とを特徴とする。
In order to achieve the above object, in the solution concentration measuring method for calculating the solution concentration from the output potential of the sample solution by using the solution concentration measuring device by the ion electrode method of the present invention, the calibration Measurement of 2 to 4 sample solutions is repeated after one calibration with a liquid, and one output potential obtained by the calibration is used to calculate the solution concentration of each 1 or 2 sample solution before and after the calibration. It is characterized by

【0009】[0009]

【作用】本発明方法により行った校正液による校正と試
料溶液の測定で得られる出力電位の時間に沿った波形の
一例を図1に示した。1つの試料溶液の測定による出力
電位S1を得た後、校正液による一点校正を行って出力
電位C1を得る。引き続き2つの試料溶液を連続して測
定し、各々の出力電位S2、S3を連続して得る。次に、
校正液による校正を再度行って出力電位C2を得た後、
以下同様に1回の校正を挟んで2つの試料溶液の測定操
作を繰り返す。
FIG. 1 shows an example of the waveform of the output potential along with time obtained by the calibration with the calibration solution and the measurement of the sample solution performed by the method of the present invention. After obtaining the output potential S 1 by measuring one sample solution, one-point calibration with the calibration liquid is performed to obtain the output potential C 1 . Subsequently, the two sample solutions are continuously measured, and the respective output potentials S 2 and S 3 are continuously obtained. next,
After calibrating with the calibration solution again to obtain the output potential C 2 ,
Similarly, the measurement operation of two sample solutions is repeated with one calibration in between.

【0010】この様に1回の校正液での校正に続いて2
つの試料溶液を連続して測定し、この操作を繰り返して
行いながら、得られた1つの校正の出力電位を当該校正
の前後各1つの試料溶液の濃度の算出に用いる。図1の
例で言えば、校正液の出力電位C1を用いてその校正直
前の1つの試料溶液の出力電位S1と校正直後の1つの
試料溶液の出力電位S2の校正の基準とし、これら2つ
の試料溶液の濃度を算出する。同様に、次の校正液の出
力電位C2を用いて、その前後の出力電位S3及びS4
ら各々の試料溶液の濃度を算出し、順次かかる計算が繰
り返される。
In this way, after one calibration with the calibration liquid,
One sample solution is continuously measured, and while repeating this operation, the obtained output potential of one calibration is used to calculate the concentration of each one sample solution before and after the calibration. In the example of FIG. 1, a reference calibration of the output potential S 2 of one sample solution immediately after the calibration and the output potential S 1 of one sample solution for the calibration immediately before using the output potential C 1 calibration solution, The concentrations of these two sample solutions are calculated. Similarly, by using the output potential C 2 of the next calibration solution, the concentration of each sample solution is calculated from the output potentials S 3 and S 4 before and after the output potential C 2 , and the calculation is sequentially repeated.

【0011】かかる本発明方法によって、校正の頻度を
従来よりも減少させることができ、しかも測定データー
の信頼性を確保することが出来る。従って、溶液濃度測
定装置のコンピュータ演算部において、図1のごとく1
回の校正をその前後各1の試料溶液の濃度算出に用いる
ように設定しておけば、従来よりも校正回数を半減でき
るので迅速で、且つ校正と測定の間で時間的ギャップが
ないので正確な濃度測定が可能となる。
By the method of the present invention, the frequency of calibration can be reduced as compared with the conventional method, and the reliability of the measurement data can be secured. Therefore, in the computer operation unit of the solution concentration measuring device, as shown in FIG.
If the calibration is set to be used to calculate the concentration of each sample solution before and after that, the number of calibrations can be halved compared to the conventional method, and it is accurate because there is no time gap between calibration and measurement. It is possible to measure various concentrations.

【0012】尚、図1では校正液による1回の校正をそ
の前後各1の試料溶液の濃度算出に用いる例を示した
が、使用する電極そのものが安定であって且つ電極出力
のドリフト等がごく少ない条件の下であれば、1回の校
正に続いて3ないし4の試料溶液を測定し、校正により
得られた1つの出力電位を当該校正の前後各2までの試
料溶液の溶液濃度の算出に用いることも可能である。し
かしながら、1つの校正を基準とする試料溶液の数が増
えるほど、校正と測定の時間的ギャップが長くなるので
好ましくない。
Although FIG. 1 shows an example in which one calibration with a calibration solution is used to calculate the concentration of each one sample solution before and after the calibration, the electrode itself used is stable and the drift of the electrode output etc. Under very few conditions, 3 or 4 sample solutions are measured after one calibration, and one output potential obtained by the calibration is compared with the solution concentration of the sample solution up to 2 before and after the calibration. It can also be used for calculation. However, the larger the number of sample solutions based on one calibration, the longer the time gap between calibration and measurement, which is not preferable.

【0013】[0013]

【実施例】本発明方法の一具体例として、1回の校正を
その前後2つの試料溶液の濃度測定に用いる場合を説明
する。測定に用いた溶液濃度測定装置は、ナトリウムイ
オン電極としてNA−888及び比較電極としてHC−
888(共に東亜電波工業(株)製)を備え、1回の校
正をその前後各1の試料溶液の濃度算出に用いるように
予めコンピュータ演算部に設定した。
EXAMPLES As one specific example of the method of the present invention, the case where one calibration is used to measure the concentration of two sample solutions before and after the calibration will be described. The solution concentration measuring device used for the measurement was NA-888 as a sodium ion electrode and HC- as a reference electrode.
888 (both manufactured by Toa Denpa Kogyo Co., Ltd.) was set in the computer arithmetic unit in advance so that one calibration was used to calculate the concentration of each one sample solution before and after the calibration.

【0014】標準液として下記表1に示す4種の濃度の
ナトリウム水溶液〜を準備し、校正液としてはナト
リウム濃度140.0mmol/lの水溶液を用いた:
As the standard solution, four kinds of sodium aqueous solutions having the concentrations shown in Table 1 below were prepared, and an aqueous solution having a sodium concentration of 140.0 mmol / l was used as the calibration solution:

【表1】溶液 濃度(mmol/l) 溶液 濃度(mmol/l) 120.0 145.0 135.0 160.0[Table 1] Solution concentration (mmol / l) Solution concentration (mmol / l) 120.0 145.0 135.0 160.0

【0015】まず、溶液を測定した後、校正液による
校正を行い、引き続き2つの溶液とを測定し、次に
校正液により再度校正した後、最後に溶液を測定し
た。この操作により、イオン電極の出力電位として、図
1に示すように溶液に対応する出力電位S1、校正液
の出力電位C1、溶液に対応する出力電位S2、溶液
に対応する出力電位S3、校正液の出力電位C2、及び溶
液に対応する出力電位S4が得られ、コンピュータ演
算部により校正液の出力電位C1を用いて溶液と溶液
の出力電位S1とS2から両溶液、の濃度が算出さ
れ、更に校正液の出力電位C2を用いて溶液と溶液
の出力電位S3とS4から両溶液、の濃度を算出し
た。測定結果を下記表2に示した。
First, the solution was measured, then calibrated with a calibrating solution, then the two solutions were measured, then calibrated again with the calibrating solution, and finally the solution was measured. By this operation, as the output potential of the ion electrode, as shown in FIG. 1, the output potential S 1 corresponding to the solution, the output potential C 1 of the calibration solution, the output potential S 2 corresponding to the solution, and the output potential S corresponding to the solution are obtained. 3 , the output potential C 2 of the calibration liquid and the output potential S 4 corresponding to the solution are obtained, and the output potential C 1 of the calibration liquid is used by the computer arithmetic unit to calculate the output potentials S 1 and S 2 of the solution and the solution. The concentration of the solution was calculated, and the concentration of both solutions was calculated from the output potentials S 3 and S 4 of the solution by using the output potential C 2 of the calibration solution. The measurement results are shown in Table 2 below.

【0016】比較のために、上記と同じイオン電極と比
較電極並びに校正液を使用し、従来法により1回の校正
後に1つの溶液を測定する操作を繰り返し、1回の校正
の出力電位をその直後の1つの溶液の濃度測定にのみ用
いて、表1の溶液〜の濃度を測定した。結果を下記
表2に併せて示した。
For comparison, the same ion electrode, reference electrode, and calibration solution as described above are used, and the operation of measuring one solution after one calibration by the conventional method is repeated to determine the output potential of one calibration. The concentrations of solutions 1 to 3 in Table 1 were measured by using it only for measuring the concentration of one solution immediately after. The results are also shown in Table 2 below.

【0017】[0017]

【表2】測定濃度(mmol/l) 溶液 本発明法 従 来 法 120.2 120.9 135.7 135.2 144.4 144.9 160.3 159.6[Table 2] measured concentration (mmol / l) solution method of the present invention conventional method 120.2 120.9 135.7 135.2 144.4 144.9 160.3 159.6

【0018】本発明法によれば、1つの溶液の測定毎に
1回の校正を行う従来法と良く一致した正確な測定デー
ターが得られるうえ、前記4つの溶液の濃度測定に要し
た時間が従来法では144秒であったのに対して、本発明
方法では108秒と大幅に減少させることが出来た。
According to the method of the present invention, accurate measurement data can be obtained which is in good agreement with the conventional method in which calibration is performed once for each measurement of one solution, and the time required for measuring the concentration of the four solutions is obtained. In the conventional method, it was 144 seconds, whereas in the method of the present invention, it was possible to significantly reduce it to 108 seconds.

【0019】[0019]

【発明の効果】本発明方法によれば、校正の頻度を従来
よりも減少させながら、しかも校正と試料溶液の測定と
の時間的ギャップを少なく保って測定データーの信頼性
を確保することが出来るので、従来よりも迅速で且つ正
確な濃度測定が可能となる。
According to the method of the present invention, it is possible to secure the reliability of the measurement data while reducing the frequency of calibration as compared with the conventional method and keeping the time gap between the calibration and the measurement of the sample solution small. Therefore, it is possible to measure the concentration more quickly and more accurately than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法により時間に沿って得られる校正液と
試料溶液の出力電位の波形を示すグラフである。
FIG. 1 is a graph showing waveforms of output potentials of a calibration solution and a sample solution obtained over time by the method of the present invention.

【図2】従来法により時間に沿って得られる校正液と試
料溶液の出力電位の波形を示すグラフである。
FIG. 2 is a graph showing waveforms of output potentials of a calibration solution and a sample solution obtained over time by a conventional method.

【符号の説明】[Explanation of symbols]

1、C2、C3、C4、C5 校正液の出力電位 S1、S2、S3、S4、S5、S6、S7 試料溶液の出力
電位
C 1, C 2, C 3 , C 4, C 5 calibration fluid output potential S 1 of, S 2, S 3, S 4, S 5, S 6, S 7 output potential of the sample solution

フロントページの続き (72)発明者 上田 達 埼玉県狭山市大字北入曽613番地 東亜電 波工業株式会社狭山工場内Front page continued (72) Inventor Tatsu Ueda 613 Kitairiso, Sayama City, Saitama Prefecture Toa Denwa Kogyo Co., Ltd. Sayama Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン電極法による溶液濃度測定装置を
用いて試料溶液の出力電位からその溶液濃度を算出する
溶液濃度測定方法において、校正液による1回の校正に
続いて2ないし4の試料溶液を測定することを繰り返
し、校正により得られた1つの出力電位を当該校正の前
後各1ないし2の試料溶液の溶液濃度の算出に用いるこ
とを特徴とする前記溶液濃度測定方法。
1. A solution concentration measuring method for calculating a solution concentration from an output potential of a sample solution by using a solution concentration measuring apparatus by an ion electrode method, wherein 2 to 4 sample solutions are calibrated after one calibration. The solution concentration measuring method is characterized in that one output potential obtained by the calibration is repeatedly used to calculate the solution concentration of the sample solution of 1 or 2 before and after the calibration.
JP03311739A 1991-10-30 1991-10-30 Solution concentration measurement method Expired - Fee Related JP3096823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03311739A JP3096823B2 (en) 1991-10-30 1991-10-30 Solution concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03311739A JP3096823B2 (en) 1991-10-30 1991-10-30 Solution concentration measurement method

Publications (2)

Publication Number Publication Date
JPH05126780A true JPH05126780A (en) 1993-05-21
JP3096823B2 JP3096823B2 (en) 2000-10-10

Family

ID=18020896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03311739A Expired - Fee Related JP3096823B2 (en) 1991-10-30 1991-10-30 Solution concentration measurement method

Country Status (1)

Country Link
JP (1) JP3096823B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008133121A1 (en) * 2007-04-17 2010-07-22 アークレイ株式会社 Substrate concentration measuring method and substrate concentration measuring apparatus
KR101855007B1 (en) * 2016-12-09 2018-05-04 광운대학교 산학협력단 Methods of calibration for enhancing accuracy of sensor signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255292A (en) * 1992-03-17 1993-10-05 Okishiran Kagaku Kk Production of epoxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008133121A1 (en) * 2007-04-17 2010-07-22 アークレイ株式会社 Substrate concentration measuring method and substrate concentration measuring apparatus
JP5054765B2 (en) * 2007-04-17 2012-10-24 アークレイ株式会社 Substrate concentration measuring method and substrate concentration measuring apparatus
KR101855007B1 (en) * 2016-12-09 2018-05-04 광운대학교 산학협력단 Methods of calibration for enhancing accuracy of sensor signals

Also Published As

Publication number Publication date
JP3096823B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
CA2087720C (en) Method for analytically utilizing microfabricated sensors during wet-up
US20070264721A1 (en) System and method for analyte measurement using a nonlinear sample response
JPH11194108A (en) Method and apparatus for measurement of component amount under existence of coexisting substance
KR950019728A (en) Ion concentration measuring device and ion concentration measuring method
JPS648784B2 (en)
CN102667475B (en) Method for measuring analyte concentration in a liquid sample
Metters et al. Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients
Pelleg et al. Determination of Na+ and K+ in urine with ion-selective electrodes in an automated analyzer
JP3096823B2 (en) Solution concentration measurement method
Milner et al. The influence of uncompensated solution resistance on the determination of standard electrochemical rate constants by cyclic voltammetry, and some comparisons with ac voltammetry
Horvai The matched potential method, a generic approach to characterize the differential selectivity of chemical sensors
JPH1096710A (en) Measuring method for ion concentration
Rumpf et al. Calibration-free measurement of sodium and potassium in undiluted human serum with an electrically symmetric measuring system
JPH0674933A (en) Measuring method and measuring device for ferrous ion concentration in soil
DE3782715D1 (en) METHOD FOR DETERMINING THE CONCENTRATION RATIO OF LITHIUMIONS TO SODRIUMIONS AND DEVICE FOR CARRYING OUT THIS METHOD.
JP2023142443A5 (en)
JP3279756B2 (en) Quantitative calculator
JP2869610B2 (en) Calibration method of electrolyte analyzer
JPH04191650A (en) Measuring apparatus for ion
Busch et al. Microprocessor-controlled differential titrator
Haemmerli et al. Electrical characteristics f K+ and Cl− fet microelectrodes
Wessinger Comparative measurements of salivary pH
JP3076384B2 (en) Ion concentration analyzer
JP6861445B2 (en) Electron integrated multi-electrode detection system based on potential measurement
RU2497107C2 (en) Method to measure redox potential of biological media

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees