JPH05126642A - Radiation temperature measuring method and device thereof - Google Patents

Radiation temperature measuring method and device thereof

Info

Publication number
JPH05126642A
JPH05126642A JP31740091A JP31740091A JPH05126642A JP H05126642 A JPH05126642 A JP H05126642A JP 31740091 A JP31740091 A JP 31740091A JP 31740091 A JP31740091 A JP 31740091A JP H05126642 A JPH05126642 A JP H05126642A
Authority
JP
Japan
Prior art keywords
emissivity
temperature
ratio
spectral radiant
radiant energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31740091A
Other languages
Japanese (ja)
Inventor
Toshihiko Ide
敏彦 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP31740091A priority Critical patent/JPH05126642A/en
Publication of JPH05126642A publication Critical patent/JPH05126642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the temperature of a metal in no contact with high precision by automatically correcting the error due to the effect of the fluctuation of the emissivity during the growth of a metal oxide film. CONSTITUTION:The relation between the ratio X between the respective products of spectral radiation energy E1, E2 to the exponents lambda1, lambda2 at two different wavelength bands lambda1, lambda2 and the emissivity epsilon2 is determined in advance, and the spectral radiation energy E1, E2 of an object W at different wavelengths lambda1, lambda2 are measured and detected. The ratio X between wavelengths lambda1, lambda2 of the spectral radiation energy E1, E2 is obtained based on the detected spectral radiation energy E1, E2. The emissivity epsilon2 corresponding to the ratio X between the wavelengths lambda1, lambda2 of the obtained spectral radiation energy E1, E2 is obtained from the preset relation, and the temperature T of the object W is calculated with the emissivity epsilon2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測温体として例えば
放射率の低い金属より放出される分光放射エネルギーに
基づいて放射率の変動による誤差を自動補正して被測温
体の温度を計測する放射測温方法およびその装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention automatically corrects an error due to a change in emissivity on the basis of spectral radiant energy emitted from a metal having a low emissivity as a temperature-measuring object to measure the temperature of the temperature-measuring object. The present invention relates to a radiation temperature measuring method for measuring and a device therefor.

【0002】[0002]

【従来の技術】例えば被測温体として放射率の低い金属
の温度を測温する際には、互いに異なる二つの波長にお
ける分光放射エネルギーの比をとることで連続して温度
計測が行える二色形放射温度計が従来より用いられてい
る。ところで、放射率の低い金属を熱処理して酸化膜を
成生した際、金属は酸化膜の成長とともに、放射率が大
きく変動するため、放射測温が困難になる場合がある。
2. Description of the Related Art For example, when measuring the temperature of a metal having a low emissivity as a temperature-measuring object, a two-color temperature measurement can be performed continuously by taking a ratio of spectral radiant energies at two different wavelengths. Conventional radiation thermometers have been used. By the way, when a metal having a low emissivity is heat-treated to form an oxide film, the emissivity of the metal fluctuates greatly as the oxide film grows, and thus radiation measurement may be difficult.

【0003】この対策として、特開昭61−21092
1号公報に示されるように、被測温体に放射エネルギー
を放射する放射源と、放射源と被測温体との間に放射源
より被測温体に放射される放射エネルギーを段階的に可
変するシャッタ手段を設け、このシャッタ手段により三
つの異なった状態についての放射検出器の出力信号のう
ち、任意の二つの信号の差の比である寄与率の比と寄与
率の差とが所定の関係にあることに基づいて被測温体の
放射率を求め、この放射率から被測温体の温度を求める
能動形の放射温度計が提案されている。
As a countermeasure against this, Japanese Patent Laid-Open No. 61-21092
As disclosed in Japanese Patent Publication No. 1, a radiation source that radiates radiant energy to a temperature-measuring body, and radiant energy radiated to the temperature-measuring body from the radiation source between the radiation source and the temperature-measuring body in a stepwise manner. A shutter means that is variable is provided, and by this shutter means, among the output signals of the radiation detector in three different states, the ratio of the contribution ratio, which is the ratio of the difference between any two signals, and the difference in the contribution ratio are An active radiation thermometer has been proposed which obtains the emissivity of a temperature-measured body based on a predetermined relationship and obtains the temperature of the temperature-measured body from this emissivity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た能動形の放射温度計は、放射温度計の筐体本体をなす
放射検出器以外に、別構成による熱源およびシャッタ手
段が必要不可欠なので、構成部品が増加して装置全体が
複雑で大型化するという問題があった。
However, in the active radiation thermometer described above, in addition to the radiation detector forming the main body of the radiation thermometer, a separate heat source and shutter means are indispensable. However, there is a problem that the entire device is complicated and large in size.

【0005】そこで、本発明は上述した問題点に鑑みて
なされたものであって、その目的は、簡素な構成により
装置の小型化が図れ、特に金属酸化膜の成長途上での放
射率の変動の影響による誤差を自動補正して金属の温度
計測を非接触で高精度に行うことができる放射測温方法
およびその装置を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned problems, and an object thereof is to reduce the size of the device with a simple structure, and particularly to change the emissivity during the growth of the metal oxide film. An object of the present invention is to provide a radiation temperature measuring method and a device therefor capable of automatically correcting the error due to the influence of the above to perform metal temperature measurement with high accuracy in a non-contact manner.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明による放射測温方法は、予め定められた互い
に異なる二つの波長帯における各々の分光放射エネルギ
ーの波長のべき乗の比と放射率との関係に基づいて実測
した分光放射エネルギーから放射率を求め、この求めた
放射率を用いて温度を演算することを特徴としている。
また、各々の分光放射エネルギーのべき乗の比に対する
放射率の検量線を予め複数本定め、使用条件に応じて検
量線を選択する。この際、検量線は低放射率領域の検量
線と中・高放射率領域の二本の検量線に集約してもよ
い。また、低放射率領域の検量線については、各々の分
光放射エネルギーのべき乗の比の下限値を設定すること
ができる。さらに、各々の分光放射エネルギーのべき乗
の比の値が下限値以上のときは、各々の検量線に対する
温度値、放射率値またはその両方の値を出力する。ま
た、時間の経過とともに、各々の分光放射エネルギーの
べき乗の比の値が上昇するときには低放射率領域の検量
線を選択し、各々の分光放射エネルギーのべき乗の比の
値が減少に転じた以降は中・高放射率領域の検量線を選
択する。さらに、本発明による放射測温装置は、互いに
異なる二つの波長帯における被測温体の各々の分光放射
エネルギーを検出する検出手段と、該検出手段からの各
々の分光放射エネルギーに基づいて各々の分光放射エネ
ルギーの波長のべき乗の比を演算する比率演算手段と、
前記各々の分光放射エネルギーの波長のべき乗の比と放
射率との関係を示すデータが記憶された記憶手段と、前
記比率演算手段により演算した各々の分光放射エネルギ
ーの波長のべき乗の比を前記記憶手段のデータと照合し
て対応する放射率を求める照合手段と、該照合手段より
求めた放射率に基づいて前記被測温体の温度を演算する
温度演算手段と備えたことを特徴としている。
In order to achieve the above object, the radiant temperature measuring method according to the present invention is such that the ratio of the power of the wavelength of each spectral radiant energy and the emissivity in two predetermined wavelength bands different from each other. The emissivity is calculated from the measured spectral radiant energy based on the relationship with and the temperature is calculated using the calculated emissivity.
Further, a plurality of calibration curves of emissivity with respect to the power ratio of each spectral radiant energy is determined in advance, and the calibration curve is selected according to usage conditions. At this time, the calibration curve may be integrated into a calibration curve in the low emissivity region and two calibration curves in the medium and high emissivity regions. Further, with respect to the calibration curve in the low emissivity region, the lower limit value of the power ratio of each spectral radiant energy can be set. Furthermore, when the value of the power ratio of each spectral radiant energy is equal to or more than the lower limit value, the temperature value, the emissivity value, or both values for each calibration curve are output. When the value of the ratio of the power of each spectral radiant energy rises with the passage of time, select the calibration curve in the low emissivity region, and after the value of the ratio of the power of each spectral radiant energy starts to decrease. Selects a calibration curve for medium and high emissivity regions. Further, the radiation thermometer according to the present invention includes detection means for detecting the respective spectral radiant energies of the temperature-measured body in two wavelength bands different from each other, and each of the spectral radiant energies from the detecting means. Ratio calculation means for calculating the ratio of the power of the wavelength of the spectral radiant energy,
Storage means for storing the data indicating the relationship between the ratio of the power of the wavelength of each spectral radiation energy and the emissivity, and the storage of the ratio of the power of the wavelength of each spectral radiation energy calculated by the ratio calculation means It is characterized by comprising collating means for collating with the data of the means to obtain a corresponding emissivity, and temperature computing means for computing the temperature of the temperature-measured body based on the emissivity obtained by the collating means.

【0007】[0007]

【作用】互いに異なる二つの波長帯における各々の分光
放射エネルギーの波長のべき乗の比と放射率との関係を
定めておき、被測温体の分光放射エネルギーを検出し、
この検出した分光放射エネルギーに基づいて各々の分光
放射エネルギーの波長のべき乗の比を求め、この各々の
分光放射エネルギーの波長のべき乗の比と対応する放射
率を予め定めた関係から求め、この放射率を用いて被測
温体の温度を演算する。
[Function] The spectral radiant energy of the temperature-measuring object is detected by establishing the relationship between the emissivity and the ratio of the power of the wavelength of each spectral radiant energy in two different wavelength bands.
The ratio of the power of the wavelength of each spectral radiant energy is calculated based on the detected spectral radiant energy, and the ratio of the power of the wavelength of each spectral radiant energy and the corresponding emissivity is calculated from a predetermined relationship. The temperature of the temperature-measured body is calculated using the rate.

【0008】[0008]

【実施例】この実施例による放射測温方法およびその装
置は、以下に説明する各々の分光放射エネルギーの波長
のべき乗の比と分光放射率(以下、単に放射率という)
との関係から近似される検量線に基づいて実測した分光
放射エネルギーから放射率を求め、放射率の変動の影響
による誤差を自動補正して被測温体の温度を計測するも
のである。一般に、黒体の放射強度、光学系の分光透過
率、素子の分光感度等を補正した後の波長λ1,λ2に
対する出力E1,E2はウィーンの式から下記の(1)
式で表される。なお、ε1は波長λ1のときの放射率、
ε2は波長λ2のときの放射率、C2は放射の第2定数
(0.014388m・K)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A radiation temperature measuring method and apparatus according to this embodiment have a spectral power ratio and a spectral emissivity (hereinafter, simply referred to as emissivity) of respective spectral radiant energies described below.
The emissivity is obtained from the spectral radiant energy actually measured based on the calibration curve approximated from the relationship with, and the temperature of the temperature-measured body is measured by automatically correcting the error due to the influence of the change in the emissivity. In general, outputs E1 and E2 for wavelengths λ1 and λ2 after correcting the radiation intensity of a black body, the spectral transmittance of an optical system, the spectral sensitivity of an element, and the like are expressed by the following (1) from the Wien equation.
It is represented by a formula. Where ε1 is the emissivity at the wavelength λ1,
ε2 is the emissivity at the wavelength λ2, and C2 is the second constant of radiation (0.014388 m · K).

【数1】 上述した(1)式から、下記の(2)式が成立する。[Equation 1] From the above equation (1), the following equation (2) is established.

【数2】 これより、各々の分光放射エネルギーの波長のべき乗の
比Xは放射率ε1,ε2のみの関数で表され、温度値T
に依存しない量であることが判る。
[Equation 2] From this, the ratio X of the powers of the wavelengths of the respective spectral radiant energies is expressed by a function of only the emissivities ε1 and ε2, and the temperature value T
It turns out that the amount does not depend on.

【0009】一方、金属の酸化膜の成長時の放射率の挙
動は、光の干渉現象として説明することができる。すな
わち、金属に対して光が入射されると、この光は金属上
に成長した酸化膜の表面で反射するとともに、光の一部
が酸化膜を透過して金属の表面で反射することになり、
酸化膜中において光の干渉現象が生じる。この光の干渉
現象は酸化膜の成長とともに複雑に揺れ動くが、金属と
酸化膜の各々の屈折率および消衰係数によって一義的に
決まるものである。
On the other hand, the behavior of the emissivity during the growth of the metal oxide film can be explained as a light interference phenomenon. That is, when light is incident on a metal, this light is reflected on the surface of the oxide film grown on the metal, and part of the light is transmitted through the oxide film and reflected on the surface of the metal. ,
A light interference phenomenon occurs in the oxide film. This light interference phenomenon sways intricately as the oxide film grows, but is uniquely determined by the refractive index and extinction coefficient of each of the metal and the oxide film.

【0010】このことから、各々の分光放射エネルギー
の波長のべき乗の比Xと放射率ε1,ε2の関係につい
て、鉄の酸化をシミュレーションして求めると、図2に
示す特性グラフで表現される。なお、波長は各々λ1=
1.76μm、λ2=2.06μmとしている。
From the above, the relation between the ratio X of the powers of the wavelengths of the respective spectral radiant energies and the emissivities ε1 and ε2 can be obtained by simulating the oxidation of iron and expressed by the characteristic graph shown in FIG. The wavelength is λ1 =
It is set to 1.76 μm and λ2 = 2.06 μm.

【0011】従って、この結果から、一般に放射率ε
1,ε2は各々の分光放射エネルギーの波長のべき乗の
比Xに対して一価函数とはならずに多値を取ることがあ
るので、各々の分光放射エネルギーの波長のべき乗の比
Xの値に対する放射率ε1,ε2の近似式を示す検量線
を複数描くことができる。
Therefore, from this result, in general, the emissivity ε
Since 1 and ε2 do not have a monovalent function with respect to the ratio X of the powers of the wavelengths of the respective spectral radiant energies and may take a multivalued value, the value of the ratio X of the powers of the wavelengths of the respective spectral radiant energy. It is possible to draw a plurality of calibration curves showing an approximate expression of emissivity ε1 and ε2 with respect to.

【0012】そこで、この実施例の放射測温方法におい
て、特性線に沿って複数の検量線を描いた場合、この複
数の検量線の中から一つの検量線を選定するには、鉄鋼
プロセス等では操業条件が決まれば、酸化膜の厚さは大
幅に変化することがないことから、プロセスの操業条件
に応じて一つの検量線を選定し、被測温体の温度計測を
行っている。
Therefore, in the radiation temperature measuring method of this embodiment, when a plurality of calibration curves are drawn along the characteristic line, one calibration curve can be selected from among the plurality of calibration curves by a steel process or the like. However, once the operating conditions are determined, the thickness of the oxide film does not change significantly, so one calibration curve is selected according to the operating conditions of the process, and the temperature of the temperature-measured body is measured.

【0013】一方、放射計測においては、低放射率領域
になるに連れて測温誤差が大きくなるが、放射率が大き
な領域では、逆に放射率の評価誤差は測温誤差にあまり
大きな影響を与えないことが知られている。従って、こ
の実施例の放射測温方法では、図2に示すように複数の
検量線を低放射率領域と中・高放射率領域とにおける二
本の検量線L1,L2に集約して500°C付近で、±
10°C以内の測温を可能としており、検量線が少ない
ため、検量線の作成選定が容易となり、ソフト、ハード
の負担が軽減され、計測作業の容易化を図ることができ
る。
On the other hand, in radiation measurement, the temperature measurement error increases as the emissivity region becomes lower, but in the region where the emissivity is large, conversely, the emissivity evaluation error has a great influence on the temperature measurement error. It is known not to give. Therefore, in the radiation temperature measuring method of this embodiment, as shown in FIG. 2, a plurality of calibration curves are combined into two calibration curves L1 and L2 in the low emissivity region and the middle and high emissivity regions, and 500 ° is gathered. Near C ±
Since the temperature can be measured within 10 ° C and the number of calibration curves is small, it is easy to create and select the calibration curve, the load of software and hardware is reduced, and the measurement work can be facilitated.

【0014】ところで、図2の特性グラフにおいて、酸
化膜の成長とともに、各々の分光放射エネルギーの波長
のべき乗の比Xの値はある値X1を始点として増大して
いき、放射率の値がある値X2以上になった時点で減少
に転じる。このことから、低放射率領域の検量線L1は
酸化膜が無いときの各々の分光放射エネルギーの波長の
べき乗の比Xの値X1以下になることはないので、この
実施例の放射測温方法では、低放射率領域の検量線L1
に各々の分光放射エネルギーの波長のべき乗の比Xの下
限値UL(=X1)を設定している。
By the way, in the characteristic graph of FIG. 2, as the oxide film grows, the value of the ratio X of the powers of the wavelengths of the respective spectral radiant energies increases with a certain value X1 as the starting point, and there is the value of the emissivity. When the value exceeds X2, it starts to decrease. From this, the calibration curve L1 in the low emissivity region does not become less than the value X1 of the ratio X of the powers of the wavelengths of the respective spectral radiant energies when there is no oxide film. Then, the calibration curve L1 in the low emissivity region
Is set to the lower limit value UL (= X1) of the ratio X of the power of the wavelength of each spectral radiant energy.

【0015】そして、各々の分光放射エネルギーの波長
のべき乗の比Xの値が下限値UL以下の場合は、中・高
放射率領域の検量線L2が一義的に選定される。また、
各々の分光放射エネルギーの波長のべき乗の比Xの値が
下限値UL以上の場合は、両方の検量線L1,L2によ
る演算結果が出力され、各々の温度値または放射率から
操業条件等を考慮して何れかの検量線L1(あるいはL
2)による出力が用いられる。
When the value of the power-of-wavelength ratio X of each spectral radiant energy is less than or equal to the lower limit value UL, the calibration curve L2 in the medium / high emissivity region is uniquely selected. Also,
When the value of the ratio X of the power of the wavelength of each spectral radiant energy is equal to or more than the lower limit value UL, the calculation results by both calibration curves L1 and L2 are output, and the operating conditions etc. are considered from the respective temperature values or emissivity. Then, either calibration curve L1 (or L
The output according to 2) is used.

【0016】また、金属の焼き入れ等のバッチプロセス
では、通常、酸化膜は増大する方向に動くので、熱処理
開始後の各々の分光放射エネルギーの波長のべき乗の比
Xの値が増大している領域では、低放射率領域の検量線
L1が選定される。また、各々の分光放射エネルギーの
波長のべき乗の比Xの値が減少に転じた以降は中・高放
射率領域の検量線L2が選定される。
Further, in a batch process such as metal quenching, the oxide film usually moves in an increasing direction, so the value of the ratio X of the powers of the wavelengths of the respective spectral radiant energies after the start of the heat treatment increases. In the region, the calibration curve L1 in the low emissivity region is selected. Further, after the value of the power-of-wavelength ratio X of each spectral radiant energy starts to decrease, the calibration curve L2 in the medium / high emissivity region is selected.

【0017】ここで、図1に基づき放射測温装置の概略
構成について説明する。放射測温装置は筐体本体をなす
放射検出器1内に検出手段2、記憶手段3、比率演算手
段4、照合手段5、温度演算手段6、出力手段7が設け
られている。なお、記憶手段3、比率演算手段4、照合
手段5、温度演算手段6等はマイクロコンピュータ等で
構成される。
Here, the schematic construction of the radiation thermometer will be described with reference to FIG. The radiation temperature measuring device is provided with a detection means 2, a storage means 3, a ratio calculation means 4, a collation means 5, a temperature calculation means 6 and an output means 7 in a radiation detector 1 which constitutes a casing body. The storage unit 3, the ratio calculation unit 4, the matching unit 5, the temperature calculation unit 6, and the like are configured by a microcomputer or the like.

【0018】検出手段2は予め定められた透過波長をも
つフィルタを有する回転セクタ20と検出素子21等か
ら構成され、被測温体Wである例えば鉄、アルミニウ
ム、黄銅等の金属からの互いに異なる二つの波長帯λ
1,λ2における分光放射エネルギーを検出している。
記憶手段3には予め計算または実測により求められた互
いに異なる二つの波長λ1,λ2における各々の分光放
射エネルギーをE1,E2、放射率をε1,ε2とした
ときの各々の分光放射エネルギーの波長のべき乗の比X
と放射率ε1,ε2との関係を示すデータ、あるいはこ
の関係を示すデータが図2に示すように複数の検量線L
1,L2により近似されて記憶されている。
The detecting means 2 is composed of a rotating sector 20 having a filter having a predetermined transmission wavelength, a detecting element 21 and the like, which are different from each other as a temperature-measuring object W such as metal such as iron, aluminum or brass. Two wavelength bands λ
The spectral radiant energy at 1, λ2 is detected.
The storage means 3 stores the wavelengths of the respective spectral radiant energies, where E1 and E2 are the spectral radiant energies and the emissivity is ε1 and ε2, respectively, at two different wavelengths λ1 and λ2 which are previously calculated or measured. Power ratio X
And the emissivity ε1 and ε2, or data indicating this relationship, as shown in FIG.
1 and L2 are approximated and stored.

【0019】比率演算手段4は検出手段2により検出さ
れた異なる二つの波長帯λ1,λ2における分光放射エ
ネルギーE1,E2に基づいて各々の分光放射エネルギ
ーの波長のべき乗の比Xを演算して照合手段5に入力し
ている。照合手段5は記憶手段3に記憶されたデータに
基づいて比率演算手段4が演算した各々の分光放射エネ
ルギーの波長のべき乗の比Xに対応する放射率ε2(あ
るいはε1)を選定された検量線L1(あるいはL2)
の中から求めて温度演算手段6および出力手段7に入力
している。温度演算手段6は照合手段5が求めた放射率
ε2に基づいて被測温体Wの温度を演算して出力手段7
に入力している。出力手段7は照合手段5で求めた放射
率ε2の値と、温度演算手段6で求めた被測温体Wの温
度Tの値を例えば指示出力している。
The ratio calculating means 4 calculates the ratio X of the powers of the wavelengths of the respective spectral radiant energies based on the spectral radiant energies E1 and E2 in the two different wavelength bands λ1 and λ2 detected by the detecting means 2 and collates them. Inputting means 5. The matching means 5 selects a calibration curve in which the emissivity ε2 (or ε1) corresponding to the power-of-wavelength ratio X of each spectral radiation energy calculated by the ratio calculation means 4 based on the data stored in the storage means 3 is selected. L1 (or L2)
It is obtained from the above and input to the temperature calculation means 6 and the output means 7. The temperature calculation means 6 calculates the temperature of the temperature-measured body W based on the emissivity ε2 obtained by the collation means 5 and outputs it.
Are typing in. The output means 7 outputs, for example, the value of the emissivity ε2 obtained by the collation means 5 and the value of the temperature T of the temperature-measured body W obtained by the temperature calculation means 6, for example.

【0020】従って、この実施例による放射測温装置に
よれば、被測温体Wより検出される分光放射エネルギー
を、予め記憶された互いに異なる二つの波長の各々の分
光放射エネルギーの波長のべき乗の比Xと放射率ε1,
ε2との関係と照合して放射率を決定して温度を演算し
ているので、従来のように別構成による熱源やシャッタ
手段が不要で、簡素な構成により装置の小型化を図るこ
とができる。
Therefore, according to the radiation thermometer of this embodiment, the spectral radiant energy detected by the temperature-measuring object W is a power of the wavelength of the spectral radiant energy of each of two different wavelengths stored in advance. Ratio X and emissivity ε1,
Since the emissivity is determined and the temperature is calculated by collating with the relationship with ε2, a heat source and a shutter means having a separate configuration as in the conventional case are not required, and the apparatus can be downsized with a simple configuration. ..

【0021】そして、以上説明した測定原理に基づいて
被測温体の温度を計測するにあたっては、まず、図2に
示すように互いに異なる二つの波長λ1,λ2における
各々の分光放射エネルギーをE1,E2、放射率をε2
としたときの各々の分光放射エネルギーの波長のべき乗
の比Xと放射率ε2との関係を予め計算または実測によ
り求め、この関係を示すデータを低放射率領域および中
・高放射率領域の二本の検量線L1,L2で近似してお
く。次に、二つの波長λ1,λ2における各々の分光放
射エネルギーをE1,E2を放射検出器1の検出部2に
よって検出する。次に、検出された各々の分光放射エネ
ルギーE1,E2に基づいて各々の分光放射エネルギー
の波長のべき乗の比Xを求める。さらに、この求めた各
々の分光放射エネルギーの波長のべき乗の比Xを検量線
L1(あるいはL2)と照合して放射率ε2を求める。
そして、求めた放射率を(1)式に代入演算して被測温
体Wの温度を求める。
In order to measure the temperature of the object to be measured based on the above-described measurement principle, first, as shown in FIG. 2, the spectral radiant energies at two different wavelengths λ1 and λ2 are E1, respectively. E2, emissivity is ε2
Then, the relationship between the ratio X of the power of the wavelength of each spectral radiant energy and the emissivity ε2 is calculated in advance or actually measured, and the data showing this relationship is calculated in the low emissivity region and the medium / high emissivity region. It is approximated by the calibration curves L1 and L2 of the book. Next, the spectral radiant energies E1 and E2 at the two wavelengths λ1 and λ2 are detected by the detection unit 2 of the radiation detector 1. Next, based on the detected spectral radiant energies E1 and E2, the ratio X of the powers of the wavelengths of the spectral radiant energies is obtained. Further, the emissivity ε2 is obtained by collating the obtained power ratio X of the spectral radiant energy with respect to the wavelength with the calibration curve L1 (or L2).
Then, the calculated emissivity is substituted into the equation (1) to calculate the temperature of the temperature-measured body W.

【0022】なお、異なる二つの波長の各々の分光放射
エネルギーの波長のべき乗の比Xと放射率ε1,ε2と
の関係として、実施例では放射率ε2についてのみ図示
したが、放射率ε1についても同様に異なる二つの波長
の各々の分光放射エネルギーの波長のべき乗の比Xとの
関係を予め定めて放射率を決定してもよい。
Incidentally, as the relationship between the ratio X of the powers of the wavelengths of the spectral radiant energy of each of two different wavelengths and the emissivity ε1 and ε2, only the emissivity ε2 is shown in the embodiment, but the emissivity ε1 is also shown. Similarly, the emissivity may be determined by presetting a relationship with the ratio X of the powers of wavelengths of the spectral radiant energy of each of two different wavelengths.

【0023】[0023]

【発明の効果】以上説明したように、本発明の請求項1
記載の放射測温方法によれば、予め定められた互いに異
なる二つの波長帯における各々の分光放射エネルギーの
波長のべき乗の比と放射率との関係に基づいて被測温体
より実測した分光放射エネルギーから放射率を求め、こ
の求めた放射率を用いて被測温体の温度を演算している
ので、特に金属酸化膜の成長途上での放射率の変動の影
響による誤差を自動補正して金属の温度計測を非接触で
高精度に行うことができる。また、本発明の請求項2記
載の放射測温方法によれば、鉄鋼プロセス等において、
操業条件が決まれば酸化膜の厚さは大幅に変化すること
がないことから、互いに異なる二つの波長帯における各
々の分光放射エネルギーの波長のべき乗の比と放射率と
の関係を示すデータを、各々の分光放射エネルギーのべ
き乗の比に対する放射率を示す複数本検量線に置き換え
てプロセスの操業条件に応じた検量線の選定により被測
温体の温度計測を行うことができる。さらに、本発明の
請求項3記載の放射測温方法によれば、検量線を低放射
率領域の検量線と中・高放射率領域の二本の検量線に集
約しているので、検量線の選定を容易に行うことがで
き、計測作業の容易化が図れる。また、本発明の請求項
4記載の放射測温方法によれば、低放射率領域の検量線
に対し、各々の分光放射エネルギーのべき乗の比の下限
値を設定しているので、この下限値より小さい場合は、
検量線を一義的に定めることができる。さらに、本発明
の請求項5記載の放射測温方法によれば、各々の分光放
射エネルギーのべき乗の比の値が下限値以上のとき、各
々の検量線に対する温度値、放射率値またはその両方の
値を出力しているので、各々の温度値または放射率から
操業条件等を考慮して最適な出力を得ることができる。
また、本発明の請求項6記載の放射測温方法によれば、
時間の経過とともに、各々の分光放射エネルギーのべき
乗の比の値が上昇するときには低放射率領域の検量線を
選択し、各々の分光放射エネルギーのべき乗の比の値が
減少に転じた以降は中・高放射率領域の検量線を選択し
ているので、被測温体である金属に形成される酸化膜の
成長に伴って各々の分光放射エネルギーのべき乗の比の
値の増減により最適な検量線が一義的に選定され、被測
温体の温度計測を行うことができる。さらに、本発明の
請求項7記載の放射測温装置によれば、互いに異なる二
つの波長帯における各々の分光放射エネルギーの波長の
べき乗の比と放射率との関係を示すデータから実測した
被測温体の分光放射エネルギーに基づいて放射率を決定
し、この決定された放射率に基づいて被測温体の温度を
演算しているので、従来のように別構成による熱源やシ
ャッタ手段が不要で、簡素な構成により装置の小型化を
図ることができる。
As described above, according to the first aspect of the present invention.
According to the radiation temperature measuring method described above, the spectral radiation measured from the temperature-measuring object based on the relationship between the emissivity and the ratio of the power of the wavelength of each spectral radiation energy in two different predetermined wavelength bands. Since the emissivity is calculated from the energy and the temperature of the temperature-measuring object is calculated using this emissivity, the error due to the fluctuation of the emissivity during the growth of the metal oxide film is automatically corrected. The metal temperature can be measured with high accuracy without contact. Further, according to the radiation temperature measuring method of claim 2 of the present invention, in a steel process or the like,
If the operating conditions are determined, the thickness of the oxide film will not change significantly, so data showing the relationship between the ratio of the power of the wavelength of each spectral radiant energy and the emissivity in two different wavelength bands, It is possible to measure the temperature of the temperature-measuring object by replacing the plural calibration curves showing the emissivity with respect to the power ratio of each spectral radiant energy and selecting the calibration curve according to the operating conditions of the process. Furthermore, according to the radiation temperature measuring method of claim 3 of the present invention, the calibration curve is aggregated into the calibration curve of the low emissivity region and the two calibration curves of the medium and high emissivity regions. Can be easily selected, and measurement work can be facilitated. Further, according to the radiation temperature measuring method of claim 4 of the present invention, the lower limit value of the ratio of the powers of the respective spectral radiant energies is set with respect to the calibration curve in the low emissivity region. If less than
The calibration curve can be uniquely determined. Further, according to the radiation temperature measuring method of claim 5 of the present invention, when the value of the ratio of the powers of the respective spectral radiant energies is equal to or more than the lower limit value, the temperature value, the emissivity value or both for each calibration curve is obtained. , The optimum output can be obtained from each temperature value or emissivity in consideration of operating conditions and the like.
According to the radiation temperature measuring method of claim 6 of the present invention,
When the value of the ratio of the power of each spectral radiant energy rises with the passage of time, select the calibration curve in the low emissivity region, and after the value of the ratio of the power of each spectral radiant energy starts to decrease,・ Since the calibration curve in the high emissivity region is selected, the optimum calibration can be performed by increasing or decreasing the value of the ratio of the power of each spectral radiant energy with the growth of the oxide film formed on the metal to be measured. The line is uniquely selected, and the temperature of the object to be measured can be measured. Further, according to the radiation thermometer of claim 7 of the present invention, the measured temperature measured from data showing the relationship between the ratio of the power of the wavelength of each spectral radiation energy in two different wavelength bands and the emissivity. Since the emissivity is determined based on the spectral radiant energy of the warm body and the temperature of the temperature-measured body is calculated based on this determined emissivity, there is no need for a heat source or shutter means with a different configuration as in the past. Thus, the device can be downsized with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による放射測温方法が適用される放射測
温装置の一実施例を示すブロック構成図
FIG. 1 is a block diagram showing an embodiment of a radiation temperature measuring device to which a radiation temperature measuring method according to the present invention is applied.

【図2】各々の分光放射エネルギーの波長のべき乗の比
と分光放射率との関係を示す特性グラフ
FIG. 2 is a characteristic graph showing the relationship between the ratio of the power of wavelength of each spectral radiant energy and the spectral emissivity.

【符号の説明】[Explanation of symbols]

2…検出部、3…記憶部、4…比率演算部、5…データ
照合部、6…温度演算部、W…被測温体(金属)。
2 ... Detection part, 3 ... Storage part, 4 ... Ratio calculation part, 5 ... Data matching part, 6 ... Temperature calculation part, W ... Temperature measurement object (metal).

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なる二つの波長帯における各々
の分光放射エネルギーの波長のべき乗の比と放射率との
関係に基づいて被測温体より実測した分光放射エネルギ
ーから放射率を求め、この求めた放射率を用いて前記被
測温体の温度を演算することを特徴とする放射測温方
法。
1. The emissivity is obtained from the spectral radiant energy actually measured from the temperature-measuring object based on the relationship between the ratio of the power of the wavelength of each spectral radiant energy in two different wavelength bands and the emissivity, and this is obtained. A radiation temperature measuring method, wherein the temperature of the temperature-measuring object is calculated using the emissivity.
【請求項2】 各々の分光放射エネルギーのべき乗の比
に対する放射率の検量線を予め複数本定め、使用条件に
応じて検量線を選択することを特徴とする請求項1記載
の放射測温方法。
2. The radiant temperature measuring method according to claim 1, wherein a plurality of calibration curves of emissivity with respect to a power ratio of each spectral radiant energy are determined in advance, and the calibration curve is selected according to usage conditions. ..
【請求項3】 検量線を低放射率領域の検量線と中・高
放射率領域の二本の検量線に集約したことを特徴とする
請求項2記載の放射測温方法。
3. The radiant temperature measuring method according to claim 2, wherein the calibration curve is integrated into a calibration curve in a low emissivity region and two calibration curves in a medium / high emissivity region.
【請求項4】 低放射率領域の検量線に対し、各々の分
光放射エネルギーのべき乗の比の下限値を設定したこと
を特徴とする請求項2または3記載の放射測温方法。
4. The radiation temperature measuring method according to claim 2, wherein a lower limit value of a ratio of powers of respective spectral radiant energies is set for the calibration curve in the low emissivity region.
【請求項5】 各々の分光放射エネルギーのべき乗の比
の値が下限値以上のとき、各々の検量線に対する温度
値、放射率値またはその両方の値を出力することを特徴
とする請求項4記載の放射測温方法。
5. The temperature value, the emissivity value, or both values for each calibration curve are output when the value of the power ratio of each spectral radiant energy is equal to or more than the lower limit value. Radiation temperature measurement method described.
【請求項6】 時間の経過とともに、各々の分光放射エ
ネルギーのべき乗の比の値が上昇するときには低放射率
領域の検量線を選択し、各々の分光放射エネルギーのべ
き乗の比の値が減少に転じた以降は中・高放射率領域の
検量線を選択することを特徴とする請求項3記載の放射
測温方法。
6. A calibration curve in a low emissivity region is selected when the value of the power ratio of each spectral radiant energy increases with the passage of time, and the value of the power ratio of each spectral radiant energy decreases. 4. The radiation temperature measuring method according to claim 3, wherein a calibration curve in the middle / high emissivity region is selected after the change.
【請求項7】 互いに異なる二つの波長帯における被測
温体の各々の分光放射エネルギーを検出する検出手段
と、該検出手段からの各々の分光放射エネルギーに基づ
いて各々の分光放射エネルギーの波長のべき乗の比を演
算する比率演算手段と、前記各々の分光放射エネルギー
の波長のべき乗の比と放射率との関係を示すデータが記
憶された記憶手段と、前記比率演算手段により演算した
各々の分光放射エネルギーの波長のべき乗の比を前記記
憶手段のデータと照合して対応する放射率を求める照合
手段と、該照合手段より求めた放射率に基づいて前記被
測温体の温度を演算する温度演算手段と備えたことを特
徴とする放射測温装置。
7. A detection means for detecting each spectral radiant energy of the temperature-measuring object in two different wavelength bands, and a wavelength of each spectral radiant energy based on each spectral radiant energy from the detecting means. Ratio calculating means for calculating a ratio of powers, storage means for storing data indicating a relationship between a ratio of powers of wavelengths of the respective spectral radiant energies and emissivity, and respective spectra calculated by the ratio calculating means. Collating means for collating the ratio of the power of the wavelength of radiant energy with the data of the storage means to obtain the corresponding emissivity, and temperature for computing the temperature of the temperature-measured body based on the emissivity obtained by the collating means. A radiation thermometer, which is provided with a computing means.
JP31740091A 1991-11-06 1991-11-06 Radiation temperature measuring method and device thereof Pending JPH05126642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31740091A JPH05126642A (en) 1991-11-06 1991-11-06 Radiation temperature measuring method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31740091A JPH05126642A (en) 1991-11-06 1991-11-06 Radiation temperature measuring method and device thereof

Publications (1)

Publication Number Publication Date
JPH05126642A true JPH05126642A (en) 1993-05-21

Family

ID=18087823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31740091A Pending JPH05126642A (en) 1991-11-06 1991-11-06 Radiation temperature measuring method and device thereof

Country Status (1)

Country Link
JP (1) JPH05126642A (en)

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
US8353626B2 (en) Emissivity independent non-contact high temperature measurement system and method
CN103913237A (en) Three-waveband infrared radiation accurate temperature measuring method
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
EP1061348B1 (en) Radiation thermometer
JPH05126642A (en) Radiation temperature measuring method and device thereof
KR0133637B1 (en) Calibration method for light measuring device and radiation
JP3293470B2 (en) Radiation thermometer
JPH05164615A (en) Radiation-temperature measuring apparatus
JPH0521412B2 (en)
JPH0462012B2 (en)
WO2014067549A1 (en) A method for measuring temperature
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
JPH05272924A (en) Film-thickness measuring apparatus
JPH034855B2 (en)
JPH0510822A (en) Radiation temperature measuring instrument
JPH0462013B2 (en)
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
JPH06213728A (en) Method and device for remotely monitoring temperature of body
JPH09504370A (en) How to evaluate the channel signal of a multi-channel pyrometer
JPH0933351A (en) Multiple wavelength type radiation temperature measuring method and multiple wavelength type radiation thermometer
EA039507B1 (en) Method for determination of temperature field of the heated body surface with unknown radiant heat factor
Chopko Effective wavelength of a color pyrometer
KR20020052762A (en) Measurement method of emissivity free temperature using laser diode