JPH05123691A - Method for upward flow sludge blanket and device therefor - Google Patents

Method for upward flow sludge blanket and device therefor

Info

Publication number
JPH05123691A
JPH05123691A JP28995491A JP28995491A JPH05123691A JP H05123691 A JPH05123691 A JP H05123691A JP 28995491 A JP28995491 A JP 28995491A JP 28995491 A JP28995491 A JP 28995491A JP H05123691 A JPH05123691 A JP H05123691A
Authority
JP
Japan
Prior art keywords
liquid
water
zone
blanket
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28995491A
Other languages
Japanese (ja)
Inventor
Minoru Tomita
実 冨田
Masahiro Kawabata
雅博 川端
Takeshi Iwatsuka
剛 岩塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP28995491A priority Critical patent/JPH05123691A/en
Publication of JPH05123691A publication Critical patent/JPH05123691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To achieve enhancement of treatment efficiency, prevention of consolidation and blocking and operation of high load and to promote granulation of sludge by drawing out one part of liquid from a region wherein water is transferred to a liquid-gas separation zone of the upper part of a blanket zone from this blanket zone and returning the same to a drainage feed route. CONSTITUTION:A bubble separation block 8 having the cross section of a triangular shape is oppositely arranged in the aperture of the lower end of an oblique partition 7. A circulation pipeline 13 which is opened in one end and connected to the supply pipe 3 of untreated water in the other end is provided in the lower side of the bubble separation block 8. Water is returned through this circulation pipeline 13 by a circulation pump 14 provided on the way. By this constitution, untreated water is supplied to a reaction tank 1 at flow speed suitable for glanulation of granules by returning water passed through a sludge blanket zone to the supply system. Moreover, water is allowed to upward flow at comparatively slow flow speed suitable for liquid-gas separation in a liquid- gas separation zone because influence based on circulation of this water is practically unaffected in the liquid-gas separation zone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機性排水の処理方法及
び装置に関し、特には嫌気性微生物を利用した有機性排
水の処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for treating organic wastewater, and more particularly to a method and apparatus for treating organic wastewater using anaerobic microorganisms.

【0002】[0002]

【従来技術】近年、石油、天然ガスなどの化石燃料の有
限性が指摘され、代替エネルギーの開発が世界的にも課
題とされているが、本発明が対象とする嫌気性微生物処
理の技術は、排水中の有機物をメタンに転換できこれを
エネルギー源として回収できるため、利用されていない
資源の有効利用の方法の一つとして注目されている。ま
た嫌気性微生物を用いた有機性排水の処理技術は汚濁物
質の環境への流出防止という意味からも有益な方法であ
る。
2. Description of the Related Art In recent years, it has been pointed out that fossil fuels such as petroleum and natural gas are finite, and the development of alternative energy has become a global issue. Since the organic matter in wastewater can be converted to methane and can be recovered as an energy source, it is attracting attention as one of the effective ways to utilize unused resources. In addition, the technology for treating organic wastewater using anaerobic microorganisms is a useful method from the standpoint of preventing outflow of pollutants to the environment.

【0003】この嫌気性微生物を利用した排水処理法
は、懸濁法と生物膜法の二つに大別されるが、このうち
の懸濁法については、近時に於いては嫌気性微生物の高
濃度保持の目的で、上向流スラッジブランケット法(U
ASB法)の研究が進められている。
The wastewater treatment method utilizing the anaerobic microorganisms is roughly classified into a suspension method and a biofilm method. Among them, the suspension method among them is the anaerobic microorganisms recently. Upflow sludge blanket method (U
Research on the ASB method) is underway.

【0004】UASB法は、非常に沈降速度の高いグラ
ニュールを流動化させるように上向流で未処理水を流し
ながら、浮遊状態の微生物によって排水中の有機物を分
解させることを原理とする方法である。
The UASB method is a method based on the principle of decomposing organic matter in wastewater by floating microorganisms while flowing untreated water in an upward flow so as to fluidize granules having a very high sedimentation rate. Is.

【0005】なお、このUASB法においては、排水中
の有機物濃度が非常に高い場合に処理水を循環させて稀
釈する方法や、水素イオン濃度やアルカリ度の緩衝効果
をもたせるために処理水を循環する方法も知られてい
る。
In this UASB method, when the concentration of organic substances in the waste water is very high, the treated water is circulated to dilute it, or the treated water is circulated in order to have a buffering effect of hydrogen ion concentration and alkalinity. It is also known how to do it.

【0006】図2はこのような処理水の循環を行なう場
合の装置の構成概要を示したものであり、21はUAS
B法の反応槽であり、槽内部の底部にグラニュール層2
2が充填されている。23は未処理水供給管であり、原
水(有機性排水)を調整槽24に一旦貯留した後、供給
ポンプ25により反応槽21の底部から供給する。
FIG. 2 shows an outline of the constitution of the apparatus for circulating such treated water, and 21 is UAS.
It is a reaction tank of Method B, and the granule layer 2 is at the bottom inside the tank.
2 is filled. An untreated water supply pipe 23 stores raw water (organic wastewater) once in an adjusting tank 24 and then supplies it from the bottom of the reaction tank 21 by a supply pump 25.

【0007】26は、反応槽1内の上部に設けられた気
液分離のための機構であり、嫌気性微生物による有機物
の分解によって発生したメタン気泡を含む水が槽内を上
昇してくると、下端が開口した一対の斜隔壁27と、こ
の斜隔壁27の下端開口に対向して配置された断面三角
形状の気泡分離ブロック28とにより、メタン気泡は図
の左右両側に案内されてガス溜り29を作り、ガス抜き
管30によって不図示のガスタンクに導かれる。他方、
処理水は斜隔壁27の下端開口から上方に導かれて上部
から溢流形式でトラフ31に排出され、処理水32とし
て後段の処理設備に送られる。33は処理水を未処理水
供給管23に循環させる循環管路であり、途中に循環ポ
ンプ34が介設されている。
Reference numeral 26 is a mechanism for gas-liquid separation provided in the upper part of the reaction tank 1, and when water containing methane bubbles generated by decomposition of organic substances by anaerobic microorganisms rises in the tank. The methane bubbles are guided to the left and right sides of the drawing by the pair of slanted partition walls 27 having open lower ends, and the bubble separation block 28 having a triangular cross section, which is arranged so as to face the lower end openings of the slanted partition walls 27. 29 is made and is led to a gas tank (not shown) by a gas vent pipe 30. On the other hand,
The treated water is guided upward from the lower end opening of the slanted partition wall 27, discharged from the upper portion to the trough 31 in an overflow form, and sent as treated water 32 to the treatment equipment in the subsequent stage. Reference numeral 33 is a circulation pipe line for circulating the treated water to the untreated water supply pipe 23, and a circulation pump 34 is interposed in the middle thereof.

【0008】[0008]

【発明が解決しようとする課題】ところでUASB法に
おいては、非常に沈降速度の高いグラニュールを用いて
いるので、例えば装置を一端停止した後の立ち上げ時等
に於いてグラニュールが沈降・圧密し、その結果グラニ
ュール層が閉塞して処理効率が悪くなるという問題があ
る。また定常運転時に於いても、グラニュール層が流動
化していないと、この層の全体を利用していないことに
なるから処理効率が悪化するという問題がある。
By the way, in the UASB method, since granules having a very high sedimentation speed are used, the granules are settled and consolidated when the apparatus is started up after being stopped once. However, as a result, there is a problem that the granule layer is blocked and the processing efficiency is deteriorated. Further, even in the steady operation, if the granule layer is not fluidized, the whole of this layer is not used, which causes a problem that the treatment efficiency is deteriorated.

【0009】これらの問題を避けるため、例えば反応槽
に供給する未処理水の流量を多くすることが考えられる
が、このようにすると有機物負荷が高くなって処理性能
が悪化するため、この方法を採用することは実際上困難
である。
In order to avoid these problems, it is conceivable to increase the flow rate of untreated water supplied to the reaction tank. However, if this is done, the load of organic matter becomes high and the treatment performance deteriorates. It is practically difficult to adopt.

【0010】また、上記の稀釈や緩衝効果をもたせるた
めの処理水の循環量を多くすることが考えられるが、し
かしこのようにするとブランケットゾーンの流速が大き
くなってグラニュールの流動化は達成できるものの、気
液分離ゾーンの流速も大きくなってしまい、効率のよい
気液分離ができなくなるという別の問題を招く。
Further, it is possible to increase the circulation amount of the treated water in order to have the above-mentioned dilution or buffering effect. However, in this case, the flow velocity of the blanket zone is increased and the fluidization of granules can be achieved. However, the flow velocity in the gas-liquid separation zone also increases, which causes another problem that efficient gas-liquid separation cannot be performed.

【0011】そこで本発明者は、このような処理水の循
環という方法によらずに、上記したグラニュールの流動
化を確実に行なうことができる方法を検討し、本発明を
なすに至った。
Therefore, the present inventor has conducted a study on a method capable of surely fluidizing the above-mentioned granules without depending on such a method of circulating treated water, and has completed the present invention.

【0012】かかる観点から提案する本発明の目的は、
グラニュールを常に流動化させることを可能として、圧
密ひいては閉塞の防止を図ることにある。
The object of the present invention proposed from this point of view is
The purpose of this is to make it possible to always fluidize the granules and to prevent consolidation and eventually blockage.

【0013】また本発明の別の目的は、グラニュールの
流動化を常に維持することによってグラニュールと排水
の接触効率を高め、高負荷の運転を可能としたUASB
法を提供することにある。
Another object of the present invention is to maintain the fluidization of the granules at all times to enhance the contact efficiency between the granules and the waste water, thereby enabling a high load operation.
To provide the law.

【0014】また本発明の他の目的は、グラニュール層
に常に水力学的なストレスを与えることでグラニュール
化を促進させることにある。
Another object of the present invention is to promote granulation by constantly applying hydraulic stress to the granule layer.

【0015】[0015]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明者は、グラニュール層に上向流で
排水を流して、嫌気性微生物により有機性排水を分解処
理する上向流スラッジブランケット法において、ブラン
ケットゾーンからその上部の気液分離ゾーンに移行する
領域より、液の一部を抜いて排水供給経路に戻すことを
特徴とする本発明の上向流スラッジブランケット法を完
成した。この方法に於いては、排水供給経路に戻す液の
量は、ブランケットゾーンを通過する上向流の流速が常
に略一定となるように制御することが好ましい。
In order to achieve the above-mentioned object, the present inventor has an advantage that the anaerobic microorganisms decompose organic wastewater by causing wastewater to flow through the granule layer in an upward flow. In the countercurrent sludge blanket method, the upflow sludge blanket method of the present invention is characterized in that a part of the liquid is withdrawn from the region transitioning from the blanket zone to the gas-liquid separation zone above and returned to the drainage supply path. completed. In this method, it is preferable to control the amount of the liquid returned to the waste water supply route so that the upward flow velocity passing through the blanket zone is always substantially constant.

【0016】またこの方法を実施するための本発明の装
置の特徴は、グラニュールが充填された反応槽と、この
反応槽の下部から有機性排水を供給する未処理水供給手
段と、反応槽の上部に設けられた気液分離手段と、この
気液分離手段の下側から反応槽内の液の一部を抜いて上
記未処理水供給手段に戻す液循環手段とを備えた構成を
なすところにある。
The apparatus of the present invention for carrying out this method is characterized in that a reaction tank filled with granules, untreated water supply means for supplying organic waste water from the lower portion of the reaction tank, and the reaction tank And a liquid circulation means for removing a part of the liquid in the reaction tank from the lower side of the gas-liquid separation means and returning it to the untreated water supply means. Where it is.

【0017】このような構成によって、気液分離ゾーン
の気液分離作用に悪影響を及ぼすことなく、ブランケッ
トゾーンの上向流の流速を高めることができ、適当な流
動化作用によりグラニュール層が膨張して空隙を広げ、
グラニュールと排水の接触をよくし、処理効率の向上、
圧密・閉塞の防止、汚泥のグラニュール化の促進が実現
され、高負荷の運転が達成できる。
With such a structure, the flow velocity of the upward flow of the blanket zone can be increased without adversely affecting the gas-liquid separation action of the gas-liquid separation zone, and the granule layer is expanded by an appropriate fluidizing action. And widen the gap,
Improves treatment efficiency by improving the contact between granules and wastewater
Prevention of compaction and blockage, promotion of sludge granulation, and high load operation can be achieved.

【0018】[0018]

【実施例】以下本発明を図面に示す実施例に基づいて説
明する。図1において、1はUASB法の反応槽であ
り、槽内部の底部にグラニュール層2が充填されてい
る。3は未処理水の供給管であり、原水(有機性排水)
を調整槽4で均一化した後、供給ポンプ5により未処理
水を上記反応槽1の底部から供給するように接続されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in the drawings. In FIG. 1, 1 is a reaction tank of the UASB method, and a granule layer 2 is filled in the bottom portion inside the tank. 3 is the untreated water supply pipe, which is raw water (organic wastewater)
Is homogenized in the adjusting tank 4 and then connected by a supply pump 5 so as to supply untreated water from the bottom of the reaction tank 1.

【0019】6は、反応槽1内の上部に設けられた気液
分離のための機構を示し、嫌気性微生物による有機物の
分解によって発生したメタン気泡を含む水が槽内を上昇
してくると、下方に向かって対向幅が狭くなり、かつ下
端が開口した一対の斜隔壁7,7と、この斜隔壁の下端
開口に対向して配置された断面三角形状の気泡分離ブロ
ック8とにより、メタン気泡は図の左右両側に案内され
てガス溜り9を作り、ガス抜き管10によって不図示の
ガスタンクに導かれる。他方、処理水は斜隔壁7の下端
開口から上方に導かれて上部から溢流形式でトラフ11
に排出され、処理水12として後段の処理設備に送られ
る(あるいはそのまま放流される)。
Reference numeral 6 denotes a gas-liquid separation mechanism provided in the upper part of the reaction tank 1, and when water containing methane bubbles generated by decomposition of organic substances by anaerobic microorganisms rises in the tank. , A pair of slanted partition walls 7 having a narrower width facing downward and an opening at the lower end, and a bubble separation block 8 having a triangular cross-section disposed so as to face the lower end opening of the slanted partition walls. The bubbles are guided to the left and right sides of the drawing to form a gas pool 9, and are guided to a gas tank (not shown) by a gas vent pipe 10. On the other hand, the treated water is guided upward from the lower end opening of the slanted partition wall 7 and overflows from the upper portion of the trough 11.
And is sent to the subsequent treatment facility as the treated water 12 (or discharged as it is).

【0020】なお上記の気液分離のための機構が設けら
れている部分が気液分離ゾーンであり、グラニュール層
2と気液分離ゾーンの中間がスラッジブランケットゾー
ンをなす。
The portion where the above-mentioned mechanism for gas-liquid separation is provided is a gas-liquid separation zone, and the middle of the granule layer 2 and the gas-liquid separation zone is a sludge blanket zone.

【0021】そして本例の特徴は、上記斜隔壁7の下端
開口に対向して配置された断面三角形状の気泡分離ブロ
ック8の下側に一端が開口し、他端が上記の未処理水の
供給管3に接続されている循環管路13を設け、途中に
設けた循環ポンプ14によってこの循環管路13を通し
て水を戻すようにしたことにある。なおこの図では示し
ていないが、循環水の流量を制御するための制御手段
(例えばバタフライ弁等の流量制御弁)を設けることも
できる。
The feature of this embodiment is that one end is opened below the air bubble separation block 8 having a triangular cross-section which is arranged so as to face the lower end opening of the oblique partition wall 7, and the other end is the untreated water. A circulation pipe 13 connected to the supply pipe 3 is provided, and water is returned through the circulation pipe 13 by a circulation pump 14 provided midway. Although not shown in this figure, a control means (for example, a flow rate control valve such as a butterfly valve) for controlling the flow rate of the circulating water may be provided.

【0022】このような構成の装置によれば、スラッジ
ブランケットゾーンを通過した水を供給系に戻すこと
で、グラニュールの流動化に適した流速で未処理水の反
応槽への供給を行なうことが可能となり、しかもその水
の循環による影響は気液分離ゾーンには実質的に影響し
ないので、気液分離ゾーンでは気液分離に適した比較的
遅い流速で水を上向させることができる。
According to the apparatus having such a configuration, the untreated water is supplied to the reaction tank at a flow rate suitable for fluidizing the granules by returning the water that has passed through the sludge blanket zone to the supply system. Moreover, since the influence of the water circulation does not substantially affect the gas-liquid separation zone, the water can be directed upward in the gas-liquid separation zone at a relatively slow flow velocity suitable for gas-liquid separation.

【0023】なお、原水の流入が常に一定量の場合に
は、上記の循環管路を通した水の循環は一定量とするこ
とで足りるが、原水の水量が変動するような場合、ある
いは装置の立ち上げ時に特に高い流速を与えるようなこ
とを考慮する場合には、循環水量を可変できる上記の制
御手段を設けることが好ましい。また供給水量を連続的
あるいは間欠的に測定しながら循環水量を可変させる機
構を設けることも好ましい。
When the inflow of raw water is always a constant amount, it is sufficient to circulate the water through the circulation pipes to a constant amount. When considering that a particularly high flow rate is given at the time of starting up, it is preferable to provide the above-mentioned control means capable of varying the circulating water amount. It is also preferable to provide a mechanism for varying the circulating water amount while continuously or intermittently measuring the supplied water amount.

【0024】本発明は以上のような実施例の構成に限定
されるものではない。例えば、有機物の濃度調整のた
め、あるいはアルカリ度等の調整のために従来の処理水
を一時的に循環させる操作を合わせて行なうことも可能
である。この場合には、処理水の循環水量と、循環管路
13からの循環水量の合計量を調整することが必要にな
るが、上記の制御手段を用いてこれを行なうことができ
る。
The present invention is not limited to the configurations of the above embodiments. For example, it is possible to additionally perform a conventional operation of temporarily circulating treated water in order to adjust the concentration of organic substances or to adjust the alkalinity and the like. In this case, it is necessary to adjust the total amount of the circulating water amount of the treated water and the circulating water amount from the circulation pipe 13, but this can be performed by using the control means described above.

【0025】実施例1 図1に示した構成の装置を用いて、以下の処理を行なっ
た。すなわち反応槽を1m×1m×4mHとし、平均C
ODcr濃度2000mg/lの食品工場の排水を未処
理水供給管から反応槽に供給して試験を行なった。反応
槽内のスラッジブランケットゾーンにおける流速は、線
流速が常時1.5m/hとなるように、循環管路から循
環した。
Example 1 The following processing was performed using the apparatus having the configuration shown in FIG. That is, the reaction tank was 1 m x 1 m x 4 mH, and the average C
The test was conducted by supplying the wastewater of a food factory with an ODcr concentration of 2000 mg / l from the untreated water supply pipe to the reaction tank. The flow velocity in the sludge blanket zone in the reaction tank was circulated through the circulation line so that the linear flow velocity was always 1.5 m / h.

【0026】また比較のために、図2に示した装置を用
い(反応槽の大きさ等は上記と同様とした)、かつ原水
の供給を間欠的に行なうことによってグラニュール層を
間欠的に流動化させながら処理を行なった。これは、原
水を連続的に供給したのでは、流速が遅すぎるためにグ
ラニュール層がほとんど流動化しないためである。な
お、原水の間欠供給は、反応槽内の線流速が瞬時的に1
m/Hとなるように行なった。
For comparison, the apparatus shown in FIG. 2 is used (the size of the reaction tank is the same as above) and the raw water is intermittently supplied to intermittently form the granule layer. The treatment was carried out while fluidizing. This is because the continuous flow of raw water causes the granule layer to hardly fluidize because the flow rate is too slow. In addition, the intermittent supply of raw water causes the linear flow velocity in the reaction tank to be instantaneously 1
m / H.

【0027】そしてCODcr負荷10kg/m3 /d
となるまでの立上げ期間と、限界負荷を測定した。その
結果を下記表1に示した。
And CODcr load 10 kg / m 3 / d
The start-up period until it became and the limit load were measured. The results are shown in Table 1 below.

【0028】[0028]

【表1】 [Table 1]

【0029】この表の結果から分かるように、本発明方
法による場合は、従来の方法に比べてCODcr負荷1
0kg/m3 /dまでの立上げ期間は約2/3となり、
また限界負荷は1.5倍となった。
As can be seen from the results of this table, in the case of the method of the present invention, the CODcr load 1 is higher than that of the conventional method.
The start-up period up to 0 kg / m 3 / d is about 2/3,
The limit load was 1.5 times.

【0030】[0030]

【発明の効果】本発明によれば、気液分離ゾーンの気液
分離作用に悪影響を及ぼすことなく、ブランケットゾー
ンの上向流の流速を高めることができ、したがってグラ
ニュールの適当な流動化作用によりグラニュール層が膨
張して空隙を広げ、グラニュールと排水の接触をよく
し、処理効率の向上、圧密・閉塞の防止、高負荷の運転
が達成できるという効果がある。
According to the present invention, the upward flow velocity of the blanket zone can be increased without adversely affecting the gas-liquid separation action of the gas-liquid separation zone, and thus the appropriate fluidizing action of the granules. With this, the granule layer expands and expands the voids, improving the contact between the granule and the waste water, improving the treatment efficiency, preventing the compaction and blockage, and achieving high load operation.

【0031】また常時水力学的ストレスを与えることに
より、汚泥のグラニュール化が促進されるという効果が
ある。
Further, by constantly applying hydraulic stress, there is an effect that granulation of sludge is promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のUASB法を適用した上向流式スラッ
ジブランケット装置の一実施例の構成概要を示した図。
FIG. 1 is a diagram showing a configuration outline of an embodiment of an upward flow type sludge blanket device to which a UASB method of the present invention is applied.

【図2】従来の処理水を循環させる上向流式スラッジブ
ランケット装置の構成概要一例を示した図。
FIG. 2 is a diagram showing an example of a schematic configuration of an upflow type sludge blanket device that circulates conventional treated water.

【符号の説明】[Explanation of symbols]

1・・・反応槽、2・・・グラニュール層、3・・・未
処理水の供給管、4・・・調整槽、5・・・供給ポン
プ、7・・・斜隔壁、8・・・気泡分離ブロック、9・
・・ガス溜り、10・・・ガス抜き管、11・・・トラ
フ、12・・・処理水、13・・・循環管路、14・・
・循環ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Reaction tank, 2 ... Granule layer, 3 ... Untreated water supply pipe, 4 ... Adjustment tank, 5 ... Supply pump, 7 ... Oblique partition wall, 8 ...・ Air bubble separation block, 9 ・
..Gas reservoir, 10 ... Gas venting pipe, 11 ... Trough, 12 ... Treated water, 13 ... Circulation pipe, 14 ...
・ Circulation pump.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 グラニュール層に上向流で排水を流し
て、嫌気性微生物により有機性排水を分解処理する上向
流スラッジブランケット法において、ブランケットゾー
ンからその上部の気液分離ゾーンに移行する領域より、
液の一部を抜いて排水供給経路に戻すことを特徴とする
上向流スラッジブランケット法。
1. In an upflow sludge blanket method, in which wastewater is caused to flow upward through a granule layer to decompose organic wastewater by anaerobic microorganisms, the blanket zone is moved to a gas-liquid separation zone above the blanket zone. From the area
Upflow sludge blanket method characterized by draining part of the liquid and returning it to the drainage supply path.
【請求項2】 請求項1において、ブランケットゾーン
からその上部の気液分離ゾーンに移行する領域より液の
一部を抜いて排水供給経路に戻すに当たり、その液量
を、ブランケットゾーンを通過する上向流の流速が常に
略一定となるようにすることを特徴とする上向流スラッ
ジブランケット法。
2. The method according to claim 1, wherein when a part of the liquid is discharged from the region transitioning from the blanket zone to the gas-liquid separation zone above the blanket zone and returned to the drainage supply route, the amount of the liquid is passed through the blanket zone. An upflow sludge blanket method characterized in that the countercurrent velocity is always approximately constant.
【請求項3】 グラニュールが充填された反応槽と、こ
の反応槽の下部から有機性排水を供給する未処理水供給
手段と、反応槽の上部に設けられた気液分離手段と、こ
の気液分離手段の下側から反応槽内の液の一部を抜いて
上記未処理水供給手段に戻す液循環手段とを備えたこと
を特徴とする上向流スラッジブランケット装置。
3. A reaction tank filled with granules, untreated water supply means for supplying organic waste water from the lower part of the reaction tank, gas-liquid separation means provided at the upper part of the reaction tank, and this gas. An upflow sludge blanket device, comprising: a liquid circulation means for removing a part of the liquid in the reaction tank from the lower side of the liquid separation means and returning the liquid to the untreated water supply means.
【請求項4】 請求項3において、液循環手段には、循
環液量を調整するための循環液量制御手段を設けたこと
を特徴とする上向流スラッジブランケット装置。
4. The upflow sludge blanket device according to claim 3, wherein the liquid circulating means is provided with a circulating liquid amount control means for adjusting the circulating liquid amount.
JP28995491A 1991-11-06 1991-11-06 Method for upward flow sludge blanket and device therefor Pending JPH05123691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28995491A JPH05123691A (en) 1991-11-06 1991-11-06 Method for upward flow sludge blanket and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28995491A JPH05123691A (en) 1991-11-06 1991-11-06 Method for upward flow sludge blanket and device therefor

Publications (1)

Publication Number Publication Date
JPH05123691A true JPH05123691A (en) 1993-05-21

Family

ID=17749888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28995491A Pending JPH05123691A (en) 1991-11-06 1991-11-06 Method for upward flow sludge blanket and device therefor

Country Status (1)

Country Link
JP (1) JPH05123691A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041128A1 (en) * 2004-10-13 2006-04-20 Ebara Corporation Organic wastewater treatment method and apparatus
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008036529A (en) * 2006-08-04 2008-02-21 National Institute For Environmental Studies Method and apparatus for treating wastewater by methane fermentation
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2011011171A (en) * 2009-07-03 2011-01-20 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN102442753A (en) * 2010-09-30 2012-05-09 江苏清溢环保设备有限公司 Composite upflow-type sludge anaeroic digestor
CN103387287A (en) * 2013-07-31 2013-11-13 秦家运 Carrier biological film upward-filtering anaerobic purifying tank with backwash function
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
JP2017177098A (en) * 2016-03-28 2017-10-05 住友重機械エンバイロメント株式会社 Water treatment apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041128A1 (en) * 2004-10-13 2006-04-20 Ebara Corporation Organic wastewater treatment method and apparatus
JP2006110424A (en) * 2004-10-13 2006-04-27 Ebara Corp Method and apparatus for treating organic waste water
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
US8043506B2 (en) 2006-01-05 2011-10-25 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP4687600B2 (en) * 2006-07-31 2011-05-25 株式会社Ihi Methane fermentation equipment
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008036529A (en) * 2006-08-04 2008-02-21 National Institute For Environmental Studies Method and apparatus for treating wastewater by methane fermentation
JP2011011171A (en) * 2009-07-03 2011-01-20 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN102442753A (en) * 2010-09-30 2012-05-09 江苏清溢环保设备有限公司 Composite upflow-type sludge anaeroic digestor
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
CN103387287A (en) * 2013-07-31 2013-11-13 秦家运 Carrier biological film upward-filtering anaerobic purifying tank with backwash function
JP2017177098A (en) * 2016-03-28 2017-10-05 住友重機械エンバイロメント株式会社 Water treatment apparatus

Similar Documents

Publication Publication Date Title
JP4088630B2 (en) Wastewater treatment equipment
KR960007473A (en) Wastewater treatment system and wastewater treatment method using aerobic and anaerobic microorganisms and exhaust gas treatment
JP2007090204A (en) Water treatment method and water treatment system
JPH05123691A (en) Method for upward flow sludge blanket and device therefor
JP4927415B2 (en) Exhaust gas wastewater treatment equipment
CN105585184A (en) Method and device for treating circulating spray liquid discharged by printing and dyeing wastewater deodorization system
KR101541070B1 (en) method and device for controlling using turbulence stimulation and filter member
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JP7144999B2 (en) Water treatment method and water treatment equipment
JP3558204B2 (en) Wastewater biological treatment equipment
JP3970612B2 (en) Purification processing apparatus and purification processing method
KR960037587A (en) Advanced biological and chemical circulation treatment of sewage and wastewater using integrated reactor and water quality control tank
JP7444643B2 (en) Water treatment equipment and water treatment method
JP4526980B2 (en) Sewage treatment system
JPS6218232B2 (en)
JP3131658B2 (en) Wastewater biological treatment method
JPH11192497A (en) Waste water treating device utilizing microorganism
JP2010221077A (en) Surplus sludge reduction equipment
JPS635831Y2 (en)
JPS5842077Y2 (en) Biological “filtration” device
JPS607832Y2 (en) Sewage treatment equipment
JPH10192897A (en) Sludge treating method
JP4030824B2 (en) Waste water treatment apparatus and waste water treatment method
KR0156437B1 (en) Waste water treating equipment consisting of downwardly aerobic microorgaism contacting tower and sedimentation tank
JP4588472B2 (en) Sewage treatment system