JPH05125579A - Method for restarting electrolytic cell - Google Patents

Method for restarting electrolytic cell

Info

Publication number
JPH05125579A
JPH05125579A JP31337791A JP31337791A JPH05125579A JP H05125579 A JPH05125579 A JP H05125579A JP 31337791 A JP31337791 A JP 31337791A JP 31337791 A JP31337791 A JP 31337791A JP H05125579 A JPH05125579 A JP H05125579A
Authority
JP
Japan
Prior art keywords
alkali hydroxide
weight
concentration
cathode chamber
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31337791A
Other languages
Japanese (ja)
Other versions
JP3112039B2 (en
Inventor
Tetsuji Shimodaira
哲司 下平
Yoshihiko Saito
義彦 斉藤
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP03313377A priority Critical patent/JP3112039B2/en
Publication of JPH05125579A publication Critical patent/JPH05125579A/en
Application granted granted Critical
Publication of JP3112039B2 publication Critical patent/JP3112039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To restart an electrolytic cell after temporarily stopped so that stabilized electrolytic performance is exhibited even after restaring at the time of directly producing a >=42wt.% alkali hydroxide by ion-exchange membrane electrolysis. CONSTITUTION:A double-layer cation-exchange membrane of a cation-exchange layer of a fluorine-contg. polymer having a carboxyl group and a hydrophilic porous body on the cathode side is used, and a >=42wt.% alkali hydroxide is produced in the cathode chamber of the electrolytic cell. When the cell is restarted, the alkali hydroxide in the cathode chamber is kept at <=25wt.%, the temp. is controlled to 20-80 deg.C, and a current is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含フッ素陽イオン交換
膜を用いたイオン交換膜法電解により陰極室に42重量
%以上の高濃度の水酸化アルカリを電解により直接製造
する電解槽を一時的に停止した場合の再起用方法に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a temporary electrolytic cell for directly producing 42% by weight or more of high concentration alkali hydroxide in a cathode chamber by electrolysis by ion exchange membrane method electrolysis using a fluorinated cation exchange membrane. It is related to the method of restarting when it is stopped temporarily.

【0002】[0002]

【従来の技術】含フッ素陽イオン交換膜を隔膜として使
用し、塩化アルカリ水溶液を電解して水酸化アルカリと
塩素を製造する所謂イオン交換膜法アルカリ電解は、高
純度の水酸化アルカリが、それまでの従来法に比べて低
エネルギー消費量にて製造できることから、近年、国際
的に普及しつつある。
2. Description of the Related Art So-called ion exchange membrane method alkaline electrolysis in which a fluorinated cation exchange membrane is used as a diaphragm to electrolyze an aqueous solution of alkali chloride to produce alkali hydroxide and chlorine, Since it can be manufactured with lower energy consumption than the conventional methods up to the above, it is becoming internationally popular in recent years.

【0003】かかる、イオン交換膜法アルカリ電解にお
いては、初期の頃は、スルホン酸基をイオン交換基とす
る含フッ素イオン交換膜が使用されていたが、電流効率
を高くすることが困難であった。そのため、近年は、カ
ルボン酸基をイオン交換基とする陽イオン交換膜に変更
され、その結果、製造する水酸化アルカリ濃度が30〜
35重量%において、電流効率は93〜97%までに達
し、工業的にほぼ完成した域に達している。
In such an ion exchange membrane method alkaline electrolysis, a fluorine-containing ion exchange membrane having a sulfonic acid group as an ion exchange group was used in the early days, but it was difficult to increase the current efficiency. It was Therefore, in recent years, it has been changed to a cation exchange membrane having a carboxylic acid group as an ion exchange group, and as a result, the concentration of alkali hydroxide to be produced is 30 to
At 35% by weight, the current efficiency reaches 93 to 97%, which is almost industrially completed.

【0004】一方、水酸化アルカリを得る商業的なイオ
ン交換膜法電解プロセスでは、定常運転時の水酸化アル
カリ濃度(陰極液濃度)や温度を適正な条件に管理する
ことに加えて、電解停止、再起用の様な非定常時におけ
る運転方法が安定した電解性能を長期にわたって得るた
めの重要な因子となっている。
On the other hand, in a commercial ion-exchange membrane electrolysis process for obtaining alkali hydroxide, in addition to controlling the alkali hydroxide concentration (catholyte concentration) and temperature during steady operation to appropriate conditions, the electrolysis is stopped. The operation method during non-steady state such as restarting is an important factor for obtaining stable electrolysis performance for a long time.

【0005】再起用時の運転方法に関しては、一般に、
高い電解性能が得られる定常運転時の条件にできるだけ
近い条件で再通電することが好ましく、例えば、上記3
0〜35重量%の水酸化アルカリを得る場合、陰極液濃
度が25〜35重量%、温度が50〜80℃の条件で通
電を行い、再起用されている。さらにこの条件範囲の中
でも、陰極液濃度が低い場合には再起用時の温度を低く
するなどにより、膜の膨潤による性能低下を防いでい
る。また、陰極液濃度が高い場合には、温度を高くする
などにより、再通電時の膜が受ける電気的ショックを緩
和している。
Regarding the operation method at the time of restarting, generally,
It is preferable to re-energize under the condition as close as possible to the condition at the time of steady operation where high electrolysis performance can be obtained.
In the case of obtaining 0 to 35% by weight of alkali hydroxide, electricity is supplied again under conditions of a catholyte concentration of 25 to 35% by weight and a temperature of 50 to 80 ° C., and then reused. Further, within this condition range, when the concentration of the catholyte is low, the temperature at the time of restarting is lowered to prevent the performance from being deteriorated due to the swelling of the film. In addition, when the concentration of the catholyte is high, the temperature is raised to reduce the electric shock received by the film during re-energization.

【0006】一方、近年、陰極側表面に拡散層として親
水性の多孔層を設けた含フッ素陽イオン交換膜を使用
し、濃度42重量%を超える水酸化アルカリを93%以
上の電流効率にて電解により直接製造する電解方法が開
示されている(特開昭63−310985、特開平1−
242794)。
On the other hand, in recent years, a fluorine-containing cation exchange membrane having a hydrophilic porous layer provided as a diffusion layer on the cathode side surface has been used, and alkali hydroxide having a concentration of more than 42% by weight can be obtained with a current efficiency of 93% or more. An electrolysis method of directly producing by electrolysis has been disclosed (JP-A-63-310985, JP-A-1-
242794).

【0007】しかし、これらの電解方法には定常運転に
おける好ましい運転条件は示されているものの、再起用
のような非定常運転に関する方法は何ら示されていな
い。
However, although these electrolysis methods have shown preferable operating conditions in steady operation, none of them have been shown for unsteady operation such as restarting.

【0008】本発明者の研究によると、上記の濃度42
重量%以上の電解プロセスでは、従来行われている30
〜35重量%電解プロセスにおいて用いられている定常
運転条件に近い条件で再起用を行う場合には、意外なこ
とに電解性能が大きく低下することが見い出された。つ
まり、電解停止後定常運転条件に近い条件(例えば陰極
液水酸化アルカリ濃度40〜50重量%、温度75〜9
0℃)で再通電を行うと、電流効率が大幅に低下し、更
に場合によっては電解電圧の上昇が生じることが判明し
た。
According to the research conducted by the present inventor, the above concentration of 42
In the electrolytic process with a weight percentage of 30% or more, the conventional method is 30.
It has been surprisingly found that the electrolytic performance is significantly reduced when the re-running is performed under conditions close to the steady-state operating conditions used in the ~ 35 wt% electrolysis process. That is, after the electrolysis is stopped, a condition close to a steady operation condition (for example, catholyte alkali hydroxide concentration 40 to 50% by weight, temperature 75 to 9)
It was found that re-energization at 0 ° C. significantly reduced the current efficiency and, in some cases, increased the electrolysis voltage.

【0009】この現象は未だ原因が明らかではないが、
以下のように考えられる。即ち濃度42重量%以上の水
酸化アルカリを製造するイオン交換膜電解槽では、電解
を停止すると、陽極から陰極に向かって流れる電気浸透
水が止まるため、イオン交換膜の陰極側は42重量%を
超える水酸化アルカリに直接接することとなり、膜の極
端な脱水が生じることになる。このため膜中のアルカリ
金属イオンが非常に動き難い状態となる。かかる状態に
おいて再び通電を行うと、相対的に水酸イオンの移動性
が増加するため電流効率が低下するものと推定される。
また、ある場合に生じる電解電圧が上昇する理由は、上
記脱水により膜が収縮することによりもたらされるもの
と推定される。
The cause of this phenomenon is not clear yet,
It can be considered as follows. That is, in an ion-exchange membrane electrolyzer for producing an alkali hydroxide having a concentration of 42% by weight or more, when electrolysis is stopped, electroosmotic water flowing from the anode to the cathode stops, so that 42% by weight is left on the cathode side of the ion-exchange membrane. It will come into direct contact with excess alkali hydroxide, resulting in extreme dehydration of the film. For this reason, the alkali metal ions in the film are in a very difficult state to move. It is presumed that when current is applied again in such a state, the mobility of the hydroxide ions is relatively increased, so that the current efficiency is lowered.
Further, it is presumed that the reason why the electrolysis voltage generated in a certain case is increased is that the membrane contracts due to the dehydration.

【0010】[0010]

【発明が解決しようとする課題】本発明は、含フッ素陽
イオン交換膜を用いたイオン交換膜法電解により、濃度
42重量%以上、特には45重量%以上〜55重量%の
水酸化アルカリを電解により製造する電解槽を一時的に
停止し、再起用するにあたり、再起用後も安定した高い
電解性能を発現させるための新規な再起用方法を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention is based on an ion exchange membrane method electrolysis using a fluorine-containing cation exchange membrane to produce an alkali hydroxide having a concentration of 42% by weight or more, particularly 45% by weight to 55% by weight. An object of the present invention is to provide a novel restarting method for temporarily exhibiting stable and high electrolytic performance even after restarting when the electrolytic cell manufactured by electrolysis is temporarily stopped and restarted.

【0011】[0011]

【課題を解決するための手段】かくして本発明は、含フ
ッ素陽イオン交換膜を用いたイオン交換膜法電解によ
り、陰極室に42重量%以上の高濃度の水酸化アルカリ
を製造する電解槽を一時的に停止した後再起用するにあ
たり、陰極室水酸化アルカリ濃度を25重量%以下に保
持せしめて再通電を行うことを特徴とする。
The present invention thus provides an electrolytic cell for producing a high-concentration alkali hydroxide of 42% by weight or more in the cathode chamber by the ion exchange membrane method electrolysis using a fluorine-containing cation exchange membrane. It is characterized in that when it is restarted after being temporarily stopped, the cathode chamber alkali hydroxide concentration is maintained at 25% by weight or less and re-energization is performed.

【0012】本発明において含フッ素陽イオン交換膜
は、少なくともカルボン酸基を有する含フッ素重合体か
らなる陽イオン交換層とその陰極側に配した親水性を有
する多孔層とからなる複層陽イオン交換膜を使用するの
が好ましい。陰極側の多孔層は42重量%を超える水酸
化アルカリを長期にわたり高い電流効率で取得するため
に効果的である。
In the present invention, the fluorinated cation exchange membrane is a multi-layered cation composed of a cation exchange layer made of a fluoropolymer having at least a carboxylic acid group and a hydrophilic porous layer disposed on the cathode side thereof. Preference is given to using exchange membranes. The porous layer on the cathode side is effective for acquiring over 42% by weight of alkali hydroxide with high current efficiency for a long period of time.

【0013】膜抵抗を小さくし、かつ大きい膜強度を賦
与するために上記カルボン酸基を有する含フッ素重合体
よりも比抵抗の小さい含フッ素カルボン酸重合体フィル
ムや含フッ素スルホン酸重合体フィルム又はそれらの混
合物からなるフィルムを陽極側に積層した多層構造の陽
イオン交換膜も使用でき、また、これらの陽イオン交換
膜はポリテトラフルオロエチレンなどの耐食性を有する
含フッ素重合体からなる織布又は不織布にて補強するこ
とができる。
A fluorine-containing carboxylic acid polymer film or a fluorine-containing sulfonic acid polymer film having a smaller specific resistance than the above-mentioned fluorine-containing polymer having a carboxylic acid group in order to reduce the film resistance and impart a large film strength, A cation exchange membrane having a multilayer structure in which a film made of a mixture thereof is laminated on the anode side can also be used, and these cation exchange membranes are woven fabrics made of a fluorine-containing polymer having corrosion resistance such as polytetrafluoroethylene or the like. It can be reinforced with non-woven fabric.

【0014】本発明において上記陽イオン交換膜を構成
する含フッ素カルボン酸重合体及び含フッ素スルホン酸
重合体とは、好ましくは次の(イ)及び(ロ)の重合単
位をもつ共重合体からなる。
In the present invention, the fluorinated carboxylic acid polymer and the fluorinated sulfonic acid polymer constituting the cation exchange membrane are preferably copolymers having the following polymer units (a) and (b): Become.

【0015】(イ)−(CF2 −CXX’)−、(ロ)
−{CF2 −CX(Y−A)}−
(A)-(CF 2 -CXX ')-, (b)
- {CF 2 -CX (Y- A)} -

【0016】ここでX、X’は、−F、−Cl、−H又
は−CF3 であり、Aは−SO3 M又は−CO2 M(M
は水素、アルカリ金属又は加水分解等により、これらの
基に転化する基を表す)であり、Yは、次のものから選
ばれるが、そこでZ、Z’は−F又は炭素数1〜10の
パーフルオロアルキル基であり、x、y、zは1〜10
の整数を表す。
Here, X and X'are -F, -Cl, -H or -CF 3 , and A is -SO 3 M or -CO 2 M (M.
Represents a group which is converted into these groups by hydrogen, an alkali metal or hydrolysis), and Y is selected from the following, where Z and Z ′ are —F or a group having 1 to 10 carbon atoms. It is a perfluoroalkyl group, and x, y, and z are 1 to 10
Represents the integer.

【0017】−(CF2x −、 −O−(CF2x
−、 −(O−CF2 CFZ)x −、 −(O−CFZ−CF2x −O−(CFZ’)y
-(CF 2 ) x- , -O- (CF 2 ) x
-, - (O-CF 2 CFZ) x -, - (O-CFZ-CF 2) x -O- (CFZ ') y -

【0018】さらに、(イ)及び(ロ)の重合単位の他
に、次のような重合単位を含んでいてもよい。
Further, in addition to the polymer units of (a) and (b), the following polymer units may be contained.

【0019】−{CF2 −CF(O−Z)}−、 −{CF2 −CF(O−CF2 −CFZ’)x −O−
Z}−
-{CF 2 -CF (O-Z)}-,-{CF 2 -CF (O-CF 2 -CFZ ') x -O-
Z}-

【0020】なお、上記重合体を形成する(イ)/
(ロ)の組成比(モル比)は含フッ素重合体が好ましく
は0.5〜4.0ミリ当量/g乾燥樹脂、特には0.7
〜2.0ミリ当量/g乾燥樹脂のイオン交換容量を形成
するように選ばれる。
The above polymer is formed (a) /
The composition ratio (molar ratio) of (b) is preferably a fluoropolymer, preferably 0.5 to 4.0 meq / g dry resin, and particularly 0.7.
Selected to form an ion exchange capacity of ˜2.0 meq / g dry resin.

【0021】上記含フッ素重合体は、好ましくはパーフ
ルオロカーボン重合体が適切であり、その好ましい例
は、CF2 =CF2 とCF2 =CFOCF2 CF(CF
3 )OCF2 CF2 SO2 Fとの共重合体、CF2 =C
2 とCF2 =CFO(CF225 SO2 Fとの共
重合体、CF2 =CF2 とCF2 =CFO(CF21
5 COOCH3 との共重合体、CF2 =CF2 とCF
2 =CFO(CF225 CO2 CH3 との共重合
体、更には、CF2 =CF2 とCF2 =CFOCF2
F(CF3 )OCF2 CF2 COOCH3 との共重合体
が例示される。
The above-mentioned fluorine-containing polymer is preferably a perfluorocarbon polymer, and preferable examples thereof include CF 2 ═CF 2 and CF 2 ═CFOCF 2 CF (CF
3 ) Copolymer with OCF 2 CF 2 SO 2 F, CF 2 ═C
F 2 and CF 2 = CFO (CF 2) a copolymer of 2 ~ 5 SO 2 F, CF 2 = CF 2 and CF 2 = CFO (CF 2) 1
~ 5 COOCH 3 copolymer, CF 2 = CF 2 and CF
2 = CFO (CF 2 ) 2 to 5 CO 2 CH 3 copolymer, and further CF 2 ═CF 2 and CF 2 ═CFOCF 2 C
A copolymer with F (CF 3 ) OCF 2 CF 2 COOCH 3 is exemplified.

【0022】一方、陽イオン交換層の陰極側に配される
上記親水性を有する多孔層は、無機物粒子及び親水基を
有する含フッ素重合体から形成されるのが好ましい。特
に42重量%を超える水酸化アルカリ中での安定性の観
点から親水性は−SO3 M(Mは前記と同じ)であるこ
とが好ましい。
On the other hand, the hydrophilic porous layer disposed on the cathode side of the cation exchange layer is preferably formed from a fluorine-containing polymer having inorganic particles and a hydrophilic group. In particular, it is preferable that the hydrophilicity is —SO 3 M (M is the same as above) from the viewpoint of stability in an alkali hydroxide of more than 42% by weight.

【0023】上記無機物粒子と親水基を有する含フッ素
重合体からなる多孔層は、種々の方法で製造することが
できる。例えば、親水基を有する含フッ素重合体の溶液
に好ましくは耐アルカリ性の無機物粒子又は小繊維を分
散させた混合物からキャスト製膜する方法、親水基を有
する含フッ素重合体に無機物粒子を混合、混練した後加
熱、成型して薄膜化し、延伸して多孔フィルム化する方
法、メチルセルロースなどの水溶性の適宜のバインダー
を使用して無機物粒子の多孔層を形成し、かかる2つの
多孔層の間に親水基を有する含フッ素重合体のフィルム
で挟み、加熱、圧着する方法などが挙げられる。
The porous layer composed of the inorganic particles and the fluoropolymer having a hydrophilic group can be produced by various methods. For example, a method of casting a film from a mixture in which inorganic particles or fibrils, which are preferably alkali-resistant, are dispersed in a solution of a fluoropolymer having a hydrophilic group, inorganic particles are mixed with a fluoropolymer having a hydrophilic group, and kneaded. After that, a method of heating and molding to form a thin film, followed by stretching to form a porous film, a porous layer of inorganic particles is formed using an appropriate water-soluble binder such as methylcellulose, and a hydrophilic layer is formed between the two porous layers. A method of sandwiching between films of a fluorine-containing polymer having a group, heating, and pressure bonding may be mentioned.

【0024】無機物粒子としては、好ましくは、長周期
型周期律表の IIa、IIIb、IVb 、Vb、IIIa、IVa 族の第
三周期以降の元素の酸化物、窒化物、炭化物、水酸化物
あるいは炭化ホウ素の単独又はそれらの混合物から選択
され、中でも具体的に好ましい例としては、チタン、ジ
ルコニウム、ニオブ、ハフニウム、タンタル、インジウ
ム、スズ等の酸化物、窒化物、炭化物、水酸化物、ケイ
素の酸化物、炭化物の単独又は混合物から選択される。
The inorganic particles are preferably oxides, nitrides, carbides, hydroxides or oxides of elements of the IIa, IIIb, IVb, Vb, IIIa and IVa groups of the long period type periodic table and after the third period. It is selected from boron carbide alone or a mixture thereof, and specifically preferable examples thereof include oxides of titanium, zirconium, niobium, hafnium, tantalum, indium, tin, etc., nitrides, carbides, hydroxides, and silicon. It is selected from oxides and carbides alone or as a mixture.

【0025】陽イオン交換層と多孔層との複層化は、上
記により得られた多孔層と陽イオン交換層とを加熱、圧
着することで行うことができる。また、多孔層をキャス
ト法で製膜する場合には、無機物粒子と親水基を有する
含フッ素重合体の混合溶液を陽イオン交換層に直接塗
布、乾燥することで複層化することもでき、更に多孔層
と陽イオン交換層の接着力を高めるために加熱圧着処理
を行うこともできる。
The multilayer structure of the cation exchange layer and the porous layer can be formed by heating and press-bonding the porous layer and the cation exchange layer obtained above. Further, when the porous layer is formed by a casting method, a mixed solution of inorganic particles and a fluoropolymer having a hydrophilic group can be directly applied to the cation exchange layer to form a multilayer by drying, Furthermore, in order to enhance the adhesive force between the porous layer and the cation exchange layer, a heat compression treatment may be performed.

【0026】上記した陽イオン交換層と多孔層との複層
膜は、そのままでも使用できるが、好ましくは、陽イオ
ン交換膜の少なくとも一表面に、特に好ましくは、陽極
側表面に塩素ガス開放のための処理を施すことにより、
電流効率の長期安定性を更に改良することができる。
The above-mentioned multi-layered membrane of the cation exchange layer and the porous layer can be used as it is, but preferably, at least one surface of the cation exchange membrane, particularly preferably, the surface of the anode side is exposed to chlorine gas. By performing the processing for
The long-term stability of current efficiency can be further improved.

【0027】陽イオン交換膜の表面にガス開放のための
処理を施す方法としては、膜表面に微細な凹凸を施す方
法(特公昭60−26495)、電解槽に鉄、ジルコニ
ア等を含む液を供給して、膜表面に親水性無機粒子を付
着する方法(特開昭56−152980)、ガス及び液
透過性の電極活性を有しない粒子を含む多孔層を設ける
方法(特開昭56−75583及び特開昭57−391
85)等が例示される。かかる陽イオン交換膜の表面の
ガス開放層は電流効果の長期的安定性を改良する効果の
ほかに電解下における電圧を更に改良することができ
る。
As a method for treating the surface of the cation exchange membrane for releasing gas, a method of forming fine irregularities on the membrane surface (Japanese Patent Publication No. 60-26495) or a liquid containing iron, zirconia or the like in the electrolytic cell is used. A method for supplying hydrophilic inorganic particles to the surface of the membrane (JP-A-56-152980) and a method for providing a porous layer containing particles having gas and liquid permeable electrode activity, but not (JP-A-56-75583). And JP-A-57-391
85) and the like. The gas release layer on the surface of the cation exchange membrane can further improve the voltage under electrolysis in addition to the effect of improving the long-term stability of the current effect.

【0028】本発明において上記陽イオン交換膜を使用
し、濃度42重量%以上の水酸化アルカリを製造する電
解条件としては、上記した特開昭54−112398に
記載されるような既知の条件が採用できる。例えば陽極
室には好ましくは2.5〜5.0規定(N)の塩化アル
カリ水溶液を供給し、陰極室には水又は希釈水酸化アル
カリを供給し又はこれらを供給することなく、好ましく
は50〜120℃、5〜100A/dm2 で電解され
る。かかる場合、塩化アルカリ中のカルシウム及びマグ
ネシウム、ヨウ素イオンなどの不純物重金属イオンは、
イオン交換膜の劣化を招くので、可及的に小さくせしめ
るのが好ましい。
In the present invention, as the electrolysis conditions for producing an alkali hydroxide having a concentration of 42% by weight or more by using the above cation exchange membrane, known conditions as described in JP-A No. 54-112398 mentioned above are used. Can be adopted. For example, the anode chamber is preferably supplied with an aqueous solution of 2.5-5.0 normal (N) alkali chloride, and the cathode chamber is supplied with water or diluted alkali hydroxide or without these, preferably 50 It is electrolyzed at ˜120 ° C. and 5˜100 A / dm 2 . In such a case, calcium and magnesium in alkali chloride, impurities heavy metal ions such as iodide ions,
Since it causes deterioration of the ion exchange membrane, it is preferable to make it as small as possible.

【0029】そして、本発明は、上記高濃度の水酸化ア
ルカリを製造する電解を種々の理由により一時的に停止
した後再起用を行う場合の運転方法を提供するものであ
るが、再起用後も安定した性能を発現させる再起用方法
について検討を重ねた結果、陰極液水酸化アルカリ濃度
を定常運転時の濃度から大きく下げた条件で再通電を行
い、その後目的とする定常運転濃度まで陰極液水酸化ア
ルカリ濃度を上昇させることにより、再起用後も高い電
解性能を維持できることを見い出したものである。
The present invention provides an operating method in the case where the electrolysis for producing the high-concentration alkali hydroxide is temporarily stopped for various reasons and then restarted. As a result of repeated studies on the re-use method that produces stable performance, the catholyte solution was re-energized under conditions where the alkali hydroxide concentration was greatly reduced from that during steady operation, and then the catholyte solution was brought to the desired steady operation concentration. It was found that high electrolytic performance can be maintained even after re-use by increasing the alkali hydroxide concentration.

【0030】再通電時の陰極液水酸化アルカリ濃度は2
5重量%以下であることが好ましく、特には、10〜2
0重量%が好ましい。10重量%以下では膜にブリスタ
ーが発生する場合があり好ましくない。
The concentration of the alkali hydroxide in the catholyte upon re-energization is 2
It is preferably 5% by weight or less, particularly 10 to 2
0% by weight is preferred. If it is less than 10% by weight, blister may occur in the film, which is not preferable.

【0031】再通電時の陰極液水酸化アルカリ温度は2
0〜80℃、なかでも30〜70℃であることが好まし
い。80℃以上では、陰極液濃度が定常運転の高濃度よ
り大きく低下していることに起因し、膜に不可逆な膨潤
が生じ、電流効率の低下が生じる。20℃以下に温度を
下げるには、冷却設備が必要であり、実際的ではない。
When re-energized, the temperature of the catholyte alkali hydroxide is 2
The temperature is preferably 0 to 80 ° C, and more preferably 30 to 70 ° C. At 80 ° C. or higher, irreversible swelling occurs in the membrane due to the fact that the catholyte concentration is significantly lower than the high concentration in steady operation, and the current efficiency is reduced. Cooling equipment is required to reduce the temperature to 20 ° C. or lower, which is not practical.

【0032】上記の陰極室水酸化アルカリ濃度及び温度
で再通電を行った後、陰極液の濃度は陰極室に添加する
希釈アルカリ又は水の量を調整することで目的とする濃
度まで増加させるが、この間濃度上昇に伴う電解電圧の
上昇により、温度も上昇してゆく。本発明では、濃度上
昇の途中で、陰極液濃度が30重量%において、70℃
以上の温度となるようにする過程を経ることが再起用後
高い電流効率が得られるので好ましいことが判明した。
After re-energizing at the above-mentioned alkali hydroxide concentration and temperature in the cathode chamber, the concentration of the catholyte can be increased to a desired concentration by adjusting the amount of diluted alkali or water added to the cathode chamber. During this time, the temperature also rises due to the increase in electrolysis voltage accompanying the increase in concentration. In the present invention, when the concentration of the catholyte is 30% by weight, 70 ° C.
It has been found that it is preferable to go through the process of keeping the temperature above because high current efficiency can be obtained after re-use.

【0033】[0033]

【作用】本発明において、陰極液濃度を25重量%以下
の条件で再電解することにより、安定した電解性能が得
られる理由は必ずしも明確でないが、本発明により、膜
の陰極側の脱水状態が、低い陰極液水酸化アルカリ濃度
における通電によって適切な含水状態に戻るため、アル
カリ金属イオンも移動しやすい状態になるためと考えら
れる。
In the present invention, the reason why stable electrolysis performance is obtained by re-electrolyzing under the condition that the concentration of the catholyte is 25% by weight or less is not always clear. However, according to the present invention, the dehydration state on the cathode side of the membrane is It is considered that, since the water content is restored to an appropriate state by energization at a low concentration of the catholyte alkali hydroxide, the alkali metal ions are also easily moved.

【0034】[0034]

【実施例】以下、実施例において本発明を更に説明する
が、本発明はこれらの実施例によって何ら制限されるも
のではない。なお、実施例及び比較例における電解は有
効通電面積0.25dm2 の温度調節装置を備えた電解
槽を用い、陽極としてはチタンのパンチドメタル(短径
4mm、長径8mm)に酸化ルテニウムと酸化イリジウ
ムと酸化チタンとの固溶体を被覆したものを用い、陰極
としてはSUS304製パンチドメタル(短径4mm、
長径8mm)にルテニウム入りラネーニッケル(ルテニ
ウム5%、ニッケル50%、アルミニウム45%)を電
着したものを用いた。
The present invention will be further described in the following examples, but the present invention is not limited to these examples. In the electrolysis in Examples and Comparative Examples, an electrolytic cell equipped with a temperature control device having an effective energization area of 0.25 dm 2 was used, and titanium was punched metal (minor diameter 4 mm, major diameter 8 mm) and oxidized with ruthenium oxide. The one coated with a solid solution of iridium and titanium oxide is used, and the cathode is made of SUS304 punched metal (short diameter 4 mm,
Raney nickel containing ruthenium (long diameter 8 mm) (ruthenium 5%, nickel 50%, aluminum 45%) was electrodeposited.

【0035】なお電解槽は、陽極と陽イオン交換膜と陰
極とを接触するように配置させ、陽極室に5Nの塩化ナ
トリウム水溶液を、陰極室に水を供給しつつ、定常運転
では陽極室の塩化ナトリウム濃度を3.2〜3.6N
に、また陰極室の水酸化ナトリウム濃度を48〜52重
量%に調整し、90℃、電流密度30A/dm2 にて電
解した。
The electrolytic cell is arranged so that the anode, the cation exchange membrane, and the cathode are in contact with each other. While supplying 5N aqueous sodium chloride solution to the anode chamber and water to the cathode chamber, the electrolytic chamber is operated in a steady operation. Sodium chloride concentration of 3.2-3.6N
Further, the sodium hydroxide concentration in the cathode chamber was adjusted to 48 to 52% by weight, and electrolysis was performed at 90 ° C. and a current density of 30 A / dm 2 .

【0036】各実施例及び比較例は20日間の初期定常
運転を行った後、電解を停止し、表1に示した濃度の水
酸化ナトリウム水溶液に陰極液を入れ替え、電解槽温度
を各例において設定した温度に調節し、30A/dm2
の電流密度で再通電した後、20日間の定常運転を行っ
たものである。
In each of the examples and comparative examples, after 20 days of initial steady operation, electrolysis was stopped, the catholyte was replaced with an aqueous sodium hydroxide solution having the concentration shown in Table 1, and the temperature of the electrolytic cell was changed in each example. Adjust to the set temperature, 30A / dm 2
After re-energizing at the current density of, the steady operation was performed for 20 days.

【0037】実施例及び比較例で用いた含フツ素陽イオ
ン交換膜は以下の方法で製膜した。CF2 =CF2 /C
2 =CFOCF2 CF2 CF2 CO2 CH3 共重合体
からなるイオン交換容量がそれぞれ1.25、1.4
4、1.80ミリ当量/g乾燥樹脂の樹脂A、B、C、
及びCF2 =CF2 /CF2 =CFOCF2 CF(CF
3 )OCF2 CF2 SO2 F共重合体からなるイオン交
換容量が1.10ミリ当量/g乾燥樹脂の樹脂Dを合成
した。また上記樹脂Cと樹脂Dを1:1の重量比でブレ
ンドした樹脂Eを得た。
The fluorine-containing cation exchange membrane used in Examples and Comparative Examples was formed by the following method. CF 2 = CF 2 / C
The ion exchange capacities of the F 2 = CFOCF 2 CF 2 CF 2 CO 2 CH 3 copolymer are 1.25 and 1.4, respectively.
4, Resins A, B, C of 1.80 meq / g dry resin
And CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF
3 ) A resin D having an ion exchange capacity of 1.10 meq / g dry resin composed of an OCF 2 CF 2 SO 2 F copolymer was synthesized. Also, a resin E was obtained by blending the resin C and the resin D in a weight ratio of 1: 1.

【0038】次に樹脂Aから厚み20μmのフィルム
A、樹脂Bから厚み100μmのフィルムB、樹脂Dか
ら厚み30μmのフィルムD、樹脂Eから厚み10μm
のフィルムEを溶融押出し法により成形し、次にA、
B、E、Dの順に加熱圧着することで陽イオン交換層を
得た。
Next, a resin A having a thickness of 20 μm, a resin B having a thickness of 100 μm, a resin D having a thickness of 30 μm, and a resin E having a thickness of 10 μm.
Of the film E of FIG.
A cation exchange layer was obtained by performing thermocompression bonding in the order of B, E, and D.

【0039】次に樹脂Dの酸型ポリマーの9.5重量%
エタノール溶液に、平均粒径5μmのZrO2 を15.
8重量%分散させた混合液を調合し、この混合液を上記
陽イオン交換層のフィルムA面側に塗布・乾燥すること
で、厚み60μmの親水性を有する多孔層を形成させ、
陽イオン交換層と多孔層の複層陽イオン交換膜を得た。
Next, 9.5% by weight of the acid type polymer of Resin D
15. Add ZrO 2 having an average particle size of 5 μm to the ethanol solution.
A mixed liquid having 8% by weight dispersed therein is prepared, and the mixed liquid is applied to the film A side of the cation exchange layer and dried to form a hydrophilic porous layer having a thickness of 60 μm,
A multi-layer cation exchange membrane consisting of a cation exchange layer and a porous layer was obtained.

【0040】次いで、樹脂Eの酸型ポリマーの25重量
%エタノール溶液に、平均粒径3μmのSiCを20重
量%分散させた混合液を調合し、この混合液を上記複層
陽イオン交換膜の両面に、1cm2 当り固形分として
1.5mgとなるよう噴霧し、ガス開放性被膜を付着さ
せた。
Then, a mixed solution prepared by dispersing 20% by weight of SiC having an average particle size of 3 μm in a 25% by weight ethanol solution of an acid-type polymer of resin E was prepared, and the mixed solution was mixed into the above-mentioned multilayer cation exchange membrane. The both sides were sprayed so as to have a solid content of 1.5 mg per cm 2 , and a gas-releasing coating was attached.

【0041】この膜を25重量%NaOH水溶液、70
℃で16時間加水分解し、電解に用いた。上記電解の結
果を表1に示す。
This film was treated with 25 wt% NaOH aqueous solution, 70
It was hydrolyzed at 16 ° C. for 16 hours and used for electrolysis. The results of the above electrolysis are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】本発明の条件により再通電を行った場合、
再起用後も安定した電解性能を発現しているが、本発明
をはずれた条件により再通電を行った場合、再起用前後
で3〜6%もの電流効率低下が生じた。
When re-energization is performed under the conditions of the present invention,
Although stable electrolysis performance is exhibited even after restarting, when re-energization was performed under the conditions outside the present invention, a current efficiency decrease of 3 to 6% occurred before and after restarting.

【0044】[0044]

【発明の効果】イオン交換膜法電解によって42重量%
以上の高濃度の水酸化アルカリを直接製造する電解槽を
一時的に停止した後再起用するに当り、再起用後も安定
した高い電解性能が簡便な方法によって得られる。
42% by weight by ion exchange membrane electrolysis
When the electrolytic cell for directly producing the above-mentioned high-concentration alkali hydroxide is temporarily stopped and then restarted, stable high electrolytic performance can be obtained by a simple method even after restarting.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】含フッ素陽イオン交換膜を用いたイオン交
換法電解によって陰極室に42重量%以上の高濃度の水
酸化アルカリを製造する電解槽を一時的に停止した後再
起用するにあたり、陰極室水酸化アルカリ濃度を25重
量%以下に保持せしめて再通電を行うことを特徴とする
電解槽の再起用方法。
1. When the electrolytic cell for producing a high-concentration alkali hydroxide of 42% by weight or more in the cathode chamber by the ion exchange method electrolysis using a fluorine-containing cation exchange membrane is temporarily stopped and then re-used. A method for reactivating an electrolytic cell, which is characterized in that the alkali hydroxide concentration in the cathode chamber is maintained at 25% by weight or less and then re-energization is performed.
【請求項2】陰極室水酸化アルカリ濃度が10〜20重
量%にて再通電を行う請求項1の再起用方法。
2. The reactivating method according to claim 1, wherein re-energization is performed at an alkali hydroxide concentration in the cathode chamber of 10 to 20% by weight.
【請求項3】陰極室水酸化アルカリの温度が20〜80
℃にて再通電を行う請求項1又は2の再起用方法。
3. The temperature of the alkali hydroxide in the cathode chamber is 20 to 80.
The method for restarting according to claim 1 or 2, wherein re-energization is performed at ℃.
【請求項4】再通電後陰極室水酸化アルカリの濃度が4
2重量%以上での定常運転に至るまでに、陰極室水酸化
アルカリ濃度が30重量%の時の陰極液温度が70℃以
上の過程を経る請求項1、2又は3の再起用方法。
4. The concentration of alkali hydroxide in the cathode chamber after re-energization is 4
4. The method of reactivating according to claim 1, 2 or 3, wherein the catholyte temperature at a cathode chamber alkali hydroxide concentration of 30% by weight is 70 ° C. or more before a steady operation at 2% by weight or more is reached.
【請求項5】含フッ素陽イオン交換膜が、カルボン酸基
を有する含フッ素重合体からなる陽イオン交換層と、そ
の陰極側に親水性を有する多孔層との複層膜である請求
項1、2、3又は4の再起用方法。
5. The fluorinated cation exchange membrane is a multi-layer membrane comprising a cation exchange layer made of a fluorinated polymer having a carboxylic acid group and a hydrophilic porous layer on the cathode side thereof. 2, 3, or 4 recurrence method.
【請求項6】親水性を有する多孔層が、無機物粒子及び
親水基を有する含フッ素重合体からなる請求項5の再起
用方法。
6. The method of reactivating according to claim 5, wherein the hydrophilic porous layer comprises inorganic particles and a fluoropolymer having a hydrophilic group.
【請求項7】親水基を有する含フッ素重合体が、スルホ
ン酸基を有する含フッ素重合体である請求項5又は6の
再起用方法。
7. The method for re-initiating according to claim 5, wherein the fluoropolymer having a hydrophilic group is a fluoropolymer having a sulfonic acid group.
JP03313377A 1991-11-01 1991-11-01 How to restart the electrolytic cell Expired - Fee Related JP3112039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03313377A JP3112039B2 (en) 1991-11-01 1991-11-01 How to restart the electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03313377A JP3112039B2 (en) 1991-11-01 1991-11-01 How to restart the electrolytic cell

Publications (2)

Publication Number Publication Date
JPH05125579A true JPH05125579A (en) 1993-05-21
JP3112039B2 JP3112039B2 (en) 2000-11-27

Family

ID=18040539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03313377A Expired - Fee Related JP3112039B2 (en) 1991-11-01 1991-11-01 How to restart the electrolytic cell

Country Status (1)

Country Link
JP (1) JP3112039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103083A1 (en) * 2001-06-15 2002-12-27 Asahi Glass Company, Limited Fluorine-containing cation-exchange membrane and electroytic soda process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617538U (en) * 1992-08-17 1994-03-08 タキゲン製造株式会社 Leg device for height adjustment of equipment
JPH0677582U (en) * 1993-04-07 1994-11-01 株式会社ニッケンハードウエア Leveling tool for furniture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103083A1 (en) * 2001-06-15 2002-12-27 Asahi Glass Company, Limited Fluorine-containing cation-exchange membrane and electroytic soda process
US6984669B2 (en) 2001-06-15 2006-01-10 Asahi Glass Company, Limited Fluorinated cation exchange membrane and electrolytic soda process

Also Published As

Publication number Publication date
JP3112039B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
US4683040A (en) Process for electrolysis of sodium chloride
US4178218A (en) Cation exchange membrane and use thereof in the electrolysis of sodium chloride
JPH0212495B2 (en)
RU1823884C (en) Method of preparing of alkaline metal hydroxide
EP0477432A1 (en) Fluorine-containing cation exchange membrane for electrolysis and process for producing alkali metal hydroxide by using the same
US4604323A (en) Multilayer cation exchange membrane
US5716504A (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
JPH0558077B2 (en)
US4686120A (en) Multilayer cation exchange membrane
JPS621652B2 (en)
JPH05125579A (en) Method for restarting electrolytic cell
JPH0617278A (en) Method for restarting electrolytic cell
JP3192763B2 (en) How to reuse an electrolytic cell
JPH0229754B2 (en) SUISANKANATORIUMUNOSEIZOHO
JPH0219848B2 (en)
JP2000001794A (en) Method for electrolyzing salt water
JPS6120634B2 (en)
JPS62199629A (en) Novel multi-layer permeable membrane for electrolysis
JPH0756079B2 (en) Method for producing alkali hydroxide
JPH08120100A (en) Fluorine-containing cation-exchange membrane
JP3108116B2 (en) Salt electrolysis method
JPH0254791A (en) Production of alkali hydroxide
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPS6221074B2 (en)
JPS6223073B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees