JP3922071B2 - CRT separation method and apparatus - Google Patents

CRT separation method and apparatus Download PDF

Info

Publication number
JP3922071B2
JP3922071B2 JP2002096512A JP2002096512A JP3922071B2 JP 3922071 B2 JP3922071 B2 JP 3922071B2 JP 2002096512 A JP2002096512 A JP 2002096512A JP 2002096512 A JP2002096512 A JP 2002096512A JP 3922071 B2 JP3922071 B2 JP 3922071B2
Authority
JP
Japan
Prior art keywords
ray tube
cathode ray
outer peripheral
peripheral surface
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002096512A
Other languages
Japanese (ja)
Other versions
JP2003297247A (en
Inventor
進 斉藤
裕 松田
隆之 刑部
克哉 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002096512A priority Critical patent/JP3922071B2/en
Publication of JP2003297247A publication Critical patent/JP2003297247A/en
Application granted granted Critical
Publication of JP3922071B2 publication Critical patent/JP3922071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄されたブラウン管を、再びブラウン管材料としてリサイクル利用するために、線もしくは帯状体をブラウン管外周面に巻付け、もしくは押圧した状態で発熱、もしくは昇温させて、ブラウン管に生成する熱応力歪を利用したブラウン管のパネル部とファンネル部の分離方法と、その実施装置に関する。
【0002】
【従来の技術】
廃ブラウン管を部材として再利用するため、パネル部とファンネル部に分離する手段としては、予め、ブラウン管外周面の分離予定位置に添ってスクラッチ傷を付与した部分を加熱して、熱応力歪が生成せしめた状況で、鉄ハンマーなどで当該箇所に衝撃を加えて、スクラッチ傷を起点とする亀裂を発生させ、熱応力歪に添って亀裂を成長させて分離していた。
【0003】
その一例として、特開2002−025447号公報に示すブラウン管の分離方法がある。加熱手段としては、ニクロム線など熱線の押圧による伝導熱、および赤外線、近赤外線ランプなどのの輻射熱などの利用があるが、様々のサイズ、形状の廃ブラウン管を取り扱う必然性が高いリサイクル事業分野では、図5に示すように何らかの手段でその両端に張力を印加した帯状ニクロム線を発熱体1とし、ブラウン管9の外周面93に巻付けて、その両端部に配した押圧兼摺電子を介して通電して発熱させる手段が一般的に多用される。
【0004】
【発明が解決しようとする課題】
張力を印加した状態のニクロム線などの発熱体をブラウン管外周面に巻付けた場合、外周面辺部95には押圧力は働かず、張力の殆どは外周面角部94への負荷押圧力として働く。
【0005】
従って外周面角部94では、外周面辺部95よりブラウン管部材への熱転移性は高く、ブラウン管部材の加熱目的には好条件ではあるが、発熱体自体の温度は他の部分より低くなって、亀裂の起点となるマイクロクラック生成と自然発生的亀裂発生には、所要時間がその分長く必要になる。
【0006】
一方、張力が印加された状態の発熱体をブラウン管外周面に巻き付けた場合、外周面角部94から辺部95に移行する部分97では、前記角部94と発熱体自身が保有する抗張力の影響で、ブラウン管外周面を押圧する方向の力は全く働かず、密着度は必然的に悪くなる。
【0007】
その結果、ブラウン管部材への熱量伝達が少なくなる為、当該箇所97の内部の熱応力歪の生成が他の部位より時間的に遅れて、熱応力歪の欠落部となって、亀裂の進行に際して予定外の方向に進む要因となっていた。
【0008】
一方、赤外線、近赤外線による加熱する手段は、様々のサイズで、複数の曲率面で構成される廃ブラウン管の外周面全体を同時に、且つ均等に加熱し処理することは実質的に不可能である。
【0009】
また、赤外線、近赤外線等の熱エネルギーは、被処理物のガラス部材を透過し易い特性があり、内部温度の立ち上がりは早いが、亀裂の起点となるマイクロクラックに至る温度勾配と熱応力歪生成を醸成する事は難しい。
【0010】
その結果、ブラウン管の外周面に亀裂を発生させる為には、スクラッチ傷の付与、水分を含ませた布拭き、ハンマーによる強い衝撃印加などの分離補助作業が不可欠であると共に、ブラウン管の品種とサイズによっては、入念なそれらの分離補助作業を伴っていた。
【0011】
本発明は、スクラッチ傷の付与などの事前準備加工や、分離に際してのハンマーによる衝撃印加などの補助作業を不要とすると共に、短い処理時間で、且つブラウン管サイズにとらわれない安定した、且つ高精度の分離状態が得られる極めて効果的な分離方法と、その実施装置を提供するものである。
【0012】
【課題を解決するための手段】
本発明は、ブラウン管外周面の分離予定位置に発熱体を押圧、もしくは巻き付けて、発熱体を所定電力で通電発熱させる一方、赤外線もしくは近赤外線ランプから放射される0.8〜5.6μmの波長領域を含む熱エネルギーを所定の焦点距離の反射鏡にて集束させた焦点域を、当該発熱体とブラウン管外周との接触部に結ばせる事で、発熱体に熱量補給して前記発熱体の温度低下防止を図ると共に、焦点域の一部が発熱体で遮断されることで、発熱体との接触部内面に強烈な断層状の温度勾配による熱応力歪が生成する。
【0013】
その結果、マイクロクラック生成の為の十分条件が整い、極めて高い確率で亀裂が自然発生すると共に、それらガラス材の表面および内部に生成した強烈な断層状の熱応力歪に添って一瞬に亀裂が成長してブラウン管部材全周に至って、瞬時に分割状態に至らせることが可能となる。
【0014】
【発明の実施の形態】
請求項1に記載の発明は、ブラウン管外周面の分離予定位置に、発熱体を押圧、もしくは巻き付け他状態で通電発熱する一方、赤外線もしくは近赤外線ランプから放射される0.8〜5.6μmの波長領域を含む熱エネルギーを所定の焦点距離の反射鏡にて集束させた焦点域を、ブラウン管外周面の発熱体との接触部に結ばせて、その両手段によって発熱体およびブラウン管外周面を加熱昇温させ、発熱体接触部内面に生成した断層状の強烈な熱応力歪はマイクロクラック生成の十分条件を醸成するもので、本発明の基本的構成である。
【0015】
請求項2に記載の発明は、ブラウン管の分離方法において、反射鏡にて所定の焦点距離で集束させた焦点域形状を、ほぼ小円もしくは長楕円もしくは帯状スポット形状とし、当該焦点域を適用配備する箇所として、一箇所ないしは複数の要所に配して、前記請求項1の実施の形態で述べた亀裂発生起点となるマイクロクラック発生の十分条件醸成箇所を要所に配したものである。
【0016】
請求項3に記載の発明は、反射鏡にて集束させた放射熱エネルギーの焦点域形状を帯状のL字形とし、発熱体を巻き付けたブラウン管外周面角部の一個所のもしくは複数の角部との接触部に焦点域を結ばせて実施するもので、ブラウン管外周面角部での発熱体自体の温度低下を補うべく、当該箇所の発熱体に放射熱エネルギーを吸収せしめて熱量補給する事でその改善を図ったものである。また、外周面角部から辺部に移行する部分での熱応力歪の欠落部の生成を防止し、亀裂の進行に際して発熱体の巻付けに添った亀裂成長をも意図して実施するものである。
【0017】
請求項4に記載の発明は、本発明の発熱体としての機能と適応性を高めたもので、その施策として、0.8〜5.6μmの波長領域を含む放射熱エネルギーの吸収特性が比較的優れた材質、もしくは表面処理がなされた発熱体材質構成とし、放射熱エネルギーによる熱量補給機能を高めたものである。
【0018】
請求項5に記載の発明は、請求項1から請求項5の何れかに記載したブラウン管の分離方法の実施装置として、ブラウン管外周面に巻き付けもしくは押圧する線状もしくは帯状体と、当該線状もしくは帯状体をブラウン管外周面に押圧すると共に、必要に応じて電力を供給通電する押圧兼通電用摺電子機構と、放射される熱エネルギーを反射鏡にて収束した熱エネルギー焦点域を形成し、処理対象物および線状もしくは帯状体を当該焦点域内に収まるように配置された赤外線もしくは近赤外線ランプと反射鏡からなる加熱機構と、処理対象物であるブラウン管を搭載するブラウン管搭載機構と、ブラウン管外周面の発熱体の巻き付けもしくは押圧する位置を調整する高さ調整機構と、それらの機能機構部を各々関連させて、且つ所定の設定値で動作させる制御と電源装置部とを、主要構成として備えてなる事を特徴とするブラウン管の分離装置である。
【0019】
(実施の形態1)
以下、本発明の実施の形態1の構成について、図面に基づいて説明する。図1に示すブラウン管保持台10に処理対象のブラウン管9を設置して、ブラウン管9の外周面93の分離予定位置に発熱体1を巻き付けて、その両端を両摺電子2a、2bで押圧すると共に、別途配備するトルクモターなどの駆動手段で当該発熱体1の両端に張力を印加した状態とする。
【0020】
一方、当該発熱体1の接触部から所定間隙をおいた要所に配置した赤外線もしくは近赤外線ランプ3から放射され、反射鏡4にて集束される0.8〜5.6μmの波長領域を含む熱エネルギー5の焦点域6を、当該発熱体1とブラウン管外周面との接触部7に結ばせる。
【0021】
しかる状態で、発熱体1とランプ3に所定電力を所定時間投入して発熱させることで、分割作業を実施する。
【0022】
尚、発熱体1へ電力投入は、別途準備した定電流機能を持つ電源供給装置に予め設定した電流値を両摺電子2a、2bを経由して実施し、同様に、別途準備したタイマー機能を持つ制御回路装置により所定時間投入させる。
【0023】
焦点域6の形状は円形もしくは長楕円形もしくは短帯状スポット形状とし、少なくとも一個所ないしは複数箇所に適用するもので、その数量とその焦点域6の延べ累積長さに順じて分割に至る所要時間の短縮と分割精度の向上は認められる。
【0024】
分割に至る状況としては、ブラウン管9の外周部材表面には、発熱体1との接触部7に添って強烈な熱応力歪を生成せしめて、亀裂の起点となるマイクロクラックを発生せしめる。
【0025】
一方、部材内部では、焦点域6に収束させた0.8〜5.6μmの波長領域を含む放射熱エネルギーの透過による昇温域と、熱線による遮蔽域の境界域に強烈な熱応力歪を生成させて、前記亀裂の起点とするマイクロクラックを、当該境界域の熱応力歪に添って成長させてパネル部92とファンネル部91の二つ部材への分離に至らせる。
【0026】
スポット形状焦点域6をブラウン管9の外周面の相対する角部94の二個所に適用した場合の平面配置の概略図を図2に示す。
【0027】
焦点域6を曲率を持ったL字形状とし、焦点域6を結ばせる箇所として、ブラウン管外周面対角角部94および外周面辺部95との接線部に適用した場合の概略平面配置図を図3に示す。
【0028】
以上の本発明の実施における作用に付いて図6(a)、(b)、(c)を用いて説明する。
【0029】
発熱体1と接し、且つ赤外線もしくは近赤外線ランプ3の焦点域6を結ばせたブラウン管9の外周部材93の内部の温度計測点位置を、図6(a)のA線、B線、C線部位断面位置各部とした。図6(b)は、発熱体とランプの両手段を併用同時に適用した場合の、図6(a)のA線、B線、C線部位断面の各部の所定時間経過後の温度の分布状況を示す。図6(c)は、発熱体とランプを各々単独で適用した場合の場合のA線、B線、C線位置断面の各部の所定時間経過後の温度の分布状況を示す。
【0030】
図6(b)に示す本発明の結果では、各々の熱源を単独に使用した場合の図6(c)と比較して、発熱体1との接触部の内部温度は、2種の熱源の併用効果により、B線部位の断面では、明らかに高温側に推移している。
【0031】
この場合、部材抗張力を越え、亀裂起点となるマイクロクラックが自然発生的に生成する熱応力歪に至るまで、2種の熱源への投入電力および時間は、内部に生成した昇温域と遮蔽域の境界域に生成した強烈な熱応力歪に添って亀裂が瞬時に成長し、分離に至る。
【0032】
つまり、亀裂起点となるマイクロクラック生成の為の、スクラッチ傷の付与、水分を含ませた布拭き、ハンマーによる強い衝撃印加等々の予備作業や事後の補助作業が全く不必要となる。
【0033】
(実施の形態2)
実施の形態1と同一趣旨であるが、実施の形態2では、ブラウン管外周面に押圧する発熱体として、金属製管内に発熱体を電気絶縁状態で封入したシーズヒーターを適用したもので、管型シーズヒーター11をブラウン管9の外周面辺部95に押圧した状態で、放射熱エネルギー6の焦点域をブラウン管9の外周面角部94に適用した状況の概略平面配置構成を図4に示す。
【0034】
シーズヒーター11の性状は、やや柔軟性を持たせた構成もあるが、管状棒体となる為、ブラウン管外周面角部94には順応しない為、図5の如く平行する二辺95のみの押圧となる。
【0035】
この場合、直交する他の二辺96は二段階で加熱するもので、前半の二辺95を加熱後、90度ブラウン管を回転させて、残りの二辺96を後半で加熱するが、いずれの場合にも接触しない角部94には、熱応力歪が生成せず、不完全な分割状態となる場合が少なくない。
【0036】
その点を改善すべく、二辺96をシーズヒーター11で加熱しつつ、ブラウン管外周面角部94の一個所もしくは必要に応じて複数箇所にランプ3から放射される0.8〜5.6μmの波長領域を含む熱エネルギー5を、反射鏡4にて集束させたスポット状焦点域6を結ばせて実施するもので、上記焦点域を結ばせる時期としては、後半の二辺96の加熱時に同時に実施する方が効果的である。
【0037】
【発明の効果】
本発明によれば、加熱後のハンマーなどによる衝撃印加や、水を含ませた布拭きなどの分割の為の補助作業を伴わずに、極めて短時間の処理時間で、且つブラウン管のサイズ、形状、材質等を問わず、分割破断面がほぼ同一平面上となる安定した品質の分割状態を得ることが可能となる。従って、処理作業の大幅効率化と処理費用の大幅削減を計ることが可能となる。
【図面の簡単な説明】
【図1】発熱体を巻き付けたブラウン管の外周面の要所に放射熱エネルギーの焦点域を結ばせた状況の概略側面配置構成を示す図
【図2】発熱体を巻き付けたブラウン管の外周面角部に放射熱エネルギーの焦点域を結ばせた状況の概略平面配置構成を示す図
【図3】放射熱エネルギーの焦点域をブラウン管の外周面角部に適合するようにランプおよび反射鏡として、曲率を持つL字形状にした場合の概略平面配置構成を示す図
【図4】発熱体として管型シーズヒーターをブラウン管の外周面辺部に押圧した状態で、放射熱エネルギーの焦点域をブラウン管の外周面角部に適用した状況の概略平面配置構成を示す図
【図5】従来の発熱体をブラウン管の外周面に巻き付けて通電発熱させて実施する分割方法を示す図
【図6】(a)発熱体の巻き付けと、焦点域を結ばせたブラウン管の外周面部材の厚さ方向における拡大断面図および通電開始後の所定時間経過後の温度分布の測定位置を示す図
(b)図6aにおけるA線上断面各部の温度分布の相対比較を示す図
(c)図6aにおけるB線上断面各部の温度分布の相対比較を示す図
【符号の説明】
1 発熱体
2a、2b 摺電子
3 赤外線もしくは近赤外線ランプ
4 反射鏡
5 収束された放射熱エネルギー
6 放射熱エネルギーの焦点域
7 ブラウン管外周面と発熱体との接触部
9 ブラウン管
10 ブラウン管設置台
11 管状シーズヒーター
91 ブラウン管ファンネル部
92 ブラウン管パネル部
93 ブラウン管外周表面
94 ブラウン管外周面各角部
95 ブラウン管外周面の二辺部
96 ブラウン管外周面の二辺部と直交するブラウン管外周面の他の二辺部
97 ブラウン管外周面各角部からブラウン管外周面の二辺部、ブラウン管外周面の二辺部と直交するブラウン管外周面の他の二辺部に移行する部分のブラウン管外周面
[0001]
BACKGROUND OF THE INVENTION
In order to recycle and reuse the discarded cathode ray tube as a cathode ray tube material, the present invention generates heat or raises the temperature in a state where the wire or strip is wound or pressed around the outer peripheral surface of the cathode ray tube to generate heat in the cathode ray tube. The present invention relates to a method for separating a panel portion and a funnel portion of a cathode ray tube using stress strain and an apparatus for implementing the method.
[0002]
[Prior art]
In order to reuse the waste cathode ray tube as a member, as a means to separate the panel part and the funnel part, heat stress strain is generated by heating the part where the scratches are given in advance along the planned separation position on the outer peripheral surface of the cathode ray tube. In such a situation, an impact was applied to the portion with an iron hammer or the like to generate a crack starting from a scratch, and the crack grew along with the thermal stress strain and separated.
[0003]
As an example, there is a cathode ray tube separation method disclosed in JP-A-2002-025447. Heating means include the use of heat conduction by pressing heat wires such as nichrome wire and radiant heat from infrared and near infrared lamps, etc., but in the recycling business field where there is a high necessity to handle waste CRTs of various sizes and shapes, As shown in FIG. 5, a belt-like nichrome wire applied with tension at both ends by some means is used as a heating element 1, wound around the outer peripheral surface 93 of the cathode ray tube 9, and energized via pressing and sliding electrons arranged at both ends. In general, means for generating heat is often used.
[0004]
[Problems to be solved by the invention]
When a heating element such as nichrome wire in a state where tension is applied is wound around the outer peripheral surface of the cathode ray tube, no pressing force acts on the outer peripheral surface side portion 95, and most of the tension is applied as a load pressing force on the outer peripheral surface corner portion 94. work.
[0005]
Therefore, the outer peripheral surface corner portion 94 has higher heat transfer to the cathode ray tube member than the outer peripheral surface side portion 95, and although the heating purpose of the cathode ray tube member is favorable, the temperature of the heating element itself is lower than the other portions. In order to generate microcracks that are the starting points of cracks and to generate spontaneous cracks, a longer time is required.
[0006]
On the other hand, when the heating element in a state where tension is applied is wound around the outer peripheral surface of the cathode ray tube, in the portion 97 where the outer peripheral surface corner portion 94 transitions to the side portion 95, the influence of the tensile strength possessed by the corner portion 94 and the heating element itself. Thus, the force in the direction of pressing the outer peripheral surface of the CRT does not work at all, and the degree of adhesion inevitably deteriorates.
[0007]
As a result, the amount of heat transferred to the CRT member is reduced, so that the generation of thermal stress strain inside the portion 97 is delayed in time from the other portions, resulting in a lack of thermal stress strain, and as the crack progresses. It was a factor that moved in an unscheduled direction.
[0008]
On the other hand, it is practically impossible to heat and treat the entire outer peripheral surface of a waste cathode ray tube composed of a plurality of curvature surfaces simultaneously and evenly with various sizes and means for heating by infrared and near infrared rays. .
[0009]
In addition, thermal energy such as infrared rays and near-infrared rays has the property of easily passing through the glass member of the object to be processed, and the internal temperature rises quickly, but the temperature gradient and thermal stress strain generation leading to the microcrack that is the starting point of the crack It is difficult to cultivate
[0010]
As a result, in order to generate cracks on the outer peripheral surface of the cathode ray tube, it is indispensable to carry out auxiliary separation work such as scratching, wiping with moisture, applying a strong impact with a hammer, and the type and size of the cathode ray tube. Some were accompanied by their careful separation assistance.
[0011]
The present invention eliminates the need for preparatory processing such as scratching and the like, as well as auxiliary work such as impact application with a hammer during separation, and is stable and highly accurate in a short processing time and independent of the size of the cathode ray tube. It is an object of the present invention to provide a very effective separation method capable of obtaining a separation state and an apparatus for carrying out the separation method.
[0012]
[Means for Solving the Problems]
The present invention presses or wraps a heating element at a scheduled separation position on the outer peripheral surface of the cathode ray tube to energize and heat the heating element with a predetermined power, while a wavelength of 0.8 to 5.6 μm emitted from an infrared or near infrared lamp. The focal area obtained by converging the thermal energy including the area with a reflector having a predetermined focal length is connected to the contact portion between the heating element and the outer periphery of the cathode ray tube, so that the heating element is replenished with heat and the temperature of the heating element is increased. In addition to preventing the decrease, a part of the focal area is blocked by the heating element, so that a thermal stress strain due to a strong tomographic temperature gradient is generated on the inner surface of the contact portion with the heating element.
[0013]
As a result, sufficient conditions for microcrack generation are established, cracks spontaneously occur with a very high probability, and cracks instantly follow the intense fault-like thermal stress strain generated on the surface and inside of these glass materials. It grows and reaches the entire circumference of the cathode ray tube member, and can be instantaneously brought into a divided state.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, the heating element is pressed or wound around the planned separation position on the outer peripheral surface of the cathode ray tube, and energized to generate heat in another state, while the infrared ray or near infrared lamp emits 0.8 to 5.6 μm. The focal region where the heat energy including the wavelength region is focused by a reflector with a predetermined focal length is connected to the contact portion with the heating element on the outer peripheral surface of the cathode ray tube, and the heating element and the outer peripheral surface of the cathode ray tube are heated by both means. The intense thermal stress strain in a tomographic shape generated on the inner surface of the heating element contact portion by raising the temperature raises sufficient conditions for generating microcracks, and is a basic configuration of the present invention.
[0015]
According to the second aspect of the present invention, in the method of separating a cathode ray tube, the focal zone shape focused at a predetermined focal length by a reflecting mirror is set to a substantially small circle, an ellipse, or a belt-like spot shape, and the focal zone is applied. As a place to perform, it is arranged at one place or a plurality of important places, and a sufficient condition fostering place for generating micro cracks as the crack starting point described in the embodiment of claim 1 is arranged at the important places.
[0016]
In the invention according to claim 3, the focal region shape of the radiant heat energy focused by the reflecting mirror is a belt-like L-shape, and one or more corners of the outer peripheral surface of the cathode ray tube around which the heating element is wound, In order to compensate for the temperature drop of the heating element itself at the corners of the outer peripheral surface of the cathode ray tube, the heating element at that location absorbs radiant heat energy and replenishes the amount of heat. This is an improvement. In addition, it prevents the generation of missing portions of thermal stress strain at the transition from the corners of the outer peripheral surface to the sides, and is intended to carry out crack growth along with the winding of the heating element during the progress of the crack. is there.
[0017]
The invention according to claim 4 is an improvement in the function and adaptability as the heating element of the present invention, and as a measure thereof, the absorption characteristics of radiant heat energy including a wavelength region of 0.8 to 5.6 μm are compared. The heat generating material has a specially superior material or a surface-treated material, and has a function of replenishing heat by radiant heat energy.
[0018]
The invention according to claim 5 is an apparatus for carrying out the method for separating a cathode ray tube according to any one of claims 1 to 5; a linear or belt-like body wound or pressed around the outer peripheral surface of the cathode ray tube; Press the belt-like body against the outer peripheral surface of the cathode ray tube and form a thermal energy focal area where the heat and radiation that is supplied and energized as needed and the thermal energy radiated by the reflecting mirror are converged. A heating mechanism composed of an infrared or near-infrared lamp and a reflector arranged so that the object and a linear or belt-like body are within the focal range, a cathode-ray tube mounting mechanism for mounting a cathode ray tube to be processed, and an outer peripheral surface of the cathode ray tube A height adjustment mechanism that adjusts the position where the heating element is wound or pressed, and the functional mechanism portions thereof are associated with each other, and a predetermined set value A control and power supply unit for operating a CRT separation apparatus characterized in that it comprises as main components.
[0019]
(Embodiment 1)
Hereinafter, the structure of Embodiment 1 of this invention is demonstrated based on drawing. The cathode ray tube 9 to be processed is installed on the cathode ray tube holding base 10 shown in FIG. 1, the heating element 1 is wound around the position where the outer peripheral surface 93 of the cathode ray tube 9 is to be separated, and both ends thereof are pressed by both-sliding electrons 2a and 2b. The tension is applied to both ends of the heating element 1 by a driving means such as a torque motor provided separately.
[0020]
On the other hand, it includes a wavelength region of 0.8 to 5.6 μm that is radiated from the infrared or near-infrared lamp 3 arranged at a predetermined gap from the contact portion of the heating element 1 and focused by the reflecting mirror 4. A focal area 6 of thermal energy 5 is connected to a contact portion 7 between the heating element 1 and the outer peripheral surface of the cathode ray tube.
[0021]
In this state, the dividing work is performed by applying predetermined power to the heating element 1 and the lamp 3 for a predetermined time to generate heat.
[0022]
In addition, power supply to the heating element 1 is carried out by using a power supply device having a constant current function, which is prepared separately, with a preset current value via both sliding electrons 2a, 2b. The control circuit device has a predetermined time.
[0023]
The shape of the focal zone 6 is circular, oblong, or short-spotted, and is applied to at least one place or a plurality of places. It is necessary to divide according to the number and the total accumulated length of the focal area 6 Reduction of time and improvement of division accuracy are recognized.
[0024]
As a situation leading to the division, intense thermal stress strain is generated along the contact portion 7 with the heating element 1 on the surface of the outer peripheral member of the cathode ray tube 9 to generate a microcrack as a starting point of the crack.
[0025]
On the other hand, in the member, intense thermal stress strain is generated in the boundary region between the temperature rising region by transmission of radiant heat energy including the wavelength region of 0.8 to 5.6 μm converged on the focal region 6 and the shielding region by the heat ray. The microcrack that is generated as a starting point of the crack is grown along with the thermal stress strain in the boundary region, and the panel portion 92 and the funnel portion 91 are separated into two members.
[0026]
FIG. 2 shows a schematic diagram of a planar arrangement when the spot-shaped focal region 6 is applied to two opposite corner portions 94 of the outer peripheral surface of the cathode ray tube 9.
[0027]
A schematic plane arrangement diagram when the focal region 6 is formed into an L shape with a curvature and applied to a tangent portion of the CRT outer peripheral surface diagonal portion 94 and the outer peripheral surface side portion 95 as a portion where the focal region 6 is connected. As shown in FIG.
[0028]
The operation of the present invention will be described with reference to FIGS. 6A, 6B, and 6C.
[0029]
The temperature measurement point position inside the outer peripheral member 93 of the cathode ray tube 9 that is in contact with the heating element 1 and that connects the focal region 6 of the infrared or near-infrared lamp 3 is indicated by the lines A, B, and C in FIG. It was set as each part cross-section position part. FIG. 6B shows the distribution of temperature after the elapse of a predetermined time in each section of the A-line, B-line, and C-line section of FIG. 6A when both means of the heating element and the lamp are applied simultaneously. Indicates. FIG. 6C shows a temperature distribution state after a predetermined time has elapsed in each part of the A-line, B-line, and C-line position cross sections when the heating element and the lamp are applied individually.
[0030]
In the result of the present invention shown in FIG. 6 (b), compared with FIG. 6 (c) when each heat source is used alone, the internal temperature of the contact portion with the heating element 1 is two kinds of heat sources. Due to the combined effect, the cross section of the B line portion clearly shifts to the high temperature side.
[0031]
In this case, the input power and time to the two types of heat sources are divided into the temperature rise region and the shield region generated inside, until the member tensile strength is exceeded and the thermal stress strain is generated spontaneously by the microcrack that becomes the crack origin. Cracks grow instantly along with the intense thermal stress strain generated in the boundary area of the, leading to separation.
[0032]
That is, preliminary work such as applying scratches, wiping with moisture, applying a strong impact with a hammer, and subsequent auxiliary work are completely unnecessary for generating microcracks as a crack starting point.
[0033]
(Embodiment 2)
Although it is the same purpose as Embodiment 1, in Embodiment 2, a sheathed heater in which a heating element is enclosed in a metal tube in an electrically insulated state is applied as a heating element pressed against the outer peripheral surface of the cathode ray tube. FIG. 4 shows a schematic plane arrangement configuration in a state where the focal region of the radiant heat energy 6 is applied to the outer peripheral surface corner portion 94 of the CRT 9 with the sheathed heater 11 pressed against the outer peripheral surface side portion 95 of the CRT 9.
[0034]
Although the sheathed heater 11 has a configuration that is somewhat flexible, since it is a tubular rod, it does not adapt to the corner portion 94 of the outer peripheral surface of the cathode ray tube, so that only the two parallel sides 95 as shown in FIG. 5 are pressed. It becomes.
[0035]
In this case, the other two sides 96 that are orthogonal to each other are heated in two stages. After heating the two sides 95 in the first half, rotate the Braun tube 90 degrees and heat the remaining two sides 96 in the second half. In many cases, the corner portions 94 that do not come into contact with each other do not generate thermal stress strain and are in an incompletely divided state.
[0036]
In order to improve this point, while the two sides 96 are heated by the sheathed heater 11, the 0.8-5.6 [mu] m radiated from the lamp 3 is radiated from the lamp 3 to one place or a plurality of places as required. The thermal energy 5 including the wavelength region is implemented by connecting the spot-like focal region 6 focused by the reflecting mirror 4, and the time for consolidating the focal region is the same as the latter time when the two sides 96 are heated. It is more effective to implement.
[0037]
【The invention's effect】
According to the present invention, the size and shape of the cathode ray tube can be achieved in a very short processing time without applying an impact by a hammer or the like after heating, or auxiliary work for division such as wiping with water. Regardless of the material or the like, it is possible to obtain a stable divided state in which the divided fracture surfaces are substantially on the same plane. Accordingly, it is possible to greatly improve the efficiency of the processing work and greatly reduce the processing cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic side arrangement configuration in which a focal region of radiant heat energy is connected to a key point of an outer peripheral surface of a cathode ray tube wound with a heating element. FIG. 2 is an outer surface angle of the cathode ray tube wound with a heating element. FIG. 3 is a schematic plane arrangement configuration in which the focal area of radiant heat energy is connected to the part. FIG. 3 shows a curvature as a lamp and a reflector so that the focal area of the radiant heat energy fits the corner of the outer peripheral surface of the cathode ray tube. FIG. 4 is a diagram showing a schematic plane arrangement configuration in the case of an L-shape with a ring. FIG. 5 is a diagram showing a schematic plane arrangement configuration in a situation applied to a corner portion. FIG. 5 is a diagram showing a dividing method performed by energizing heat generation by winding a conventional heating element around the outer peripheral surface of a cathode ray tube. Body winding FIG. 6B is an enlarged cross-sectional view in the thickness direction of the outer peripheral surface member of the cathode ray tube connected with the focal region, and a diagram showing the measurement position of the temperature distribution after a predetermined time has elapsed after the start of energization. FIG. 6C is a diagram showing a relative comparison of temperature distributions in FIG. 6C. FIG. 6A is a diagram showing a relative comparison of temperature distributions at various parts along the line B in FIG. 6A.
DESCRIPTION OF SYMBOLS 1 Heat generating body 2a, 2b Sliding electron 3 Infrared or near-infrared lamp 4 Reflecting mirror 5 Focused radiant heat energy 6 Focusing area 7 of a radiant heat energy The contact part 9 of a cathode ray tube outer peripheral surface and a heating element 9 CRT | CRT 10 | Sheathed heater 91 CRT funnel section 92 CRT panel section 93 CRT outer peripheral surface 94 CRT outer peripheral surface each corner 95 Braun tube outer peripheral side two sides 96 CRT outer peripheral surface other two sides 97 perpendicular to CRT outer peripheral surface CRT outer peripheral surface of the transition from each corner of the CRT outer peripheral surface to two sides of the CRT outer peripheral surface and the other two sides of the CRT outer peripheral surface orthogonal to the two sides of the CRT outer peripheral surface

Claims (5)

発熱体をブラウン管外周面の分離予定位置に押圧もしくは巻き付けた状態で、当該発熱体を通電発熱させて、ブラウン管外周面に熱応力歪生成による亀裂を発生せしめて実施するブラウン管の分離方法において、当該発熱体とブラウン管外周面との接触部に、近赤外線ランプから放射される0.8〜5.6μmの波長領域を含む熱エネルギーを反射鏡にてスポット状に集束させた焦点域を結ばせて実施することを特徴とするブラウン管の分離方法。In the cathode ray tube separation method, in which the heating element is pressed or wound around the planned separation position on the outer peripheral surface of the cathode ray tube, the heating element is energized to generate heat, and a crack is generated in the outer peripheral surface of the cathode ray tube due to generation of thermal stress strain. A focal region in which thermal energy including a wavelength region of 0.8 to 5.6 μm radiated from a near-infrared lamp is focused in a spot shape by a reflecting mirror is connected to a contact portion between the heating element and the outer peripheral surface of the cathode ray tube. A method of separating a cathode ray tube, characterized in that it is carried out. 請求項1に記載した放射熱エネルギーを集束させた焦点域形状を、ほぼ小円もしくは長楕円もしくは帯状スポット形状としたことを特徴とする請求項1に記載するブラウン管の分離方法。  2. The method of separating a cathode ray tube according to claim 1, wherein the focal region shape obtained by focusing the radiant heat energy according to claim 1 is a small circle, an ellipse, or a belt-like spot shape. 請求項1に記載した放射熱エネルギーを集束させた焦点域形状を管軸方向から見たときL字形とすると共に、ブラウン管外周面角部の発熱体接触部に焦点域を結ばせたことを特徴とする請求項1に記載するブラウン管の分離方法。The focal zone shape in which the radiant heat energy is focused according to claim 1 is L-shaped when viewed from the tube axis direction, and the focal zone is connected to the heating element contact portion of the outer peripheral surface of the cathode ray tube. The method for separating a cathode ray tube according to claim 1. 請求項1から請求項3の何れかに記載したブラウン管の分離方法において、ブラウン管外周面に押圧もしくは巻き付ける発熱体がシーズヒータであることを特徴とするブラウン管の分離方法。4. The cathode ray tube separation method according to claim 1, wherein the heating element that is pressed or wound around the outer peripheral surface of the cathode ray tube is a sheathed heater . 請求項1から請求項5の何れかに記載したブラウン管の分離方法を実施する装置として、ブラウン管外周面に巻き付けもしくは押圧する線状もしくは帯状体と、当該線状もしくは帯状体をブラウン管外周面に押圧すると共に、必要に応じて供給される電力を通電する機能を持たせた押圧兼通電用摺電子機構と、放射される0.8〜5.6μmの波長領域を含む熱エネルギーを収束して焦点域を形成する近赤外線ランプと反射鏡からなる加熱機構と、処理対象物であるブラウン管を搭載して、ブラウン管外周面に発熱体の巻き付けもしくは押圧する位置を調整する機能を持たせたブラウン管搭載機構と、それらの機能機構部を各々関連させ、且つ所定の設定値に基づいて動作させる制御部および電力供給する電源装置部とを、主要構成として備えてなる事を特徴とするブラウン管の分離装置。  An apparatus for carrying out the cathode ray tube separation method according to any one of claims 1 to 5 is a linear or belt-like body wound or pressed around an outer peripheral surface of a cathode ray tube, and the linear or belt-like body is pressed against the outer peripheral surface of the cathode ray tube. In addition, a pressing and energizing sliding electronic mechanism having a function of energizing supplied electric power as necessary, and a focal point by converging thermal energy including a wavelength region of 0.8 to 5.6 μm emitted. A cathode ray tube mounting mechanism that has a heating mechanism consisting of a near-infrared lamp and a reflecting mirror that forms an area, and a cathode ray tube that is a processing target, and has a function of adjusting the position where the heating element is wound or pressed on the outer peripheral surface of the cathode ray tube. And a power supply unit that supplies the power and a control unit that associates each of the functional mechanism units and operates based on a predetermined set value. Becoming Te CRT separation apparatus according to claim.
JP2002096512A 2002-03-29 2002-03-29 CRT separation method and apparatus Expired - Lifetime JP3922071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096512A JP3922071B2 (en) 2002-03-29 2002-03-29 CRT separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096512A JP3922071B2 (en) 2002-03-29 2002-03-29 CRT separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2003297247A JP2003297247A (en) 2003-10-17
JP3922071B2 true JP3922071B2 (en) 2007-05-30

Family

ID=29387446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096512A Expired - Lifetime JP3922071B2 (en) 2002-03-29 2002-03-29 CRT separation method and apparatus

Country Status (1)

Country Link
JP (1) JP3922071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976605B (en) * 2012-11-27 2014-12-31 南京凯燕电子有限公司 Device and method for thermal-explosion separating of cathode ray tube (CRT) glass envelope screen from CRT glass envelope cone

Also Published As

Publication number Publication date
JP2003297247A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
US20050077285A1 (en) Device for homogeneous heating of an object
US20080164248A1 (en) Method and Device for Brazing Connections by Induction Heating
HK1017335A1 (en) Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass.
JP2011099567A (en) Infrared heating device, infrared irradiating device, and infrared irradiating direction adjusting device
JP3922071B2 (en) CRT separation method and apparatus
EP0760468B1 (en) Infrared light source
JPH0431008B2 (en)
JP6201747B2 (en) Method for annealing laminated core
JP4191109B2 (en) Reflow soldering apparatus and method, and substrate holding plate
US6089937A (en) Cathode-ray tube dividing apparatus and cathode-ray tube dividing method
JP6759299B2 (en) Mold manufacturing method and manufacturing equipment
JP2018193589A (en) Work heating device
JPS63239164A (en) Method of joining ceramics
CN206999665U (en) Plastics infrared welding heater
CN114798824B (en) Laser/ultrasonic composite auxiliary bending forming method and device for titanium alloy sheet
CN113015708A (en) Emitter system for illuminating laminated glass panels of different widths
JP2767079B2 (en) Gyrotron device
JP2978716B2 (en) Far infrared heater
JPH0732847U (en) Spot type cathode device
JP3672865B2 (en) Cathode ray tube dividing method and cathode ray tube dividing apparatus
JPH11513975A (en) Device manufacturing method, heater for implementing the method, and display device processed by the method
JPS58103960A (en) Method for brazing sheathed heater to aluminum vessel
JP4124018B2 (en) Light beam processing equipment
JP6418873B2 (en) Bending method
JPH06103897A (en) Manufacture of cathode-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6