JPH051228B2 - - Google Patents

Info

Publication number
JPH051228B2
JPH051228B2 JP62075070A JP7507087A JPH051228B2 JP H051228 B2 JPH051228 B2 JP H051228B2 JP 62075070 A JP62075070 A JP 62075070A JP 7507087 A JP7507087 A JP 7507087A JP H051228 B2 JPH051228 B2 JP H051228B2
Authority
JP
Japan
Prior art keywords
ceramics
bonding agent
bonding
joint
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62075070A
Other languages
Japanese (ja)
Other versions
JPS63239164A (en
Inventor
Yoshihiro Ehata
Isao Kondo
Susumu Mori
Masahiko Nozawa
Tokuzo Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daihen Corp filed Critical Agency of Industrial Science and Technology
Priority to JP7507087A priority Critical patent/JPS63239164A/en
Publication of JPS63239164A publication Critical patent/JPS63239164A/en
Publication of JPH051228B2 publication Critical patent/JPH051228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はセラミツクスの接合方法に関するもの
である。 [従来の技術] セラミツクスの接合は一般に高温で溶融する接
合剤を塗布し、接合面を突合せて接合部を加熱す
る方法がとられる。加熱手段として一般に用いら
れるものに、電気炉とガスバーナがある。 電気炉による加熱は、セラミツクス全体を電気
炉中に収納して行うので、接合部だけでなくセラ
ミツクス全体が高温にさらされることになる。 ガスバーナによる加熱は、接合部にガスバーナ
(一般に複数個)を吹付け、ガス炎により接合部
を強熱するものである。ガスバーナによる加熱方
法においては、接合部の温度むらが生じやすいの
で、これを抑制するために、ガス炎の当る位置を
周期的に変える必要があり、セラミツクス側又は
ガスバーナ側に移動(又は回転)装置が設けられ
ている。 また、本発明者等は接合部をガスバーナにより
加熱しながら、接合剤部に電流を通電し、通電に
よるジユール熱により接合剤を溶融してセラミツ
クスの接合を行う方法を提案している。(特願昭
61−78697)。 この接合方法では、接合剤は高温において導電
性を有するものを使用する。 [発明が解決しようとする問題点] 前述した電気炉による加熱では、セラミツクス
全体を高温にさらすことになるので熱収縮及び熱
歪みが大きく現れ、母材の熱変質を生じやすいな
どの問題がある。 ガスバーナによる加熱では、接合部の温度コン
トロールがむずかしく、接合部の位置的な温度差
や時間的な温度変化が過大になることがあり、こ
のために、接合部にかなりの熱応力がかかり、接
合部に割れなどを生じることがある。 また、接合部をガスバーナにより加熱しなが
ら、接合剤部に通電し、ジユール熱により接合部
分を加熱する方法では、接合剤は高温において導
電性を有するものでなければならない。 本発明の目的は、熱収縮、熱歪み及び熱変質等
が小さく、熱応力による問題点を生じることもな
く、かつ高温において導電性を有しない接合剤で
も採用対象にしうるセラミツクスの接合方法を提
供することにある。 [問題点を解決するための手段] 誘導体損失がセラミツクスより大きい接合剤を
用い、この接合剤をセラミツクスの接合面に介在
させて、接合面同士を突合せる。 次に接合部近傍又はセラミツクス全体に短波帯
又はマイクロ波帯の高周波電界を加えて誘電加熱
を用い、前記接合剤を加熱溶融してセラミツクス
を接合する。 [作用] 交番電界下におかれた誘電体は、誘電体損失を
発生し発熱する。誘電体の単位体積当りの発生損
失をP(w/cm3)とすれば、 P=(5/9)fE2eεtanδ×10-12 で与えられる。 ここにf、E、ε、tanδは、それぞれ周波数
(Hz)、電界強度(V/cm)、比誘電率、誘電体力
率である。 また、εtanδを損失係数と呼び誘電体の発生損
失の程度を示し、損失係数の大きな物質ほど大き
な誘電体損失を発生する。セラミツクスの接合時
に、接合部を最高温度にするため接合剤の損失係
数はセラミツクスより大きいものを用いる。加熱
電源の周波数は短波帯又はマイクロ波帯を用いる
が、電波法により使用可能な周波数が定められて
いる。国内において工業、化学、医事用に割当て
られている周波数は、短波帯では13.56、27.12、
40.68MHzであり、マイクロ波帯では、2450、
5800MHz等であるから、これらの中から使用周波
数を選択する。短波電源を用いる場合はセラミツ
クスの接合部近傍を板状電極間に配設し、マイク
ロ波電源を用いる場合はマイクロ波が照射される
金属箱体内に、接合すべきセラミツクスを収納す
る。 このような配置において、板状電極間に高周波
電圧を印加することにより、又は金属箱体内に高
周波電力を照射することにより、セラミツクスの
接合部近傍又はセラミツクス全体に高周波電界が
かかり、前述の式に示されるような発熱を生じ
る。 接合剤の損失係数はセラミツクスの損失係数よ
りも大きいものを用いているから、接合剤部分が
セラミツクス部より強く加熱されることになり、
いわいる接合剤部分に選択加熱が起こる。 このようにして、効率よく接合剤部分を加熱溶
融して、セラミツクスの接合を行うことができ
る。 なお、誘電体の比誘電率(ε)及び誘電体力率
(tanδ)は同じ物質、組成であつても温度及び周
波数によつて変化するのが通例である。したがつ
て、損失係数(εtanδ)も温度及び周波数によつ
て変化するのが通例であり、これらの挙動を把握
して接合剤を採用することが望ましい。 [実施例] 本発明の実施例を図面を参照して説明する。 第1図A及びBは、本発明の方法を実施するた
めの接合装置を示す概略図であつて、それぞれ平
面図及び正面図を示す。本実施例においては、長
方形状のセラミツクス1a,1bを縦方向に斜め
突合せ接合する場合について述べる。 セラミツクス1a,1bは接合すべき面を厚さ
方向に対して傾斜面とし、接合剤2を介在させて
突合されている。接合剤の損失係数は被接合物の
損失係数よりも大きいことが必要であり、このた
めセラミツクス1a,1bの素材成分の粉体に損
失係数の大きい素材を混入し、その他適当な助
剤、水等を加えてねり合わせ、シート状又はペレ
ツト状に仕上げて接合剤2を得る。損失係数を大
きくする素材としては、KAlSi3O8、NaAlSi3O8
Li2O、SiO2、MgO、TiO2、BaO、Al2O3、ZnO、
B2O3などがあり、これらのうちから適当な種類、
量の素材を混入することにより、接合剤2の損失
係数をセラミツクス1a,1bの損失係数よりも
数倍乃至数十倍大きくすることができる。 表1及び表2にセラミツクス、ガラス類等の誘
電特性例を示す。
[Industrial Field of Application] The present invention relates to a method for joining ceramics. [Prior Art] Ceramics are generally bonded by applying a bonding agent that melts at high temperatures, abutting the bonded surfaces, and heating the bonded portion. Electric furnaces and gas burners are commonly used heating means. Since heating in an electric furnace is performed by placing the entire ceramic in the electric furnace, not only the joints but also the entire ceramic is exposed to high temperatures. Heating with a gas burner involves blowing gas burners (generally a plurality of gas burners) onto the joint and igniting the joint with a gas flame. In the heating method using a gas burner, temperature unevenness tends to occur at the joint, so in order to suppress this, it is necessary to periodically change the position where the gas flame hits, and a moving (or rotating) device to the ceramic side or the gas burner side is required. is provided. The present inventors have also proposed a method for joining ceramics by passing current through the bonding agent portion while heating the bonding portion with a gas burner, and melting the bonding agent by the Joule heat generated by the energization. (Tokugansho
61−78697). In this bonding method, a bonding agent that is conductive at high temperatures is used. [Problems to be Solved by the Invention] When heating using the electric furnace described above, the entire ceramic is exposed to high temperatures, which causes significant thermal contraction and thermal distortion, leading to problems such as thermal deterioration of the base material. . When heating with a gas burner, it is difficult to control the temperature of the joint, and the positional temperature difference or temporal temperature change at the joint may become excessive.This causes considerable thermal stress to be applied to the joint, causing the joint to fail. Cracks may occur in the parts. In addition, in the method of heating the bonded portion with a gas burner while passing electricity through the bonding agent portion to heat the bonded portion with Joule heat, the bonding agent must be electrically conductive at high temperatures. An object of the present invention is to provide a method for joining ceramics that has small thermal shrinkage, thermal distortion, thermal deterioration, etc., does not cause problems due to thermal stress, and can be used even with a bonding agent that does not have conductivity at high temperatures. It's about doing. [Means for Solving the Problems] A bonding agent having a dielectric loss greater than that of ceramics is used, this bonding agent is interposed between the bonding surfaces of the ceramics, and the bonding surfaces are abutted against each other. Next, a high frequency electric field in a short wave band or a microwave band is applied to the vicinity of the joint part or to the entire ceramic, and dielectric heating is used to heat and melt the bonding agent, thereby bonding the ceramics. [Operation] A dielectric placed under an alternating electric field generates dielectric loss and heats up. If the loss generated per unit volume of the dielectric is P (w/cm 3 ), it is given by P=(5/9)fE 2 eεtanδ×10 −12 . Here, f, E, ε, and tan δ are frequency (Hz), electric field strength (V/cm), relative dielectric constant, and dielectric power factor, respectively. Further, εtanδ is called a loss coefficient and indicates the degree of loss generated in a dielectric, and a substance with a larger loss coefficient generates a larger dielectric loss. When bonding ceramics, use a bonding agent with a loss coefficient larger than that of the ceramics in order to bring the bonded part to the highest temperature. The frequency of the heating power source is a short wave band or a microwave band, and the usable frequencies are determined by the Radio Law. The frequencies allocated for industrial, chemical, and medical purposes in Japan are 13.56, 27.12, and 27.12 in the shortwave band.
40.68MHz, and in the microwave band, 2450,
5800MHz, etc., so select the frequency you want to use from among these. When a short wave power source is used, the ceramics to be bonded are placed between plate-shaped electrodes near the joint, and when a microwave power source is used, the ceramics to be bonded are housed in a metal box that is irradiated with microwaves. In such an arrangement, by applying a high-frequency voltage between the plate-shaped electrodes or by irradiating high-frequency power into the metal box, a high-frequency electric field is applied to the vicinity of the ceramic joint or the entire ceramic, and the above equation is satisfied. Produces fever as shown. Since the loss coefficient of the bonding agent is larger than that of the ceramics, the bonding agent part will be heated more strongly than the ceramic part.
Selective heating occurs in the so-called bonding agent portion. In this way, the bonding agent portion can be efficiently heated and melted to bond ceramics. Note that the dielectric constant (ε) and dielectric power factor (tan δ) of a dielectric usually change depending on temperature and frequency even if the material and composition are the same. Therefore, the loss coefficient (εtanδ) also usually changes depending on temperature and frequency, and it is desirable to use a bonding agent with these behaviors in mind. [Example] An example of the present invention will be described with reference to the drawings. FIGS. 1A and 1B are schematic diagrams showing a bonding apparatus for carrying out the method of the present invention, showing a plan view and a front view, respectively. In this embodiment, a case will be described in which rectangular ceramics 1a and 1b are vertically butt-jointed obliquely. The surfaces of the ceramics 1a and 1b to be bonded are inclined with respect to the thickness direction, and the ceramics 1a and 1b are butted together with a bonding agent 2 interposed therebetween. The loss coefficient of the bonding agent needs to be larger than the loss coefficient of the objects to be bonded, so a material with a large loss coefficient is mixed into the powder of the material components of ceramics 1a and 1b, and other suitable auxiliaries and water are added. etc. and knead it to form a sheet or pellet to obtain the bonding agent 2. Materials that increase the loss coefficient include KAlSi 3 O 8 , NaAlSi 3 O 8 ,
Li2O , SiO2 , MgO, TiO2 , BaO, Al2O3 , ZnO,
There are B 2 O 3 , etc., and from these, suitable types,
The loss coefficient of the bonding agent 2 can be made several times to several tens of times larger than the loss coefficient of the ceramics 1a and 1b by mixing the same amount of material. Tables 1 and 2 show examples of dielectric properties of ceramics, glasses, etc.

【表】【table】

【表】 セラミツクス1a,1bは図示しない支持治具
によつて定位置に保持されている。接合部に近接
して、その左右に電極3a,3bが対向して配設
され図示しない支持治具によつて定位置に保持さ
れている。電極3a,3bは高温に耐えるように
耐熱性のきわめて高い金属(例えばモリブデン
等)を用いる。 電極3a,3bの上下方向長さ及び前後方向長
さは、それぞれセラミツクス1a,1bの上下方
向長さ及びセラミツクス1a,1bの縦方向の接
合部長さよりも大きくする。電極3a,3bは、
その前後方向の端部はラツパ状に開いていて、対
向電極間の距離が増加するようになつている。こ
れは、接合部から前後方向にはなれた部分を、接
合部分よりも電界強度を小さくすることにより発
熱密度を小さくし、接合時のセラミツクス前後方
向の温度分布をなだらかにすることを目的とした
ものである。 高周波電力発生装置4は、自励発振器等からな
るもので、商用周波数の交流を直流に整流し、さ
らに高周波の周波数変換及び電圧変換を行い同軸
線等を用いた印加線5を通じて電極3a,3bに
高周波電圧を印加する。使用する周波数は前述の
[作用]の項で示した電波法で使用を認められた
周波数の中から選択する。 セラミツクスの接合手順の概要は下記のとおり
である。セラミツクス1a,1bの接合面に接合
剤3を介在させ、図示しない支持治具により接合
面同士を押しつけて固定する。電極3a,3bを
セラミツクス1a,1bの接合部分の左右に配設
し、電極中央部におけるセラミツクスとのギヤツ
プは2〜3mm程度にして、図示しない支持治具に
より定位置に固定しておき、高周波電力発生装置
4より高周波電圧を電極1a,1b間に印加す
る。電極1a,1b間に電界がかかりセラミツク
スの接合部に誘電加熱が起り、接合剤2の部分を
最高温度部とした温度上昇が生じる。通電後数分
乃至十数分たてば、接合に適した温度(接合剤が
溶融する温度…一般に1千数百度)に達するの
で、この時点で通電を停止し、加熱部を自然冷却
させる。なお、通電の最終段階でセラミツクス1
a,1bをたがいに押しつけ合う方向に加圧し
(接合面における法線方向圧力0.05〜2Kg/mm2
余分の接合剤やボイドを外部に排出すれば、薄く
て緻密な接合金属が形成されるので、接合強度を
増大することができる。また、通電の断続制御を
行うようにし、通電率を小さくしながら最終的な
通電停止に至る方式等により徐冷を行い、接合応
力をより小さくすることができる。また、接合部
及び電極の近傍を不活性ガスの雰囲気下にして誘
電加熱を行うようにしてもよい。このようにすれ
ば、接合時の高温によるセラミツクスの酸化劣化
を防ぎ、接合部の外観も向上する。 その他の実施例 補助熱源における予熱方法 一般に誘電体の損失係数は、高温時に比べ常温
時は小さい傾向にある。このような場合は、誘電
加熱のみでは温度上昇の立ち上がりが遅くなるな
どの問題点を生じるが、補助熱源を用い、接合部
を予熱すればこれらの問題点を解消する。補助熱
源としては、放射放熱形の電熱ヒータを第1図B
におけるセラミツクス接合部の上面、下面付近に
取付けてセラミツクスの接合部を予熱するように
してもよい。 更に(又は)、電源3a,3bに接触加熱形の
電熱ヒータを埋込み、この熱を電極→セラミツク
ス接合部に伝熱するようにしてもよい。 これらの補助熱源によりセラミツクスの接合部
の温度が数百度に達つすると、補助熱源の入力を
遮断する。次に、高周波電圧印加時に支障をきた
さないように、セラミツクス接合部の上面及び下
面部に配設した電熱ヒータの接合面からの離隔、
電極埋込みヒータへの入力リード線の電極部から
の離隔等の処理を行い、その後誘電加熱を行う。 金属箱体内における誘電加熱方法 マイクロ波帯の周波数を用いる場合は、金属箱
体(1辺が波長の数倍程度)内に接合すべきセラ
ミツクスを設置し、この金属箱体内に高周波電力
を照射して、セラミツクスの接合を行うことがで
きる。 この方法では、マグネトロンで発生させた高周
波電力を導波管等で導き、金属箱体に開口部を設
けて、ここより金属箱体内に高周波電力を照射す
る。この方法においては、セラミツクスの支持治
具(金属製)等が放電を生じたり、接合部への電
力照射の影にならないように、これらの構造や配
置に注意する必要がある。 また、接合部の均一な加熱を行うには、接合部
における電界分布のかたよりの固定化は避けるこ
とが必要であり、このために、金属製スタラフア
ンの採用、又は被接合物系(セラミツクス及びこ
れらの支持物等)を回転させつつ高周波電力の照
射を行うなどの措置を講じる。 [発明の効果] 本発明によれば、接合剤及びその近傍を重点的
に加熱することができるので、接合にともなうセ
ラミツクスの熱劣化、熱変形を低減することがで
きる。 更に、接合部は全面にわたり時間的に一様に加
熱されるので、接合時における熱応力が極めて小
さくなり、接合強度が向上する。 また導電性が小さくジユール熱利用の通電接合
が行えない接合剤でも、本発明の方法によれば接
合剤として使用しうる。
[Table] Ceramics 1a and 1b are held in place by a support jig (not shown). Electrodes 3a and 3b are disposed facing each other on the left and right sides of the joint near the joint, and are held in place by a support jig (not shown). The electrodes 3a and 3b are made of extremely heat-resistant metal (eg, molybdenum, etc.) so as to withstand high temperatures. The lengths of the electrodes 3a, 3b in the vertical direction and the length in the front-rear direction are larger than the lengths of the ceramics 1a, 1b in the vertical direction and the lengths of the longitudinal joints of the ceramics 1a, 1b, respectively. The electrodes 3a and 3b are
The ends in the front and rear directions are opened in a flap shape, so that the distance between the opposing electrodes increases. The purpose of this is to reduce the heat generation density by making the electric field strength lower in the part farther away from the joint in the front-rear direction than in the joint part, and to smooth the temperature distribution in the front-rear direction of the ceramics during joining. It is. The high-frequency power generator 4 is composed of a self-excited oscillator, etc., and rectifies a commercial frequency alternating current into a direct current, and further performs frequency conversion and voltage conversion of the high frequency, and connects the electrodes 3a, 3b to an application line 5 using a coaxial line or the like. Apply a high frequency voltage to. The frequency to be used is selected from among the frequencies approved for use under the Radio Law as shown in the above [Operation] section. The outline of the ceramic bonding procedure is as follows. A bonding agent 3 is interposed between the bonding surfaces of the ceramics 1a and 1b, and the bonding surfaces are pressed and fixed together using a support jig (not shown). The electrodes 3a and 3b are placed on the left and right sides of the joint between the ceramics 1a and 1b, with a gap of about 2 to 3 mm between the electrodes and the ceramics at the center of the electrodes, and fixed in place using a support jig (not shown). A high frequency voltage is applied from the power generator 4 between the electrodes 1a and 1b. An electric field is applied between the electrodes 1a and 1b, and dielectric heating occurs at the ceramic bonding area, causing a temperature rise with the bonding agent 2 being the highest temperature area. After several minutes to more than 10 minutes after energization, the temperature suitable for bonding (temperature at which the bonding agent melts, generally 1,000-odd degrees) is reached, so at this point the energization is stopped and the heated part is allowed to cool naturally. In addition, at the final stage of energization, ceramics 1
Pressure is applied to a and 1b in the direction of pressing them against each other (pressure in the normal direction on the joint surface is 0.05 to 2 Kg/mm 2 ).
By discharging the excess bonding agent and voids to the outside, a thin and dense bonding metal is formed, so that the bonding strength can be increased. In addition, it is possible to perform intermittent control of energization, and perform slow cooling by reducing the energization rate until the final energization is stopped, thereby making it possible to further reduce the bonding stress. Further, dielectric heating may be performed in the vicinity of the bonding portion and the electrode under an inert gas atmosphere. In this way, oxidative deterioration of the ceramics due to high temperatures during bonding can be prevented, and the appearance of the bonded portion can also be improved. Other Examples Preheating method using auxiliary heat source Generally, the loss coefficient of a dielectric tends to be smaller at room temperature than at high temperature. In such a case, dielectric heating alone causes problems such as a slow rise in temperature, but these problems can be solved by preheating the joint using an auxiliary heat source. As an auxiliary heat source, use a radiant heat radiation type electric heater as shown in Figure 1B.
It is also possible to preheat the ceramic joint by attaching it near the upper or lower surface of the ceramic joint. Furthermore, (or) a contact heating type electric heater may be embedded in the power sources 3a and 3b, and the heat may be transferred from the electrode to the ceramic junction. When the temperature of the ceramic joint reaches several hundred degrees due to these auxiliary heat sources, the input of the auxiliary heat sources is cut off. Next, in order to avoid problems when applying high-frequency voltage, the electric heaters placed on the top and bottom surfaces of the ceramic joint should be separated from the joint surface.
The input lead wire to the electrode-embedded heater is separated from the electrode part, and then dielectric heating is performed. Dielectric heating method in a metal box When using a microwave band frequency, the ceramics to be bonded are placed inside a metal box (one side is approximately several times the wavelength), and high-frequency power is irradiated into the metal box. Ceramics can be bonded using this method. In this method, high frequency power generated by a magnetron is guided through a waveguide or the like, an opening is provided in the metal box, and the high frequency power is irradiated into the metal box from this opening. In this method, it is necessary to pay attention to the structure and arrangement of ceramic supporting jigs (made of metal) so that they do not generate discharge or become a shadow of the power irradiated to the joint. In addition, in order to uniformly heat the joint, it is necessary to avoid fixation of the electric field distribution in the joint, and for this purpose, it is necessary to use a metal starvation fan or to use materials to be joined (ceramics and other materials). measures such as irradiating high-frequency power while rotating the support material, etc.). [Effects of the Invention] According to the present invention, since the bonding agent and its vicinity can be intensively heated, thermal deterioration and thermal deformation of ceramics accompanying bonding can be reduced. Furthermore, since the joint portion is heated uniformly over time, the thermal stress during joining becomes extremely small, and the joint strength improves. Furthermore, even a bonding agent that has low conductivity and cannot be used for electrical bonding using Joule heat can be used as a bonding agent according to the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及びBは、それぞれ本発明の方法を実
施するための接合装置の概略を示す平面図及び正
面図である。 1a,1b……セラミツクス、2……接合剤、
3a,3b……電極、4……高周波電源装置。
1A and 1B are a plan view and a front view, respectively, schematically showing a bonding apparatus for carrying out the method of the present invention. 1a, 1b...ceramics, 2...bonding agent,
3a, 3b... Electrode, 4... High frequency power supply device.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツクスの接合面に接合剤を介在させて
接合面を突合せ、接合部を加熱し、前記接合剤を
溶融してセラミツクスを接合する方法において、
前記セラミツクスの誘電体損失よりも大きな誘電
体損失を生じる接合剤を用い、接合部近傍又はセ
ラミツクス全体に短波帯又はマイクロ波帯の高周
波電界を加えて誘電加熱することにより前記接合
剤を加熱溶融するセラミツクスの接合方法。
1. A method of joining ceramics by interposing a bonding agent between the bonding surfaces of ceramics, butting the bonding surfaces, heating the bonded portion, and melting the bonding agent,
Using a bonding agent that causes a dielectric loss larger than the dielectric loss of the ceramics, the bonding agent is heated and melted by applying a high frequency electric field in a short wave band or microwave band to the vicinity of the bonded portion or the entire ceramic to dielectrically heat it. Ceramics joining method.
JP7507087A 1987-03-27 1987-03-27 Method of joining ceramics Granted JPS63239164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7507087A JPS63239164A (en) 1987-03-27 1987-03-27 Method of joining ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7507087A JPS63239164A (en) 1987-03-27 1987-03-27 Method of joining ceramics

Publications (2)

Publication Number Publication Date
JPS63239164A JPS63239164A (en) 1988-10-05
JPH051228B2 true JPH051228B2 (en) 1993-01-07

Family

ID=13565567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7507087A Granted JPS63239164A (en) 1987-03-27 1987-03-27 Method of joining ceramics

Country Status (1)

Country Link
JP (1) JPS63239164A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031931A (en) * 1989-05-30 1991-01-08 Toshiba Seiki Kk Thermal seal device
WO1999008487A1 (en) * 1997-08-12 1999-02-18 Matsushita Electric Industrial Co., Ltd. Heater utilizing microwave and bonding method using it
US7022198B2 (en) * 2003-03-07 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Microwave assisted reactive brazing of ceramic materials
WO2007114208A1 (en) * 2006-03-29 2007-10-11 Tokuyama Corporation Method for joining aluminum nitride sintered body and aluminum nitride joined body
ES2385585B1 (en) * 2010-12-29 2013-06-13 Asociación De Investigación De Las Industrias Cerámicas A.I.C.E. REVERSIBLE PLACEMENT SYSTEM OF CERAMIC TILES.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311580A (en) * 1986-06-30 1988-01-19 株式会社豊田中央研究所 Ceramics joining equipment
JPS6311581A (en) * 1986-07-01 1988-01-19 ホソカワミクロン株式会社 Adhesion of ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311580A (en) * 1986-06-30 1988-01-19 株式会社豊田中央研究所 Ceramics joining equipment
JPS6311581A (en) * 1986-07-01 1988-01-19 ホソカワミクロン株式会社 Adhesion of ceramics

Also Published As

Publication number Publication date
JPS63239164A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
CN110848766A (en) Electric heater
JPH051228B2 (en)
KR910002396B1 (en) Heating of quartz glass tube
JPS6188965A (en) Self-heat-generating cover body soldered to box body
US3571551A (en) High frequency heating apparatus
KR101334223B1 (en) Adhesive, heater and method Producing of heater using the same
US3129108A (en) Electroluminescent cell and method
JPH10180463A (en) Method and device for joining heat resistant alloy
JP2706726B2 (en) Electric joining method of ceramics
JPH11135252A (en) Heating device with microwave and joining method of joining object using thereof
KR100453323B1 (en) Method and apparatus for joining high-temperature ceramic heater
JPS61160229A (en) Welding process of conductive rubber plastic layer
US4173460A (en) Process for welding plate glasses together
JPH01279589A (en) Heating device
JP2000165031A (en) Reflow furnace
KR100286458B1 (en) Method for manufacturing electric cooker using induction heating method
JP3922071B2 (en) CRT separation method and apparatus
JP2745522B2 (en) Electrical joining method of ceramics and heating member for joining
JPH03159972A (en) Coating of ceramic covering layer
JPS59151797A (en) Microwave melting furnace
US640844A (en) Process of enameling.
JPH06172049A (en) Electric bonding of si-containing silicon carbide ceramic
JPS6034508B2 (en) Container sealing device using glass composite
JPS62211888A (en) Far-infrared radiating ceramic unit and manufacture of the same
JPH0424311B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term