JPH0512414A - Three-dimensional image input device - Google Patents

Three-dimensional image input device

Info

Publication number
JPH0512414A
JPH0512414A JP3161375A JP16137591A JPH0512414A JP H0512414 A JPH0512414 A JP H0512414A JP 3161375 A JP3161375 A JP 3161375A JP 16137591 A JP16137591 A JP 16137591A JP H0512414 A JPH0512414 A JP H0512414A
Authority
JP
Japan
Prior art keywords
scanning
density
dimensional image
input device
scanning means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3161375A
Other languages
Japanese (ja)
Inventor
Yuichi Yamazaki
祐一 山崎
Hideji Sonoda
秀二 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3161375A priority Critical patent/JPH0512414A/en
Publication of JPH0512414A publication Critical patent/JPH0512414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To provide a three-dimensional image input device with satisfactory operability and time efficiency by obtaining precise three-dimensional image data only in an area corresponding to the shape of an object to be measured even when the object has the surface shape with extreme ruggedness or the surface shape with large cervature, etc. CONSTITUTION:This three-dimensional image input device is equipped with a scanning means to scan an object 2 with set scan density by irradiating the object on a reference plane 1 with projecting beam flux from a light source 8, detecting means 9 to detect the beam flux scattered from the surface of the object 2 and signal processing part 5 to calculate a distance from the reference plane 1 to the surface of the object 2 based on the detected data of the detecting means 9. The scanning means is composed of a first scanning means to auxiliarily scan the object with the first set scan density and second scanning means to scan the area having the large change rate of the distance, which is calculated by the signal processing part 5, with the second set scan density larger than the first set scan density according to the result of the preliminary scanning.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光源からの投影光線束
を参照面上の対象物に向けて設定走査密度で走査する走
査手段と、前記対象物表面からの散乱光線束を検出する
検出手段と、その検出手段の検出データに基づいて前記
参照面からの前記対象物表面の距離を演算導出する信号
処理部とを備えて構成してある三次元画像入力装置に関
し、例えば、成形用型やデザインされた各種製品の模型
から外観形状を入力して最終設計図面に仕上げるCAD
用データの入力装置や、教育用や販売用に用いられる三
次元映像資料の入力装置、医療用診断装置、或いはロボ
ットの視覚センサとして用いられる三次元画像入力装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning means for scanning a projected ray bundle from a light source toward an object on a reference surface at a set scanning density, and a detector for detecting a scattered ray bundle from the surface of the object. A three-dimensional image input device configured to calculate and derive the distance of the object surface from the reference surface based on the detection data of the detection means, for example, a molding die CAD that finishes the final design drawing by inputting the external shape from the model of various designed products
The present invention relates to a data input device, a three-dimensional image data input device used for education and sales, a medical diagnostic device, or a three-dimensional image input device used as a visual sensor of a robot.

【0002】[0002]

【従来の技術】この種の三次元画像入力装置では、前記
走査手段は全走査領域において一定の走査密度で走査す
るように構成していた(USP4627734,De
c.9,1986公報)。
2. Description of the Related Art In a three-dimensional image input apparatus of this type, the scanning means is configured to scan at a constant scanning density in the entire scanning area (USP 4627734, De).
c. 9, 1986).

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
技術によれば、前記走査手段は全走査領域において一定
の走査密度で走査するように構成していたので、例えば
対象物が凹凸の激しい表面形状や曲率が大きな表面形状
を有する場合、つまり前記参照面からの前記対象物表面
の距離の変化率が大となる部分を有する場合に、走査密
度を小に設定すると走査時間は短くて済むがラフなデー
タしか得られず、逆に、走査密度を大に設定するとその
部分の形状に対する精密なデータが得られるが走査に時
間がかかるという欠点があった。又、対象物によって
は、走査時間を犠牲にしても走査密度を大に設定して精
密に走査する必要、走査時間を優先すべく走査密度を小
に設定してラフに走査する必要、或いはその両方の必要
がある場合がある。このような場合、その都度走査密度
を設定するのは非常に煩わしく、その際の走査密度の設
定が不適正であれば再設定の後再走査する必要もあり、
甚だ操作性、時間効率の悪いものであるという欠点もあ
った。本発明の目的は上述した従来欠点を解消する点に
ある。
However, according to the above-mentioned prior art, since the scanning means is configured to scan at a constant scanning density in the entire scanning area, for example, an object is a surface having a large unevenness. If the shape or the curvature has a large surface shape, that is, if there is a portion where the change rate of the distance of the object surface from the reference surface is large, setting the scanning density to a small value requires a short scanning time. Only rough data can be obtained, and conversely, if the scanning density is set to a large value, precise data can be obtained for the shape of that portion, but there is a drawback that scanning takes time. Also, depending on the object, even if the scanning time is sacrificed, it is necessary to set the scanning density to a large value to perform precise scanning, or to set the scanning density to a small value to give priority to the scanning time and perform rough scanning, or You may need both. In such a case, it is very troublesome to set the scanning density each time, and if the setting of the scanning density at that time is inappropriate, it is necessary to rescan after resetting,
It also had the drawback of being extremely inoperable and time inefficient. An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による三次元画像入力装置の特徴構成は、前
記走査手段を、前記対象物に向けて第一の設定走査密度
で予備走査する第一走査手段と、前記予備走査の結果前
記信号処理部で演算導出された前記距離の変化率の大な
る領域を第一の設定走査密度より大なる第二の設定走査
密度で走査する第二走査手段で構成してあることにあ
る。前記走査手段は、前記第一走査手段による予備走査
の結果得られた画像データに基づき第二の走査密度を設
定するものであることが好ましい。前記走査手段は、前
記第一走査手段による予備走査の結果得られた画像デー
タに基づき第二走査手段による走査の許否を決定するも
のであることが好ましい。
In order to achieve this object, the three-dimensional image input device according to the present invention is characterized in that the scanning means is pre-scanned toward the object at a first set scanning density. Second scanning means and second scanning for scanning a region having a large change rate of the distance calculated by the signal processing unit as a result of the preliminary scanning at a second setting scanning density higher than the first setting scanning density It is composed of scanning means. It is preferable that the scanning unit sets the second scanning density based on the image data obtained as a result of the preliminary scanning by the first scanning unit. It is preferable that the scanning unit determines whether to permit the scanning by the second scanning unit based on the image data obtained as a result of the preliminary scanning by the first scanning unit.

【0005】[0005]

【作用】走査手段は第一の設定走査密度で全走査領域を
粗く予備走査して、全走査領域内に存在する対象物に対
するおよその三次元画像データを入力する。信号処理手
段による前記三次元画像データの処理の結果、走査方向
に対する前記参照面からの前記対象物表面の距離の変化
率が大なる領域があれば、その領域を凹凸が激しかった
り曲率が大きな表面形状等が存在して精密な走査が必要
な領域であると認識してそのような領域を特定する。前
記走査手段は、第一の設定走査密度より大なる第二の設
定走査密度でその特定領域を詳細に走査して精密な三次
元画像データを入力する。この場合、全走査領域のうち
特定領域以外の領域は、第一の設定走査密度で走査して
三次元画像データを入力してもよいし、予備走査の結果
得られた三次元画像データを用いてもよい。第二の走査
密度の設定を、走査方向に対する前記参照面からの前記
対象物表面の距離の変化率の大小の程度に基づき行うこ
とで、不必要に大なる走査密度を設定して必要以上に走
査時間がかかることや、必要な走査密度に満たない小な
る走査密度を設定して誤差の大なる三次元画像データを
得るといった不都合を回避することができる。予備走査
の結果、得られた走査方向に対する前記参照面からの前
記対象物表面の距離の変化率が大なる領域が無く、三次
元画像データが充分な分解能を有している場合には、さ
らなる走査は不要であるので行わないようにすること
で、入力時間の短縮を図ることができる。
The scanning means coarsely prescans the entire scanning region at the first set scanning density and inputs approximately three-dimensional image data for the object existing in the entire scanning region. As a result of the processing of the three-dimensional image data by the signal processing means, if there is a region in which the rate of change in the distance of the object surface from the reference surface with respect to the scanning direction is large, the region is markedly uneven or has a large curvature. It is recognized that there is a shape or the like and a precise scanning is necessary, and such an area is specified. The scanning means scans the specific area in detail at a second set scanning density higher than the first set scanning density to input precise three-dimensional image data. In this case, the area other than the specific area in the entire scanning area may be scanned at the first set scanning density to input the three-dimensional image data, or the three-dimensional image data obtained as a result of the preliminary scanning may be used. May be. By setting the second scanning density based on the magnitude of the rate of change in the distance of the object surface from the reference surface with respect to the scanning direction, it is possible to set an unnecessarily large scanning density and unnecessarily. It is possible to avoid the inconvenience of taking a long scanning time and obtaining a three-dimensional image data with a large error by setting a scanning density lower than the required scanning density. As a result of the preliminary scanning, when there is no region in which the rate of change of the distance of the object surface from the reference surface with respect to the obtained scanning direction is large and the three-dimensional image data has sufficient resolution, Since the scanning is unnecessary, the input time can be shortened by not performing the scanning.

【0006】[0006]

【発明の効果】従って、本発明によれば、測定対象物
が、凹凸が激しい表面形状や曲率が大きな表面形状等を
有するものであっても、その形状に対応する領域におい
てのみ精密な三次元画像データを得ることができるの
で、操作性、時間効率の優れた三次元画像入力装置を提
供することができるようになった。
As described above, according to the present invention, even if the object to be measured has a surface shape with large irregularities or a surface shape with a large curvature, a precise three-dimensional shape is obtained only in the region corresponding to the shape. Since image data can be obtained, it is possible to provide a three-dimensional image input device having excellent operability and time efficiency.

【0007】[0007]

【実施例】以下実施例を説明する。図1に示すように、
三次元画像入力装置は、X−Y平面上の参照平面1と、
その上方に配置され前記参照平面1上に載置された測定
対象物2へ投影光線束を照射してその測定対象物2表面
からの散乱光線束を検出する計測部3と、前記計測部3
の計測動作を制御する計測制御部4と、前記計測部3に
よる計測データに基づき前記参照平面1から前記測定対
象物2表面までのZ方向の距離を演算導出する信号処理
部5と、前記信号処理部5により導出された三次元デー
タから測定対象物2を再構築するモデル生成部6とから
構成してある。前記計測部3は、レーザでなる光源8と
X軸方向に沿って配置した検出手段としての一次元イメ
ージセンサCCDでなる受光素子9とを走査用ミラー7
を挟んで対向配置して、前記光源8からの投影光線束を
前記走査用ミラー7及び固定ミラー10を介して測定対
象物2に照射するとともに、測定対象物2表面からの散
乱光線束を固定ミラー10’及び前記走査用ミラー7を
介して前記受光素子9に導く光学ヘッドと、その光学ヘ
ッドをY軸方向へ移動させることによりY軸方向への走
査を行う走査機構(図示せず)とで構成してある。前記
計測制御部4は、前記走査用ミラー7をY軸に平行な軸
芯周りに回動させて、前記光源8からの測定用光線束を
前記対象物2が含まれる前記参照平面1に対してX軸方
向に走査して照射するとともに、その散乱光線束を前記
固定ミラー10’、前記走査用ミラー7及び集光レンズ
11を介して前記受光素子9に導きながら、前記走査機
構が前記光学ヘッドをY軸方向に走査する。即ち、前記
計測部3と前記計測制御部4とで、光源8からの投影光
線束を参照平面1上の対象物2に向けて設定走査密度で
走査する走査手段を構成する。前記信号処理部5は、前
記受光素子9を構成するCCDが前記参照平面1からの
散乱光線束に対して検出する位置と現在の散乱光線束に
対して検出する位置との偏差及び前記走査用ミラー7の
回動角度とから、前記参照平面1からの測定対象物2の
表面位置を演算導出する。即ち、図2に示すように、C
CDで検出される距離X0 1 が、ΔX0 に比例するこ
と、及び、参照平面1からの測定対象物2の表面位置Z
0 が、Z0 ・θ=ΔX0 なる関係を有することからZ0
を求める。前記モデル生成部6は、X方向への走査及び
Y方向への走査により得られた各測定ポイント(走査密
度で決定される)に対するZ方向の値で特定されるXY
Z座標データを三次元画像データとして、それらから測
定対象物2の形状をコンピュータ上に再現する。
EXAMPLES Examples will be described below. As shown in Figure 1,
The three-dimensional image input device includes a reference plane 1 on an XY plane,
A measuring unit 3 for irradiating a measurement light beam 2 placed on the reference plane 1 with a projection light beam to detect a scattered light beam from the surface of the measurement target 2, and the measurement unit 3
Measurement control section 4 for controlling the measurement operation, a signal processing section 5 for calculating and deriving the distance in the Z direction from the reference plane 1 to the surface of the measurement object 2 based on the measurement data by the measurement section 3, and the signal. The model generation unit 6 reconstructs the measurement object 2 from the three-dimensional data derived by the processing unit 5. The measuring unit 3 includes a light source 8 made of a laser and a light receiving element 9 made of a one-dimensional image sensor CCD arranged as a detecting means arranged along the X-axis direction, and a scanning mirror 7.
The projection light flux from the light source 8 is radiated to the measurement object 2 via the scanning mirror 7 and the fixed mirror 10, and the scattered light flux from the surface of the measurement object 2 is fixed. An optical head guided to the light receiving element 9 via the mirror 10 'and the scanning mirror 7, and a scanning mechanism (not shown) for performing scanning in the Y-axis direction by moving the optical head in the Y-axis direction. It is composed of. The measurement control unit 4 rotates the scanning mirror 7 around an axis parallel to the Y-axis so that the measurement light beam from the light source 8 is transmitted to the reference plane 1 including the object 2. While scanning and irradiating in the X-axis direction, the scanning mechanism guides the scattered light flux to the light receiving element 9 through the fixed mirror 10 ′, the scanning mirror 7 and the condenser lens 11. The head is scanned in the Y-axis direction. That is, the measurement unit 3 and the measurement control unit 4 configure a scanning unit that scans the projection light flux from the light source 8 toward the object 2 on the reference plane 1 at the set scanning density. The signal processing unit 5 scans the deviation between the position detected by the CCD constituting the light receiving element 9 with respect to the scattered light flux from the reference plane 1 and the position detected with respect to the current scattered light flux, and the scanning. The surface position of the measuring object 2 from the reference plane 1 is calculated and derived from the rotation angle of the mirror 7. That is, as shown in FIG.
The distance X 0 X 1 detected by the CD is proportional to ΔX 0 , and the surface position Z of the measuring object 2 from the reference plane 1
Since 0 has a relationship of Z 0 · θ = ΔX 0, Z 0
Ask for. The model generation unit 6 specifies XY specified by a value in the Z direction for each measurement point (determined by the scanning density) obtained by scanning in the X direction and scanning in the Y direction.
Using the Z coordinate data as three-dimensional image data, the shape of the measuring object 2 is reproduced on the computer from them.

【0008】図3に示すように、X軸方向への走査密度
は前記受光素子9による1走査当たりのサンプリング間
隔で、Y軸方向への走査密度はY軸方向でのサンプリン
グ間隔で決定されるもので、前記計測制御部4により、
前記サンプリング間隔を適宜可変設定することにより、
走査密度を変更自在に構成してある。以下に、前記三次
元画像入力装置による三次元画像入力動作を、図4に示
すフローチャートに基づき説明する。前記計測制御部4
は、前記計測部3による走査密度を第一の設定走査密度
に設定して<#1>、前記走査用ミラー7を回動してX
軸方向に投影光線束を照射しつつその散乱光線側を第一
の設定走査密度に対応する間隔でサンプリングする<#
2>。前記信号処理部5は、その入力データから測定対
象物2のZ軸方向のデータを演算導出して、XYZ座標
からなる位置データとして記憶装置(図示せず)に入力
する<#3>。その後次のデータ入力に備えステップ<
#2>に戻る。X軸方向への1ライン分の走査が終了す
ると<#4>、前記走査機構が前記光学ヘッドをY軸方
向に設定走査密度となる距離だけ走査して<#5>、ス
テップ<#2>から<#4>の動作を繰り返す。Y軸方
向への全走査(図3の実線で表した走査線)が終了する
と<#6>、Z軸方向のデータのX軸方向及びY軸方向
への変化率を演算して<#7>、予め設定された変化率
以上の変化率を有する領域を前記第一走査密度よりも大
なる第二走査密度で走査する第二走査領域と確定する<
#8>。前記計測制御部4は、前記計測部3による走査
密度を第二の設定走査密度に設定して<#9>、前記第
二走査領域を上述のステップ<#2>から<#6>の順
序と同様に走査してZ軸方向の詳細な形状データを入力
する(図3の破線で表した走査線)<#10>。つま
り、前記走査手段は比較的粗い走査密度で概略の形状を
入力する予備走査と、予備走査により、詳細データが必
要な領域を選択して、選択された領域に対して精密な形
状を入力する本走査をそれぞれ行う第一走査手段及び第
二走査手段で構成してある。
As shown in FIG. 3, the scanning density in the X-axis direction is determined by the sampling interval per scan by the light receiving element 9, and the scanning density in the Y-axis direction is determined by the sampling interval in the Y-axis direction. By the measurement control unit 4,
By appropriately setting the sampling interval variable,
The scanning density is variable. The three-dimensional image input operation by the three-dimensional image input device will be described below with reference to the flowchart shown in FIG. The measurement control unit 4
Sets the scanning density by the measuring unit 3 to the first set scanning density <# 1>, and rotates the scanning mirror 7 to move X.
While irradiating the projection light beam bundle in the axial direction, the scattered light beam side is sampled at intervals corresponding to the first set scanning density.
2>. The signal processing unit 5 arithmetically derives data in the Z-axis direction of the measuring object 2 from the input data and inputs it to a storage device (not shown) as position data composed of XYZ coordinates <# 3>. Then prepare for the next data entry step <
Return to # 2>. When the scanning of one line in the X-axis direction is completed <# 4>, the scanning mechanism scans the optical head in the Y-axis direction by a distance that provides the set scanning density <# 5>, step <# 2>. To <# 4> are repeated. When all the scans in the Y-axis direction (scan lines represented by the solid lines in FIG. 3) are completed <# 6>, the change rates of the Z-axis direction data in the X-axis direction and the Y-axis direction are calculated <# 7. >, A region having a change rate equal to or higher than a preset change rate is determined as a second scanning region to be scanned at a second scanning density higher than the first scanning density <
# 8>. The measurement control unit 4 sets the scanning density of the measurement unit 3 to a second set scanning density <# 9>, and sets the second scanning region in the order of steps <# 2> to <# 6> described above. Similarly to the above, scanning is performed to input detailed shape data in the Z-axis direction (scanning line represented by a broken line in FIG. 3) <# 10>. That is, the scanning means selects preliminary scanning for inputting a rough shape with a relatively coarse scanning density and a region for which detailed data is required by preliminary scanning, and inputs a precise shape for the selected region. It is composed of a first scanning unit and a second scanning unit which respectively perform main scanning.

【0009】以下、本発明の別実施例を説明する。先の
実施例では、第二走査手段は、第二走査領域のみデータ
をサンプリングしてその他の領域のデータは第一走査手
段によるデータを採用するように構成してあるが、全走
査領域を第二走査密度でサンプリングしてもよいし、全
走査領域の内、第二走査領域以外の領域を第一走査密度
でサンプリングしてもよい。先の実施例では、予め設定
された変化率以上の変化率を有する領域を前記第一走査
密度よりも大なる第二走査密度で走査する第二走査領域
と確定するように構成してあるが、予め設定された変化
率以上の変化率を有する領域及びその前後の領域を第二
走査領域と確定するように構成してもよい。第一走査密
度、予め設定された変化率、第二走査密度はそれぞれ可
変設定できるように構成してもよい。例えば、第一走査
手段によるデータの結果に応じて第二走査密度を可変に
して、サンプリングによるデータの変化率が極めて大で
あれば、第二走査密度をそれに応じた程度に大に設定す
るといった具合である。さらには、サンプリングによる
データの変化率に応じて領域毎に異なる第二走査密度を
設定するように構成してもよい。サンプリングによるデ
ータの変化率の何れもが、予め設定された変化率以下で
あるならば、第二走査手段の作動を禁止して、不必要な
走査にかかる時間のロスを防止することができる。前記
計測部3の構成はこの構成に限定するものではなく先の
実施例で説明した原理に基づき三次元座標を導出するも
のであれば任意に構成してよく、例えば図5に示すよう
に、光学ヘッドを、投影光線束のみ走査する走査機構と
散乱光線束を受光素子9に導く固定の光学系で構成して
もよいし、光学ヘッドをY軸方向へ移動させることによ
りY軸方向への走査を行う走査機構(これは、モータと
プーリを用いて容易に構成できる)の代わりに、図6に
示すように、投影光線束と反射光線束で形成される平面
をY軸方向に走査するべく、Z軸周りに回動自在の反射
ミラーを設けて構成してもよい。
Another embodiment of the present invention will be described below. In the previous embodiment, the second scanning means is configured to sample the data only in the second scanning area and adopt the data by the first scanning means for the data in the other areas, but The sampling may be performed at the two scanning densities, or the area other than the second scanning area may be sampled at the first scanning density in the entire scanning area. In the above embodiment, the area having the change rate equal to or higher than the preset change rate is configured to be determined as the second scan area which is scanned at the second scan density higher than the first scan density. The area having the change rate equal to or higher than the preset change rate and the areas before and after the change rate may be defined as the second scanning area. The first scanning density, the preset change rate, and the second scanning density may be variably set. For example, the second scanning density is made variable in accordance with the result of the data by the first scanning means, and if the rate of change of the data by sampling is extremely large, the second scanning density is set to a level corresponding to it. It is in good condition. Further, it is possible to set a different second scanning density for each area according to the rate of change of data due to sampling. If any rate of change of data due to sampling is less than or equal to a preset rate of change, the operation of the second scanning means can be prohibited to prevent unnecessary loss of time required for scanning. The configuration of the measuring unit 3 is not limited to this configuration, and any configuration may be used as long as it derives three-dimensional coordinates based on the principle described in the above embodiment. For example, as shown in FIG. The optical head may be configured by a scanning mechanism that scans only the projection light beam bundle and a fixed optical system that guides the scattered light beam bundle to the light receiving element 9, or by moving the optical head in the Y axis direction, the optical head moves in the Y axis direction. Instead of a scanning mechanism for performing scanning (which can be easily configured by using a motor and a pulley), as shown in FIG. 6, a plane formed by a projection ray bundle and a reflected ray bundle is scanned in the Y axis direction. Therefore, a reflecting mirror rotatable about the Z axis may be provided.

【0010】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】三次元画像入力装置の全体構成図FIG. 1 is an overall configuration diagram of a three-dimensional image input device.

【図2】原理を示す説明図FIG. 2 is an explanatory diagram showing the principle.

【図3】走査密度の変化を示す説明図FIG. 3 is an explanatory diagram showing changes in scanning density.

【図4】フローチャート[Fig. 4] Flow chart

【図5】別実施例を示す要部の構成図FIG. 5 is a configuration diagram of a main part showing another embodiment.

【図6】別実施例を示す要部の構成図FIG. 6 is a configuration diagram of a main part showing another embodiment.

【符号の説明】[Explanation of symbols]

1 参照面 2 対象物 3,4 走査手段 5 信号処理部 8 光源 9 検出手段 1 reference plane 2 object 3,4 scanning means 5 Signal processor 8 light sources 9 Detection means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源(8)からの投影光線束を参照面
(1)上の対象物(2)に向けて設定走査密度で走査す
る走査手段(3),(4)と、前記対象物(2)表面か
らの散乱光線束を検出する検出手段(9)と、その検出
手段(9)の検出データに基づいて前記参照面(1)か
らの前記対象物(2)表面の距離を演算導出する信号処
理部(5)とを備えて構成してある三次元画像入力装置
であって、 前記走査手段(3),(4)を、前記対象物(2)に向
けて第一の設定走査密度で予備走査する第一走査手段
と、前記予備走査の結果前記信号処理部で演算導出され
た前記距離の変化率の大なる領域を第一の設定走査密度
より大なる第二の設定走査密度で走査する第二走査手段
で構成してある三次元画像入力装置。
1. Scanning means (3), (4) for scanning a projected ray bundle from a light source (8) toward an object (2) on a reference surface (1) at a set scanning density, and said object. (2) Detecting means (9) for detecting the scattered light flux from the surface, and calculating the distance of the surface of the object (2) from the reference surface (1) based on the detection data of the detecting means (9). A three-dimensional image input device configured to include a signal processing unit (5) for deriving, wherein the scanning means (3), (4) are set to a first position toward the object (2). A first scanning means for performing a preliminary scan at a scanning density, and a second setting scan in which an area having a large rate of change in the distance calculated by the signal processing unit as a result of the preliminary scanning is larger than a first setting scan density. A three-dimensional image input device comprising a second scanning means for scanning at a density.
【請求項2】 前記走査手段(3),(4)は、前記第
一走査手段による予備走査の結果得られた画像データに
基づき第二の走査密度を設定するものである請求項1記
載の三次元画像入力装置。
2. The scanning means (3), (4) sets a second scanning density on the basis of image data obtained as a result of preliminary scanning by the first scanning means. Three-dimensional image input device.
【請求項3】 前記走査手段(3),(4)は、前記第
一走査手段による予備走査の結果得られた画像データに
基づき第二走査手段による走査の許否を決定するもので
ある請求項1又は2記載の三次元画像入力装置。
3. The scanning means (3), (4) determines whether to permit scanning by the second scanning means based on image data obtained as a result of preliminary scanning by the first scanning means. The three-dimensional image input device according to 1 or 2.
JP3161375A 1991-07-02 1991-07-02 Three-dimensional image input device Pending JPH0512414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161375A JPH0512414A (en) 1991-07-02 1991-07-02 Three-dimensional image input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161375A JPH0512414A (en) 1991-07-02 1991-07-02 Three-dimensional image input device

Publications (1)

Publication Number Publication Date
JPH0512414A true JPH0512414A (en) 1993-01-22

Family

ID=15733899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161375A Pending JPH0512414A (en) 1991-07-02 1991-07-02 Three-dimensional image input device

Country Status (1)

Country Link
JP (1) JPH0512414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124646A (en) * 1996-10-17 1998-05-15 Minolta Co Ltd Three-dimensional measuring device
JP2004170363A (en) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd Edge position measuring method of long material and shape measuring method using the same, and edge position measuring device and shape measuring device using the same
JP2015535337A (en) * 2012-09-14 2015-12-10 ファロ テクノロジーズ インコーポレーテッド Laser scanner with dynamic adjustment of angular scan speed
WO2019098263A1 (en) * 2017-11-16 2019-05-23 日本電気株式会社 Distance measurement apparatus, distance measurement method and program
JP2020501130A (en) * 2016-11-30 2020-01-16 ブラックモア センサーズ アンド アナリティクス インク. Method and system for adaptive scanning with optical ranging system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124646A (en) * 1996-10-17 1998-05-15 Minolta Co Ltd Three-dimensional measuring device
JP2004170363A (en) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd Edge position measuring method of long material and shape measuring method using the same, and edge position measuring device and shape measuring device using the same
JP2015535337A (en) * 2012-09-14 2015-12-10 ファロ テクノロジーズ インコーポレーテッド Laser scanner with dynamic adjustment of angular scan speed
US10132611B2 (en) 2012-09-14 2018-11-20 Faro Technologies, Inc. Laser scanner
JP2020501130A (en) * 2016-11-30 2020-01-16 ブラックモア センサーズ アンド アナリティクス インク. Method and system for adaptive scanning with optical ranging system
WO2019098263A1 (en) * 2017-11-16 2019-05-23 日本電気株式会社 Distance measurement apparatus, distance measurement method and program
JPWO2019098263A1 (en) * 2017-11-16 2020-11-26 日本電気株式会社 Distance measuring device, distance measuring method and program
US11561283B2 (en) 2017-11-16 2023-01-24 Nec Corporation Distance measurement apparatus, distance measurement method and program

Similar Documents

Publication Publication Date Title
US5341183A (en) Method for controlling projection of optical layup template
JP4238891B2 (en) 3D shape measurement system, 3D shape measurement method
JP2006038843A (en) Method for calibrating distance image sensor
JP7339629B2 (en) Spatial curve co-locating projection system using multiple laser galvo scanners and method thereof
JPH032513A (en) Automatic surveying equipment
WO1996035922A1 (en) Method for controlling projection of optical layup template
JP2004085565A (en) Method and apparatus for calibrating laser three-dimensional digitization sensor
JPH0512414A (en) Three-dimensional image input device
JP3958815B2 (en) Tool position measuring method in NC machine tools
JPH0694417A (en) Pointing device for spot light and measuring device for three-dimensional position
JPH06109437A (en) Measuring apparatus of three-dimensional shape
CN111344102A (en) Welding track tracking method, device and system
JP3259462B2 (en) Method and apparatus for detecting focal position of laser beam machine
JPS60117102A (en) Welding-seam profile-detecting apparatus
JP2731062B2 (en) 3D shape measuring device
JP3509202B2 (en) Non-contact volume measurement method and device
JPS63108208A (en) Measuring method for shape of body of the like
JP2733170B2 (en) 3D shape measuring device
JPH08327337A (en) Three dimensional shape measuring apparatus
JP4320796B2 (en) Pattern position measuring device
JPH0996506A (en) Adjusting method for position by three-dimensional visual sensor and recognition apparatus for three-dimensional image
JPH0829134A (en) Three-dimensional shape measuring apparatus
JPH0886616A (en) Method and apparatus for measuring three-dimensional image
JP3112056B2 (en) Three-dimensional shape measurement method and device
JPH06347227A (en) Apparatus and method for measuring surface shape