JP6201747B2 - Method for annealing laminated core - Google Patents

Method for annealing laminated core Download PDF

Info

Publication number
JP6201747B2
JP6201747B2 JP2013270281A JP2013270281A JP6201747B2 JP 6201747 B2 JP6201747 B2 JP 6201747B2 JP 2013270281 A JP2013270281 A JP 2013270281A JP 2013270281 A JP2013270281 A JP 2013270281A JP 6201747 B2 JP6201747 B2 JP 6201747B2
Authority
JP
Japan
Prior art keywords
laminated core
heat transfer
transfer member
heater
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013270281A
Other languages
Japanese (ja)
Other versions
JP2015126625A (en
Inventor
和嶋 潔
潔 和嶋
保郎 大杉
保郎 大杉
新井 聡
聡 新井
高橋 利光
利光 高橋
正顕 近藤
正顕 近藤
佑輔 柴田
佑輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013270281A priority Critical patent/JP6201747B2/en
Publication of JP2015126625A publication Critical patent/JP2015126625A/en
Application granted granted Critical
Publication of JP6201747B2 publication Critical patent/JP6201747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、積層コアの焼鈍方法に関する。詳しくは、電磁鋼板などが積層されて構成される積層コアの焼鈍方法であって、ひずみを除去して鉄損を減少させるための焼鈍方法に関する。   The present invention relates to a method for annealing a laminated core. More specifically, the present invention relates to a method for annealing a laminated core formed by laminating electromagnetic steel sheets and the like, and relates to an annealing method for removing strain and reducing iron loss.

電動機に適用される一般的な積層コアは、電磁鋼板を所定の形状に打ち抜いて積層させ、溶接やカシメなどによって接合することによって形成される。ところで、電磁鋼板には、打ち抜き加工の際にひずみが生じることがある。電磁鋼板にひずみが生じると、鉄損が増加して電動機のエネルギー効率が低下する。このため、打ち抜いた電磁鋼板を積層して接合した後に、焼鈍装置を用いてひずみを除去するために焼鈍が実施されることがある。このため、たとえば特許文献1〜3に記載のように、打ち抜いた電磁鋼板を積層して接合した後に、ひずみを除去するために焼鈍が実施されることがある。   A general laminated core applied to an electric motor is formed by punching and laminating electromagnetic steel sheets into a predetermined shape and joining them by welding or caulking. By the way, a magnetic steel sheet may be distorted during punching. When distortion occurs in the electromagnetic steel sheet, the iron loss increases and the energy efficiency of the electric motor decreases. For this reason, after laminating | stacking and joining the punched electromagnetic steel plate, annealing may be implemented in order to remove distortion using an annealing apparatus. For this reason, for example, as described in Patent Documents 1 to 3, after the punched electromagnetic steel sheets are stacked and joined, annealing may be performed to remove strain.

国際公開第2013/111726号International Publication No. 2013/111726 特開2003−319587号公報JP 2003-319587 A 特開2003−319618号公報JP 2003-319618 A

電磁鋼板により形成される積層コアの焼鈍方法の例として、たとえば、加熱炉を用いて750℃以上に加熱し、さらに均熱化のために2時間程度にわたって加熱を継続し、その後徐冷するという方法が用いられる。このように、積層コアの焼鈍においては、積層コアを長時間にわたって加熱する必要がある。このため、積層コアの焼鈍は生産性が低いという問題点があった。そこで、生産性の向上を図るために、加熱時間を短縮したいという要請がある。加熱時間を短縮するため、たとえば特許文献1には、積層コアの内部に棒状のハロゲンヒーターを挿入し、積層コアを内周側(歯が形成される側)から加熱する構成が開示されている。このほか、特許文献2および特許文献3には、歯どうしの間(スリット)にニクロム線などの電熱線を挿入して積層コアの歯を加熱する方法が開示されている。
しかしながら、これらの方法では、積層コアの軸線方向について偏温が生じるおそれがある。特に、複数の積層コアを重ねて同時に加熱する場合には、偏温が生じやすくなる。そして、偏温が大きくなると、最も昇温の速い部位で目標温度を設定すると、昇温が遅い部位では焼鈍の効果が低くなるおそれがある。一方、最も昇温の速い部位で目標温度を設定すると、昇温の速い部位の温度が高くなりすぎ、変形などが生じるおそれがある。
As an example of a method of annealing a laminated core formed of an electromagnetic steel sheet, for example, heating to 750 ° C. or higher using a heating furnace, further heating for about 2 hours for soaking, and then gradually cooling The method is used. Thus, in annealing a laminated core, it is necessary to heat the laminated core for a long time. For this reason, annealing of the laminated core has a problem that productivity is low. Therefore, there is a demand for shortening the heating time in order to improve productivity. In order to shorten the heating time, for example, Patent Document 1 discloses a configuration in which a rod-shaped halogen heater is inserted into a laminated core and the laminated core is heated from the inner peripheral side (side on which teeth are formed). . In addition, Patent Literature 2 and Patent Literature 3 disclose a method of heating a tooth of a laminated core by inserting a heating wire such as a nichrome wire between teeth (slit).
However, these methods may cause uneven temperature in the axial direction of the laminated core. In particular, when a plurality of laminated cores are stacked and heated simultaneously, uneven temperature tends to occur. When the temperature deviation is increased, if the target temperature is set at the part where the temperature rises the fastest, the annealing effect may be lowered at the part where the temperature rise is slow. On the other hand, if the target temperature is set at a part where the temperature rises the fastest, the temperature at the part where the temperature rises fast becomes too high, and there is a risk of deformation.

本発明は、以上のような問題点に鑑みてなされたものであり、電磁鋼板が積層されて構成される積層コアの焼鈍において、偏温を防止しつつ、加熱時間の短縮を図ることができる焼鈍装置および焼鈍方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in annealing of a laminated core formed by laminating electromagnetic steel sheets, it is possible to shorten the heating time while preventing uneven temperature. An object is to provide an annealing apparatus and an annealing method.

前記課題を解決するため、本発明は、積層された電磁鋼板を有し内周側に複数の歯が形成される積層コアの焼鈍方法であって、棒状のヒーターを前記積層コアの内周側に配置するとともに、前記積層コアよりも熱伝導率が高い材料からなる棒状または板状の伝熱部材を前記歯どうしの間に入れ込み、前記ヒーターおよび前記伝熱部材の軸線方向の寸法は前記積層コアの軸線方向の寸法よりも長く、前記ヒーターおよび前記伝熱部材の端部を前記積層コアの端面から突出させ、前記積層コアの端面を、前記伝熱部材に接合された蓋部材によって覆い、前記積層コアの端面と前記蓋部材との間であって前記蓋部材の前記積層コアの前記端面の側の面には、前記蓋部材および前記伝熱部材よりも熱伝導率が低い材料からなり、前記積層コアの軸線方向視において前記蓋部材と略同じ寸法および形状である遮熱部材を介在させ、前記ヒーターによって前記歯および前記伝熱部材を加熱するとともに、前記伝熱部材によっても前記歯を加熱することを特徴とする。 In order to solve the above-mentioned problem, the present invention is a method for annealing a laminated core having a laminated electromagnetic steel sheet and having a plurality of teeth formed on the inner circumference side, wherein the rod-shaped heater is disposed on the inner circumference side of the laminated core. The rod-shaped or plate-shaped heat transfer member made of a material having a higher thermal conductivity than the laminated core is inserted between the teeth, and the dimensions of the heater and the heat transfer member in the axial direction are It is longer than the axial dimension of the core, the ends of the heater and the heat transfer member are protruded from the end face of the laminated core, and the end face of the laminated core is covered with a lid member joined to the heat transfer member, The surface between the end surface of the laminated core and the lid member and on the side of the end surface of the laminated core of the lid member is made of a material having lower thermal conductivity than the lid member and the heat transfer member. , Axial direction of the laminated core Substantially is interposed heat insulating member is the same size and shape as the cover member in view, while heating the teeth and the heat transfer member by the heater, and characterized by also heating the tooth by the heat transfer member To do.

本発明によれば、電磁鋼板が積層されて構成される積層コアの焼鈍において、偏温を防止しつつ、加熱時間の短縮を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, in annealing of the laminated core comprised by laminating | stacking an electromagnetic steel plate, shortening of heating time can be aimed at, preventing uneven temperature.

図1は、本発明の実施形態にかかる焼鈍方法を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an annealing method according to an embodiment of the present invention. 図2は、本発明の実施形態にかかる焼鈍方法で用いる治具の構成を模式的に示す分解斜視図である。FIG. 2 is an exploded perspective view schematically showing a configuration of a jig used in the annealing method according to the embodiment of the present invention. 図3は、治具が積層コアに取付けられた状態を模式的に示す断面図であり、積層コアの軸線方向に直角な面で切断した図である。FIG. 3 is a cross-sectional view schematically showing a state where the jig is attached to the laminated core, and is a view cut along a plane perpendicular to the axial direction of the laminated core. 図4は、治具が積層コアに取付けられた状態を模式的に示す断面図であり、積層コアの軸線方向に平行な面で切断した図である。FIG. 4 is a cross-sectional view schematically showing a state where the jig is attached to the laminated core, and is a view cut along a plane parallel to the axial direction of the laminated core. 図5(a)は伝熱部材の断面形状の第1の例を示す断面図であり、図5(b)は伝熱部材の断面形状の第2の例を示す断面図である。FIG. 5A is a cross-sectional view showing a first example of the cross-sectional shape of the heat transfer member, and FIG. 5B is a cross-sectional view showing a second example of the cross-sectional shape of the heat transfer member. 図6は、チャンバーを用いた焼鈍方法を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an annealing method using a chamber. 図7は、焼鈍対象物である積層コアの構成例を模式的に示す外観斜視図である。FIG. 7 is an external perspective view schematically showing a configuration example of a laminated core that is an object to be annealed.

以下に、本発明の実施形態について、図面を参照して詳細に説明する。
本発明の実施形態にかかる焼鈍方法は、電動機用の積層コアの焼鈍に用いられる。ここで、焼鈍対象物である積層コアの構成例について、図7を参照して簡単に説明する。図7は、焼鈍対象物である積層コア9の構成例を模式的に示す外観斜視図である。積層コア9は、環状に打ち抜き加工された複数の電磁鋼板91が積層されており、全体として軸線方向に貫通する円筒状の構成を有する。積層コア9の内周側には、複数の歯92が形成される。複数の歯92は凸状の構成を有し、それぞれ半径方向の中心側に向かって突出し、軸線方向に延伸する。そして、複数の歯92は、円周方向に所定の間隔をおいて並ぶように形成される。説明の便宜上、歯92どうしの間の隙間を「スリット93」と記し、歯92の半径方向中心側を向く面を「歯92の頂面921」と記し、歯92の円周方向を向く面(円周方向に隣接する歯92に対向する面)を「歯92の側面922」と記す。
Embodiments of the present invention will be described below in detail with reference to the drawings.
The annealing method according to the embodiment of the present invention is used for annealing a laminated core for an electric motor. Here, the structural example of the lamination | stacking core which is an annealing target object is demonstrated easily with reference to FIG. FIG. 7 is an external perspective view schematically showing a configuration example of the laminated core 9 that is an object to be annealed. The laminated core 9 is formed by laminating a plurality of electromagnetic steel plates 91 punched in an annular shape, and has a cylindrical configuration penetrating in the axial direction as a whole. A plurality of teeth 92 are formed on the inner peripheral side of the laminated core 9. The plurality of teeth 92 has a convex configuration, each protrudes toward the center side in the radial direction, and extends in the axial direction. The plurality of teeth 92 are formed so as to be arranged at predetermined intervals in the circumferential direction. For convenience of explanation, the gap between the teeth 92 is denoted as “slit 93”, the surface facing the radial center of the tooth 92 is denoted as “top surface 921 of the tooth 92”, and the surface facing the circumferential direction of the tooth 92 (A surface facing the tooth 92 adjacent in the circumferential direction) is referred to as a “side surface 922 of the tooth 92”.

図1は、本発明の実施形態にかかる焼鈍方法を模式的に示す斜視図である。
図1に示すように、本発明の実施形態にかかる焼鈍方法では、単数または複数の棒状のヒーター2(以下、単に「ヒーター2」と記す)と、均熱などのための治具1(以下、単に「治具1」と記す)とを用いる。そして、治具1を積層コア9に取付けるとともに、単数または複数のヒーター2を積層コア9の内周側に挿通し、積層コア9を内周側から加熱する。本発明の実施形態では、ヒーター2を積層コア9の内周側に挿通するとともに、治具1を積層コア9に取付けることによって、積層コア9の軸線方向の均熱化を図りつつ、加熱時間の短縮を図る。さらに、治具1によって、積層コア9の変形を防止または抑制する。なお、図1においては、4本のヒーター2が用いられる構成を示すが、ヒーター2の数は限定されるものではない。
FIG. 1 is a perspective view schematically showing an annealing method according to an embodiment of the present invention.
As shown in FIG. 1, in the annealing method according to the embodiment of the present invention, one or a plurality of rod-shaped heaters 2 (hereinafter simply referred to as “heater 2”) and a jig 1 for soaking (hereinafter referred to as “heat equalizing”). Simply referred to as “jig 1”). Then, the jig 1 is attached to the laminated core 9, and one or more heaters 2 are inserted into the inner peripheral side of the laminated core 9 to heat the laminated core 9 from the inner peripheral side. In the embodiment of the present invention, the heater 2 is inserted into the inner peripheral side of the laminated core 9, and the jig 1 is attached to the laminated core 9, so that the heating time is improved while the laminated core 9 is heated in the axial direction. To shorten. Further, the jig 1 prevents or suppresses the deformation of the laminated core 9. 1 shows a configuration in which four heaters 2 are used, the number of heaters 2 is not limited.

ヒーター2には、棒状のハロゲンヒーター(ハロゲンランプヒーターとも称する)が適用される。特に、近赤外線(0.78〜2.0μmの波長帯域の赤外線)または近赤外の波長帯域を含む赤外線を発する棒状のハロゲンヒーターが好適である。ハロゲンヒーターは、たとえば、筒状の石英ガラス管の内部にタングステンフィラメントが設けられるとともに、不活性ガスおよびハロゲン物質が封入されるという構成を有する。なお、ヒーター2には、公知の各種ハロゲンヒーターが適用できる。したがって、ヒーター2の詳細な構成については、説明を省略する。
また、ヒーター2には、発熱部分(電極などを除いた赤外線を発する部分)の軸線方向の寸法が積層コア9の軸線方向の寸法よりも長いものが用いられる。そして、焼鈍の際には、ヒーター2は、軸線方向の中間部が積層コア9の内周側に収容され、両端部が積層コア9の端面94から突出するように配置される。複数の積層コア9を重ねて同時に焼鈍する場合には、ヒーター2には、発熱部分の軸線方向の寸法が、重ねられた積層コア9の軸線方向の寸法の合計よりも長いものが用いられる。
A rod-shaped halogen heater (also referred to as a halogen lamp heater) is applied to the heater 2. In particular, a rod-like halogen heater that emits near infrared rays (infrared rays having a wavelength band of 0.78 to 2.0 μm) or infrared rays including a near infrared wavelength band is suitable. The halogen heater has, for example, a configuration in which a tungsten filament is provided inside a cylindrical quartz glass tube and an inert gas and a halogen substance are enclosed. As the heater 2, various known halogen heaters can be applied. Therefore, description of the detailed configuration of the heater 2 is omitted.
In addition, the heater 2 has a heat generating portion (a portion that emits infrared rays excluding electrodes and the like) whose axial dimension is longer than the axial dimension of the laminated core 9. During annealing, the heater 2 is disposed such that the intermediate portion in the axial direction is accommodated on the inner peripheral side of the laminated core 9 and both end portions protrude from the end face 94 of the laminated core 9. When a plurality of laminated cores 9 are stacked and annealed at the same time, the heater 2 has a heat generating portion whose axial dimension is longer than the total axial dimension of the stacked laminated cores 9.

治具1は、積層コア9の軸線方向の均熱化を図る機能と、積層コア9の変形を防止または抑制する機能とを有する。図2は、治具1の構成を模式的に示す分解斜視図である。図3と図4は、治具1が積層コア9に取付けられた状態を模式的に示す断面図である。なお、図3は、積層コア9の軸線方向に直角な面で切断した断面図であり、図4は、積層コア9の軸線方向に平行な面で切断した断面図である。なお、図4においては、ヒーター2を省略してある。
図2〜図4に示すように、治具1は、所定の数の伝熱部材11と、蓋部材13と、遮熱部材14とを含む。そして、所定の数の伝熱部材11と、蓋部材13と、遮熱部材14とは、結合・分離可能に構成される。
The jig 1 has a function of achieving uniform temperature in the axial direction of the laminated core 9 and a function of preventing or suppressing deformation of the laminated core 9. FIG. 2 is an exploded perspective view schematically showing the configuration of the jig 1. 3 and 4 are cross-sectional views schematically showing a state in which the jig 1 is attached to the laminated core 9. 3 is a cross-sectional view taken along a plane perpendicular to the axial direction of the laminated core 9, and FIG. 4 is a cross-sectional view taken along a plane parallel to the axial direction of the laminated core 9. In FIG. 4, the heater 2 is omitted.
As shown in FIGS. 2 to 4, the jig 1 includes a predetermined number of heat transfer members 11, a lid member 13, and a heat shield member 14. The predetermined number of heat transfer members 11, the lid member 13, and the heat shield member 14 are configured to be able to be coupled and separated.

伝熱部材11は、積層コア9のスリット93に挿入可能な細長い板状または棒状に形成される。また、伝熱部材11は、銅などといった熱伝導率が高い材料により形成される。特に、少なくとも焼鈍対象物である積層コア9の材料(本実施形態では電磁鋼板91)よりも熱伝導率が高い材料によって形成される。そして、所定の数(具体的には、スリット93と同数)の伝熱部材11は、治具1が積層コア9に取付けられた状態で各々の伝熱部材11が各々のスリット93に入り込むように、円周方向に所定の間隔をおいて円環状に並べて配置される。また、伝熱部材11の軸線方向の寸法は、積層コア9の軸線方向の寸法よりも長い。複数の積層コア9を重ねて同時に焼鈍する場合には、伝熱部材11の軸線方向の寸法は、重ねられた複数の積層コア9の軸線方向の寸法の合計よりも長い。このため、治具1が積層コア9に取付けられると、伝熱部材11の軸線方向の中間部は積層コア9の内周側に収容され、両端部は積層コア9の端面94から突出する。   The heat transfer member 11 is formed in an elongated plate shape or rod shape that can be inserted into the slit 93 of the laminated core 9. The heat transfer member 11 is formed of a material having high thermal conductivity such as copper. In particular, it is formed of a material having a higher thermal conductivity than at least the material of the laminated core 9 (the magnetic steel sheet 91 in the present embodiment) that is an object to be annealed. A predetermined number (specifically, the same number as the slits 93) of the heat transfer members 11 is such that each heat transfer member 11 enters each slit 93 in a state where the jig 1 is attached to the laminated core 9. In addition, they are arranged in an annular shape at a predetermined interval in the circumferential direction. Further, the dimension of the heat transfer member 11 in the axial direction is longer than the dimension of the laminated core 9 in the axial direction. When a plurality of laminated cores 9 are stacked and annealed simultaneously, the axial dimension of the heat transfer member 11 is longer than the sum of the axial dimensions of the stacked laminated cores 9. For this reason, when the jig 1 is attached to the laminated core 9, the intermediate portion in the axial direction of the heat transfer member 11 is accommodated on the inner peripheral side of the laminated core 9, and both ends protrude from the end surface 94 of the laminated core 9.

伝熱部材11どうしは、連結部材12によって、前述のような配置を維持するように接合されている。連結部材12は、たとえば軸線方向に貫通する筒状に形成される。なお、連結部材12の内径は、単数または複数のヒーター2を挿通可能な径に設定される。そして、所定の数の伝熱部材11は、軸線方向の端部において、連結部材12により一体に接合されている。また、各図においては、所定の数の伝熱部材11が半径方向の内側において接合される構成を示すが、半径方向の中間や外側において接合される構成であってもよい。
なお、連結部材12は、治具1が積層コア9に取付けられた状態で積層コア9の内周側に位置する部分には設けられない。このため、治具1が積層コア9に取付けられた状態であっても、積層コア9の歯92の頂面921は、連結部材12などに覆われることなく露出している(図3、図4参照)。このため、ヒーター2が発する赤外線を、歯92の頂面921に直接に照射できる。
The heat transfer members 11 are joined to each other by the connecting member 12 so as to maintain the above-described arrangement. For example, the connecting member 12 is formed in a cylindrical shape penetrating in the axial direction. Note that the inner diameter of the connecting member 12 is set to a diameter through which one or a plurality of heaters 2 can be inserted. The predetermined number of heat transfer members 11 are integrally joined by the connecting member 12 at the end in the axial direction. Moreover, in each figure, although the structure in which the predetermined number of heat-transfer members 11 are joined inside the radial direction is shown, the structure joined on the middle or outside in the radial direction may be used.
Note that the connecting member 12 is not provided in a portion located on the inner peripheral side of the laminated core 9 in a state where the jig 1 is attached to the laminated core 9. Therefore, even when the jig 1 is attached to the laminated core 9, the top surface 921 of the teeth 92 of the laminated core 9 is exposed without being covered by the connecting member 12 or the like (FIGS. 3 and 3). 4). For this reason, the infrared rays emitted from the heater 2 can be directly applied to the top surfaces 921 of the teeth 92.

ここで、伝熱部材11の断面形状の例について説明する。図5(a)は断面形状の第1の例を示す断面図であり、図5(b)は断面形状の第2の例を示す断面図である。
図5(a)に示す第1の例は、スリット93とほぼ同じ形状に形成される例である。図5(a)に示すように、スリット93の断面形状が略四辺形である場合には、伝熱部材11の断面形状もスリット93の形状に倣った略四辺形に形成される。そして、第1の例によれば、伝熱部材11がスリット93に入れ込まれると、伝熱部材11の円周方向を向く面(以下、「伝熱部材11の円周側面112」と記す)と歯92の側面922とが接近してほぼ平行な状態で対向するか、または接触する。このような構成であると、ヒーター2が発する赤外線は、伝熱部材11の半径方向中心側を向く面(以下、「伝熱部材11の内側面111」と記す)に照射される。そして、伝熱部材11の内側面111にヒーター2から赤外線が照射されると、伝熱部材11が加熱されて温度上昇し、伝熱部材11の円周側面112から歯92の側面922に、伝導や放射によって熱が伝わる。これにより、積層コア9の歯92が加熱される。
Here, an example of a cross-sectional shape of the heat transfer member 11 will be described. FIG. 5A is a cross-sectional view showing a first example of the cross-sectional shape, and FIG. 5B is a cross-sectional view showing a second example of the cross-sectional shape.
The first example shown in FIG. 5A is an example in which the slit 93 is formed in substantially the same shape. As shown in FIG. 5A, when the cross-sectional shape of the slit 93 is a substantially quadrilateral, the cross-sectional shape of the heat transfer member 11 is also formed into a substantially quadrilateral that follows the shape of the slit 93. According to the first example, when the heat transfer member 11 is inserted into the slit 93, a surface facing the circumferential direction of the heat transfer member 11 (hereinafter referred to as “circumferential side surface 112 of the heat transfer member 11”). ) And the side surface 922 of the tooth 92 are close to each other and face or contact each other in a substantially parallel state. With such a configuration, the infrared rays emitted from the heater 2 are applied to the surface of the heat transfer member 11 facing the center in the radial direction (hereinafter referred to as “the inner surface 111 of the heat transfer member 11”). And when infrared rays are irradiated from the heater 2 to the inner surface 111 of the heat transfer member 11, the heat transfer member 11 is heated and the temperature rises, and from the circumferential side surface 112 of the heat transfer member 11 to the side surface 922 of the tooth 92, Heat is transmitted by conduction and radiation. Thereby, the teeth 92 of the laminated core 9 are heated.

図5(b)に示す伝熱部材11の第2の例は、半径方向中心側に向かうにしたがって先細り形状となる略二等辺三角形に形成される例である。そして、二等辺三角形の底辺に相当する面が積層コア9の歯92どうしの間の内周面に対向し、残りの2つの面(以下、「伝熱部材11の傾斜面113」と記す)のそれぞれが積層コア9の歯92の側面922に傾斜した状態で対向する。このため、伝熱部材11の傾斜面113と歯92の側面922との間隔は、半径方向中心側に向かうにしたがって大きくなる。
第2の例によれば、ヒーター2が発する赤外線は、伝熱部材11の傾斜面113に照射される。そして、伝熱部材11は赤外線の照射によって温度上昇し、伝熱部材11の傾斜面113から歯92の側面922に向けて赤外線が照射される。さらに、伝熱部材11の傾斜面113に照射された赤外線の一部は、反射によって歯92の側面922に達する。これにより、積層コア9の歯92の側面922に赤外線が照射され、積層コア9の歯92が加熱される。
第2の例では、伝熱部材11の傾斜面113とは92の側面922との隙間は、半径方向の中心側に向かって大きくなるから、ヒーター2が発する赤外線はこれらの隙間に入りやすい。さらに、伝熱部材11の傾斜面113とは92の側面922とは傾斜して対向しているから、伝熱部材11の傾斜面113で反射して歯92の側面に入射する赤外線の入射角を小さくできる(歯92の側面に対して直角に近くできる)。したがって、加熱の効率を高めることができる。
A second example of the heat transfer member 11 shown in FIG. 5B is an example in which the heat transfer member 11 is formed in a substantially isosceles triangle that is tapered toward the center in the radial direction. And the surface corresponding to the base of the isosceles triangle faces the inner peripheral surface between the teeth 92 of the laminated core 9, and the remaining two surfaces (hereinafter referred to as “the inclined surface 113 of the heat transfer member 11”). Are opposed to the side surface 922 of the tooth 92 of the laminated core 9 in an inclined state. For this reason, the space | interval of the inclined surface 113 of the heat-transfer member 11 and the side surface 922 of the tooth | gear 92 becomes large as it goes to a radial direction center side.
According to the second example, the infrared rays emitted from the heater 2 are applied to the inclined surface 113 of the heat transfer member 11. Then, the heat transfer member 11 rises in temperature by irradiation with infrared rays, and infrared rays are irradiated from the inclined surface 113 of the heat transfer member 11 toward the side surface 922 of the tooth 92. Furthermore, a part of infrared rays irradiated to the inclined surface 113 of the heat transfer member 11 reaches the side surface 922 of the tooth 92 by reflection. Thereby, infrared rays are applied to the side surfaces 922 of the teeth 92 of the laminated core 9 and the teeth 92 of the laminated core 9 are heated.
In the second example, since the gap between the inclined surface 113 of the heat transfer member 11 and the side surface 922 of the 92 becomes larger toward the center in the radial direction, the infrared rays emitted from the heater 2 tend to enter these gaps. Further, since the inclined surface 113 of the heat transfer member 11 is opposed to the side surface 922 of 92, the incident angle of the infrared ray that is reflected by the inclined surface 113 of the heat transfer member 11 and incident on the side surface of the tooth 92 is (Can be close to a right angle with respect to the side surface of the tooth 92). Therefore, the heating efficiency can be increased.

蓋部材13は、積層コア9の端面94を覆う部材である。そして蓋部材13は、ヒーター2が発する赤外線を、積層コア9の端面94に直接に照射されないように遮断する。また、蓋部材13は、ヒーター2の熱を伝熱部材11に伝える機能と、積層コア9の変形を防止または抑制する機能も有する。
蓋部材13は、たとえば板状に形成される。また、蓋部材13は、伝熱部材11と同様に、銅などといった熱伝導率が高い材料(特に、積層コア9の材料よりも熱伝導率が高い材料)により形成される。
蓋部材13の半径方向中心部には、軸線方向に貫通する開口部が形成される。この開口部は、単数または複数のヒーター2を挿通可能な内径に形成される。また、開口部の内周面は、伝熱部材11が係合可能な所定の数(ここでは、伝熱部材11と同数)の凹部または貫通孔が、円周方向に所定の間隔をおいて形成される。図2においては、各々の伝熱部材11が係合可能な凹部が形成される構成を示す。ただし、各々の伝熱部材11を挿通可能な貫通孔が形成される構成であってもよい。
また、蓋部材13は、伝熱部材11に結合されると、連結部材12の軸線方向の一方の端面に当接するように形成される。たとえば、蓋部材13の開口部の内径が、連結部材12の外径よりの小さい径に設定される。
The lid member 13 is a member that covers the end surface 94 of the laminated core 9. The lid member 13 blocks the infrared rays emitted from the heater 2 so that the end surface 94 of the laminated core 9 is not directly irradiated. The lid member 13 also has a function of transmitting the heat of the heater 2 to the heat transfer member 11 and a function of preventing or suppressing the deformation of the laminated core 9.
The lid member 13 is formed in a plate shape, for example. Similarly to the heat transfer member 11, the lid member 13 is formed of a material having a high thermal conductivity such as copper (particularly a material having a higher thermal conductivity than the material of the laminated core 9).
An opening that penetrates in the axial direction is formed at the center of the lid member 13 in the radial direction. The opening is formed with an inner diameter through which one or a plurality of heaters 2 can be inserted. In addition, a predetermined number (here, the same number as the heat transfer member 11) of recesses or through-holes with which the heat transfer member 11 can be engaged is formed on the inner peripheral surface of the opening with a predetermined interval in the circumferential direction. It is formed. In FIG. 2, the structure by which the recessed part which can engage each heat-transfer member 11 is shown. However, the structure by which the through-hole which can penetrate each heat-transfer member 11 may be formed.
Further, the lid member 13 is formed so as to come into contact with one end surface of the connecting member 12 in the axial direction when coupled to the heat transfer member 11. For example, the inner diameter of the opening of the lid member 13 is set to be smaller than the outer diameter of the connecting member 12.

このような構成であると、蓋部材13は、伝熱部材11に、連結部材12によって一体に接合されている側とは反対側の端部(図2においては下側の端部)から着脱可能である。
さらに、蓋部材13は、治具1が積層コア9に取付けられた状態で、積層コア9の端面94の全体を覆う寸法および形状に形成されることが好ましい。蓋部材13が積層コア9の端面94の全体を覆うことができる寸法および形状であれば、積層コア9の端面94にヒーター2から赤外線が直接に照射されることを防止できる。さらに、積層コア9の端面94を均一に押さえることによって、積層コア9の変形を防止または抑制できる。
With this configuration, the lid member 13 is attached to and detached from the heat transfer member 11 from the end opposite to the side integrally joined by the connecting member 12 (the lower end in FIG. 2). Is possible.
Furthermore, the lid member 13 is preferably formed in a size and shape that covers the entire end surface 94 of the laminated core 9 in a state where the jig 1 is attached to the laminated core 9. If the lid member 13 has a size and shape that can cover the entire end surface 94 of the laminated core 9, it is possible to prevent the end surface 94 of the laminated core 9 from being directly irradiated with infrared rays from the heater 2. Furthermore, the deformation of the laminated core 9 can be prevented or suppressed by pressing the end face 94 of the laminated core 9 uniformly.

遮熱部材14は、蓋部材13から積層コア9の端面94に熱の伝達を防止または抑制する部材である。この機能を実現するため、遮熱部材14は、伝熱部材11および蓋部材13に比較して、熱伝導率が低い材料により形成される。たとえば、遮熱部材14は、セラミックなどから形成される。そして、遮熱部材14は、蓋部材13の積層コア9の端面94寄りの面に着脱可能に重ねて配置される。たとえば、遮熱部材14は、軸線方向視において、蓋部材13と略同じ寸法および形状に形成される。このような構成であれば、遮熱部材14は、蓋部材13と同様に伝熱部材11に着脱可能である。そして、治具1が積層コア9に取付けられると、積層コア9の端面94と蓋部材13との間に遮熱部材14が介在する。このため、蓋部材13から積層コア9に伝導や放射によって熱が伝わることを防止または抑制できる。   The heat shield member 14 is a member that prevents or suppresses heat transfer from the lid member 13 to the end surface 94 of the laminated core 9. In order to realize this function, the heat shield member 14 is formed of a material having a lower thermal conductivity than the heat transfer member 11 and the lid member 13. For example, the heat shield member 14 is formed of ceramic or the like. The heat shield member 14 is detachably stacked on the surface of the lid member 13 near the end surface 94 of the laminated core 9. For example, the heat shield member 14 is formed in substantially the same size and shape as the lid member 13 when viewed in the axial direction. With such a configuration, the heat shield member 14 can be attached to and detached from the heat transfer member 11 similarly to the lid member 13. When the jig 1 is attached to the laminated core 9, the heat shield member 14 is interposed between the end surface 94 of the laminated core 9 and the lid member 13. For this reason, it can prevent or suppress that heat is transmitted from the cover member 13 to the laminated core 9 by conduction or radiation.

次に、本発明の実施形態にかかる焼鈍方法の手順について説明する。本発明の実施形態に係る焼鈍方法は、積層コア9の一方の端面94が上側を向く姿勢(積層コア9の軸線が略鉛直になる姿勢)で行われる。   Next, the procedure of the annealing method according to the embodiment of the present invention will be described. The annealing method according to the embodiment of the present invention is performed in a posture in which one end face 94 of the laminated core 9 faces upward (a posture in which the axis of the laminated core 9 is substantially vertical).

まず、図1に示すように、積層コア9に治具1が取り付けられるとともに、積層コア9の内周側に単数または複数のヒーター2が挿通される。すなわち、支持台などに一方の蓋部材13と一方の遮熱部材14とを重ねて載置し、それらの上側に積層コア9を載置する。複数の積層コア9を同時に焼鈍する場合には、複数の積層コア9を同軸に重ねて載置する。さらに、積層コア9の上側の端面94に遮熱部材14を載置し、遮熱部材14の上側に蓋部材13を載置する。これにより、積層コア9の両方の端面94は、それぞれ遮熱部材14と蓋部材13とに覆われる。また、積層コア9の端面94は遮熱部材14と接触しており、蓋部材13とは直接には接触していない。
この状態で、伝熱部材11を積層コア9の内周側に上側から挿通する。伝熱部材11が挿通されると、各々の伝熱部材11は、蓋部材13および遮熱部材14の内周面に形成される凹部に係合する(凹部の内周面に接触する)。さらに、各々の伝熱部材11は、図3〜図5に示すように、積層コア9の各々のスリット93に入り込む。また、連結部材12が蓋部材13の上面に載る。これにより、伝熱部材11は、軸線方向の両端が積層コア9の端面94から突出した位置に位置決めされる。さらに、積層コア9の上側の端面94は、蓋部材13と遮熱部材14と伝熱部材11の自重によって押さえつけられる。
なお、この状態では、積層コア9の歯92は、治具1に覆われることなく露出している(図3〜図5参照)。
First, as shown in FIG. 1, the jig 1 is attached to the laminated core 9, and one or more heaters 2 are inserted into the inner peripheral side of the laminated core 9. That is, one lid member 13 and one heat shield member 14 are placed on a support base and the like, and the laminated core 9 is placed on the upper side thereof. When annealing the plurality of laminated cores 9 simultaneously, the plurality of laminated cores 9 are coaxially stacked. Further, the heat shield member 14 is placed on the upper end surface 94 of the laminated core 9, and the lid member 13 is placed on the heat shield member 14. Thereby, both end surfaces 94 of the laminated core 9 are covered with the heat shield member 14 and the lid member 13, respectively. Further, the end surface 94 of the laminated core 9 is in contact with the heat shield member 14 and is not in direct contact with the lid member 13.
In this state, the heat transfer member 11 is inserted into the inner peripheral side of the laminated core 9 from above. When the heat transfer member 11 is inserted, each heat transfer member 11 engages with a recess formed on the inner peripheral surface of the lid member 13 and the heat shield member 14 (contacts the inner peripheral surface of the recess). Further, each heat transfer member 11 enters each slit 93 of the laminated core 9 as shown in FIGS. Further, the connecting member 12 is placed on the upper surface of the lid member 13. Thereby, the heat transfer member 11 is positioned at positions where both ends in the axial direction protrude from the end face 94 of the laminated core 9. Furthermore, the upper end surface 94 of the laminated core 9 is pressed by the dead weight of the lid member 13, the heat shield member 14, and the heat transfer member 11.
In this state, the teeth 92 of the laminated core 9 are exposed without being covered with the jig 1 (see FIGS. 3 to 5).

ヒーター2は、歯92の頂面921および伝熱部材11の所定の面(第1の例であれば内側面111、第2の例であれば傾斜面113)に、直接かつ軸線方向に均一に赤外線を照射できるように配設される。たとえば、単数のヒーター2が用いられる場合には、当該単数のヒーター2が積層コア9の内周側の中心に配設される。また、複数のヒーター2が用いられる場合には、複数のヒーター2が積層コア9の中心から等距離の位置に、円周方向に等間隔に並べて配設される。
さらに、ヒーター2の軸線は積層コア9の軸線と平行であることが好ましい。このような構成によれば、積層コア9の軸線方向の全長にわたって、ヒーター2と歯92および伝熱部材11との距離を均一にできる。したがって、歯92および伝熱部材11の全長にわたって、均一な強度の赤外線を照射できる。
The heater 2 is directly and axially uniform on the top surface 921 of the teeth 92 and a predetermined surface of the heat transfer member 11 (inner surface 111 in the first example, inclined surface 113 in the second example). It is arrange | positioned so that infrared rays can be irradiated. For example, when a single heater 2 is used, the single heater 2 is disposed at the center on the inner peripheral side of the laminated core 9. When a plurality of heaters 2 are used, the plurality of heaters 2 are arranged at equal distances from the center of the laminated core 9 at equal intervals in the circumferential direction.
Further, the axis of the heater 2 is preferably parallel to the axis of the laminated core 9. According to such a configuration, the distance between the heater 2 and the teeth 92 and the heat transfer member 11 can be made uniform over the entire length of the laminated core 9 in the axial direction. Therefore, infrared rays with uniform intensity can be irradiated over the entire length of the teeth 92 and the heat transfer member 11.

そして、ヒーター2に通電し、積層コア9を所定の温度に到達するまで加熱する。「所定の温度」は、700℃以上であることが好ましい。また、「所定の温度」は、従来の焼鈍方法における加熱温度と同じ750℃であってもよい。   Then, the heater 2 is energized to heat the laminated core 9 until it reaches a predetermined temperature. The “predetermined temperature” is preferably 700 ° C. or higher. The “predetermined temperature” may be 750 ° C., which is the same as the heating temperature in the conventional annealing method.

前述のとおり、ヒーター2の軸線方向の中間部は、積層コア9の内周側に配設される。このため、積層コア9は内周側(歯92が形成される側)から加熱される。すなわち、歯92の頂面921は治具1に覆われずに露出しているため、ヒーター2が発する赤外線は、歯92の頂面921に直接に照射される。また、ヒーター2が発する赤外線は、スリット93に入れ込まれている伝熱部材11の内側面111または傾斜面113にも照射される。伝熱部材11は、赤外線が照射されて温度上昇すると、伝導や放射や反射によって歯92の側面922に熱を伝える。前述のとおり、第1の例(図5(a)参照)によれば、伝熱部材11の内側面111にヒーター2から赤外線が照射されると、伝熱部材11が温度上昇する。そして、伝熱部材11の円周側面112から歯92の側面922に、伝導や放射によって熱が伝達される。一方、第2の例(図5(b)参照)によれば、ヒーター2から伝熱部材11の傾斜面113に赤外線が照射されると、その一部によって伝熱部材11が温度上昇して歯92の側面922に向けて赤外線を照射する。また、残りの赤外線は、伝熱部材11の傾斜面113で反射して歯92の側面922に照射される。これにより、歯92の側面922に赤外線が照射され、歯92が加熱される。   As described above, the intermediate portion of the heater 2 in the axial direction is disposed on the inner peripheral side of the laminated core 9. For this reason, the laminated core 9 is heated from the inner peripheral side (side on which the teeth 92 are formed). That is, since the top surface 921 of the tooth 92 is exposed without being covered with the jig 1, the infrared rays emitted from the heater 2 are directly irradiated on the top surface 921 of the tooth 92. Infrared rays emitted from the heater 2 are also applied to the inner surface 111 or the inclined surface 113 of the heat transfer member 11 inserted in the slit 93. When the heat transfer member 11 is irradiated with infrared rays and rises in temperature, it transfers heat to the side surface 922 of the tooth 92 by conduction, radiation, or reflection. As described above, according to the first example (see FIG. 5A), when the inner surface 111 of the heat transfer member 11 is irradiated with infrared rays from the heater 2, the temperature of the heat transfer member 11 rises. Then, heat is transferred from the circumferential side surface 112 of the heat transfer member 11 to the side surface 922 of the tooth 92 by conduction or radiation. On the other hand, according to the 2nd example (refer to Drawing 5 (b)), when infrared rays are irradiated to inclined surface 113 of heat transfer member 11 from heater 2, heat transfer member 11 will rise in temperature by a part. Infrared rays are irradiated toward the side surface 922 of the tooth 92. Further, the remaining infrared rays are reflected by the inclined surface 113 of the heat transfer member 11 and applied to the side surfaces 922 of the teeth 92. As a result, the side surface 922 of the tooth 92 is irradiated with infrared rays, and the tooth 92 is heated.

伝熱部材11は、熱伝導率が高い材料(特に、積層コア9よりも熱伝導率が高い材料)により形成されるため、伝熱部材11の軸線方向の温度分布は均一になる。このため、伝熱部材11から歯92の側面922に伝達される熱も、軸線方向で均一になる。したがって、積層コア9の偏温を防止または抑制できる。   Since the heat transfer member 11 is formed of a material having a high thermal conductivity (particularly a material having a higher thermal conductivity than the laminated core 9), the temperature distribution in the axial direction of the heat transfer member 11 is uniform. For this reason, the heat transmitted from the heat transfer member 11 to the side surface 922 of the tooth 92 is also uniform in the axial direction. Therefore, uneven temperature of the laminated core 9 can be prevented or suppressed.

また、積層コア9の端面94は、治具1の蓋部材13によって覆われている。このため、積層コア9の端面94には、ヒーター2から直接に赤外線が照射されない。このような構成であると、偏温を防止または抑制できる。すなわち、積層コア9の端面94が露出していると、ヒーター2が発する赤外線が直接に積層コア9の端面94に照射される。このため、積層コア9の端面94およびその近傍は、軸線方向の中間部に比較して温度が高くなる。その結果、積層コア9に偏温が生じる。これに対して、本発明の実施形態によれば、ヒーター2から積層コア9の端面94に、赤外線は直接には照射されない。このため、端面94およびその近傍の局所的な温度上昇を防止または抑制でき、結果として偏温を防止または抑制できる。
さらに、積層コア9の端面94と蓋部材13との間に遮熱部材14が介在する構成であると、蓋部材13から積層コア9の端面94へ、伝導や放射による熱の伝達を防止または抑制できる。したがって、このような構成によれば、偏温の防止または抑制の効果をさらに高めることができる。
Further, the end surface 94 of the laminated core 9 is covered with the lid member 13 of the jig 1. For this reason, the infrared rays are not directly applied to the end surface 94 of the laminated core 9 from the heater 2. With such a configuration, uneven temperature can be prevented or suppressed. That is, when the end surface 94 of the laminated core 9 is exposed, the infrared rays emitted from the heater 2 are directly applied to the end surface 94 of the laminated core 9. For this reason, the temperature of the end surface 94 of the laminated core 9 and the vicinity thereof is higher than that of the intermediate portion in the axial direction. As a result, uneven temperature occurs in the laminated core 9. On the other hand, according to the embodiment of the present invention, infrared rays are not directly irradiated from the heater 2 to the end surface 94 of the laminated core 9. For this reason, the local temperature rise of the end surface 94 and its vicinity can be prevented or suppressed, and as a result, uneven temperature can be prevented or suppressed.
Furthermore, if the heat shielding member 14 is interposed between the end surface 94 of the laminated core 9 and the lid member 13, heat transfer by conduction or radiation is prevented from the lid member 13 to the end surface 94 of the laminated core 9. Can be suppressed. Therefore, according to such a configuration, the effect of preventing or suppressing uneven temperature can be further enhanced.

ヒーター2および伝熱部材11は、積層コア9の軸線方向の寸法よりも長い。このような構成であると、積層コア9の歯92に伝える熱量を多くして加熱時間の短縮を図ることができる。すなわち、伝熱部材11には、積層コア9の内周側においてのみではなく、積層コア9の外部においてもヒーター2から赤外線が照射される。さらに、蓋部材13は赤外線の照射によって昇温すると、伝導によって伝熱部材に熱を伝達する。したがって、治具1を使用しない構成や、治具1の伝熱部材11が積層コア9の端面94から突出しない構成と比較すると、積層コア9の歯92に伝える熱量を多くできる。
そして、治具1には、積層コア9の端面94を覆う蓋部材13が設けられるため、積層コア9の端面94に直接に赤外線が照射されることを防止しつつ、積層コア9に与える熱量を多くできる。すなわち、治具1を用いない構成や、治具1に蓋部材13が設けられない構成において、加熱時間の短縮を図るためにヒーター2の軸線方向の寸法を長くすると、積層コア9の端面94に照射される赤外線の量が多くなり、その結果として偏温が生じやすくなる。これに対して、本発明の実施形態によれば、積層コア9の端面94およびその近傍の局所的な温度上昇を防止または抑制できるから、偏温を防止または抑制しつつ、加熱時間の短縮を図ることができる。
The heater 2 and the heat transfer member 11 are longer than the dimension of the laminated core 9 in the axial direction. With such a configuration, the amount of heat transferred to the teeth 92 of the laminated core 9 can be increased to shorten the heating time. That is, the heat transfer member 11 is irradiated with infrared rays from the heater 2 not only on the inner peripheral side of the laminated core 9 but also outside the laminated core 9. Further, when the lid member 13 is heated by infrared irradiation, it transfers heat to the heat transfer member by conduction. Therefore, the amount of heat transferred to the teeth 92 of the laminated core 9 can be increased as compared with a configuration in which the jig 1 is not used and a configuration in which the heat transfer member 11 of the jig 1 does not protrude from the end face 94 of the laminated core 9.
And since the lid | cover member 13 which covers the end surface 94 of the lamination | stacking core 9 is provided in the jig | tool 1, the calorie | heat amount given to the lamination | stacking core 9, preventing the infrared rays being directly irradiated to the end surface 94 of the lamination | stacking core 9 Can do more. That is, in the configuration in which the jig 1 is not used or the configuration in which the lid member 13 is not provided on the jig 1, if the dimension in the axial direction of the heater 2 is increased in order to shorten the heating time, the end surface 94 of the laminated core 9 is increased. As a result, the amount of infrared rays irradiated on the surface increases, and uneven temperature tends to occur. On the other hand, according to the embodiment of the present invention, it is possible to prevent or suppress the local temperature rise in the end surface 94 of the laminated core 9 and the vicinity thereof, so that the heating time can be shortened while preventing or suppressing the uneven temperature. Can be planned.

積層コア9が所定の温度に到達した後、ヒーター2による加熱を停止する。その後、積層コア9を徐冷する。徐冷の条件(たとえば方法や温度履歴)は、従来の焼鈍方法と同じでよい。たとえば、従来一般の炉冷や空冷などが適用できる。このため、説明は省略する。
なお、冷却の効率を上げるため、徐冷時においては遮熱部材14を取り外してもよい。このようにすることで、積層コア9の熱を、蓋部材13を介して放出することができる。したがって、冷却の効率を上げることができる。
After the laminated core 9 reaches a predetermined temperature, heating by the heater 2 is stopped. Thereafter, the laminated core 9 is gradually cooled. The annealing conditions (for example, the method and temperature history) may be the same as those of the conventional annealing method. For example, conventional general furnace cooling or air cooling can be applied. Therefore, the description is omitted.
In order to increase the cooling efficiency, the heat shield member 14 may be removed during slow cooling. In this way, the heat of the laminated core 9 can be released through the lid member 13. Therefore, the cooling efficiency can be increased.

また、本発明の実施形態においては、積層コア9が所定の温度に到達した後、直ちに徐冷を開始する。すなわち、加熱炉を用いて加熱する従来の焼鈍方法においては、積層コア9が所定の温度に到達した後においても、均熱化のために所定の時間にわたって(たとえば2時間程度)加熱を継続していた。このため従来の焼鈍方法においては、加熱時間として、「積層コア9が所定の温度に到達するまでの時間」と「均熱化のための時間」が必要であった。これに対して、本発明の実施形態にかかる焼鈍方法においては、積層コア9を内周側から加熱するとともに、治具1を用いることにより、均熱化を図ることができる。このため、加熱時間として「積層コア9が所定の温度に到達するまでの時間」のみが必要となり、「均熱化のための時間」は必要ではない。   In the embodiment of the present invention, after the laminated core 9 reaches a predetermined temperature, the cooling is started immediately. That is, in the conventional annealing method in which heating is performed using a heating furnace, heating is continued for a predetermined time (for example, about 2 hours) for soaking even after the laminated core 9 reaches a predetermined temperature. It was. For this reason, in the conventional annealing method, “time until the laminated core 9 reaches a predetermined temperature” and “time for soaking” are necessary as the heating time. On the other hand, in the annealing method according to the embodiment of the present invention, the laminated core 9 can be heated from the inner peripheral side and the jig 1 can be used to equalize the temperature. For this reason, only “time until the laminated core 9 reaches a predetermined temperature” is required as the heating time, and “time for soaking” is not necessary.

また、積層コア9は、治具1の自重によって押さえつけられている。したがって、積層コア9の変形を防止または抑制できる。   The laminated core 9 is pressed by the weight of the jig 1. Therefore, deformation of the laminated core 9 can be prevented or suppressed.

積層コア9の焼鈍は、積層コア9を構成する電磁鋼板91の酸化を防止するため、非酸化性の雰囲気中で実施されることが好ましい。たとえば、図6に示すように、チャンバー8に非酸化性のガスを充填し、その内部で積層コア9の焼鈍を実施する構成が適用できる。なお、チャンバー8の構成は特に限定されるものではなく、従来公知の各種チャンバーが適用できる。要は、内部を非酸化性の雰囲気に保持できる構成であればよい。また、本発明の実施形態においては、ヒーター2を用いて積層コア9を加熱するため、チャンバー8はヒーター2を備えなくてよい。   The annealing of the laminated core 9 is preferably performed in a non-oxidizing atmosphere in order to prevent oxidation of the electrical steel sheet 91 constituting the laminated core 9. For example, as shown in FIG. 6, a configuration in which the chamber 8 is filled with a non-oxidizing gas and the laminated core 9 is annealed therein can be applied. The configuration of the chamber 8 is not particularly limited, and various conventionally known chambers can be applied. In short, any configuration may be used as long as the inside can be maintained in a non-oxidizing atmosphere. In the embodiment of the present invention, since the laminated core 9 is heated using the heater 2, the chamber 8 may not include the heater 2.

本発明の実施形態によれば、ヒーター2が発する赤外線によって、積層コア9を内周側から加熱する。筒状の積層コア9の内周側にヒーター2が配設される構成であるから、歯92の頂面921と伝熱部材11の内側面111または傾斜面113の軸線方向の全体にわたって、赤外線をほぼ均一に照射できる。また、加熱炉を用いる構成と比較すると、熱源(赤外線源)であるヒーター2および伝熱部材11を、積層コア9の歯92の表面に接近させることができる。そして、治具1を用いることによって、軸線方向の均熱化を図ることができる。特に、ヒーター2および伝熱部材11の軸線方向の寸法が積層コア9の軸線方向の寸法よりも長い構成であれば、積層コア9に伝える熱量を多くできる。
このため、このような構成によれば、短時間で均一に積層コア9を加熱でき、「積層コア9が所定の温度に到達するまでの時間」を短縮できる。特に、近赤外線を放射するヒーター2が適用される構成であると、昇温の応答性を高めることができる。
According to the embodiment of the present invention, the laminated core 9 is heated from the inner peripheral side by infrared rays emitted from the heater 2. Since the heater 2 is arranged on the inner peripheral side of the cylindrical laminated core 9, infrared rays are applied over the entire axial direction of the top surface 921 of the teeth 92 and the inner surface 111 or the inclined surface 113 of the heat transfer member 11. Can be irradiated almost uniformly. Further, as compared with a configuration using a heating furnace, the heater 2 and the heat transfer member 11 which are heat sources (infrared sources) can be brought closer to the surfaces of the teeth 92 of the laminated core 9. Then, by using the jig 1, it is possible to equalize the heat in the axial direction. In particular, if the dimension of the heater 2 and the heat transfer member 11 in the axial direction is longer than the dimension of the laminated core 9 in the axial direction, the amount of heat transferred to the laminated core 9 can be increased.
For this reason, according to such a structure, the laminated core 9 can be heated uniformly in a short time, and the “time until the laminated core 9 reaches a predetermined temperature” can be shortened. In particular, when the heater 2 that emits near-infrared rays is applied, the responsiveness of temperature rise can be improved.

さらに、本発明の実施形態によれば、加熱時において偏熱を防止または抑制できるから、積層コア9が所定の温度に到達した後、均熱化のために加熱を継続することなく直ちに徐冷を開始できる。したがって、「均熱化のための時間」を省略することができ、加熱時間の短縮を図ることができる。
以上のとおりであるから、本発明の実施形態によれば、焼鈍における加熱時間の短縮と均熱時間の省略を図ることができ、積層コア9の生産性の向上を図ることができる。
Furthermore, according to the embodiment of the present invention, since uneven heat can be prevented or suppressed during heating, after the laminated core 9 reaches a predetermined temperature, it is immediately cooled gradually without continuing heating for soaking. Can start. Therefore, “time for soaking” can be omitted, and the heating time can be shortened.
As described above, according to the embodiment of the present invention, the heating time in annealing and the soaking time can be reduced, and the productivity of the laminated core 9 can be improved.

そして、本発明の実施形態によれば、加熱時間を短縮しつつ、鉄損を減少させることができる。すなわち、打ち抜き加工された電磁鋼板91は、外周がほぼ単純な円形であるのに対して、内周側は歯92が形成されるため凹凸を有する。このため、内周側は外周側に比較して切口が長く、ひずみが大きい。またモータを運転する際に生ずる磁束密度は、内周側に集中しており、ひずみによる鉄損劣化の影響は、内周側で大きい。したがって、鉄損を減少させるためには、特に内周側について焼鈍の効果を高くしてひずみを除去する必要がある。本発明の実施形態においては、ヒーター2と伝熱部材11とが積層コア9の内周側に配設される。そして、積層コア9の内周側に形成される歯92の表面に赤外線を直接照射するとともに、伝熱部材11からの伝導や放射や反射によって、積層コア9を内周側から加熱する。このため、積層コア9の内周側を確実に所定の温度に到達させることができる。さらに、内周側は外周側よりも早く所定の温度に到達するから、内周側が所定の温度に維持される時間を外周側に比較して長くできる。したがって、内周側の焼鈍の効果を高めることができ、鉄損を減少させることができる。このように、本発明の実施形態によれば、加熱時間を短縮しつつ、鉄損を減少させることができる。   And according to embodiment of this invention, iron loss can be reduced, shortening heating time. That is, the punched magnetic steel sheet 91 has a substantially simple circular outer periphery, but has an unevenness on the inner peripheral side because the teeth 92 are formed. For this reason, the inner peripheral side has a longer cut and larger distortion than the outer peripheral side. Further, the magnetic flux density generated when the motor is operated is concentrated on the inner peripheral side, and the influence of iron loss deterioration due to strain is large on the inner peripheral side. Therefore, in order to reduce the iron loss, it is necessary to remove the strain by increasing the effect of annealing particularly on the inner peripheral side. In the embodiment of the present invention, the heater 2 and the heat transfer member 11 are disposed on the inner peripheral side of the laminated core 9. And while irradiating infrared rays directly on the surface of the tooth | gear 92 formed in the inner peripheral side of the lamination | stacking core 9, the lamination | stacking core 9 is heated from the inner circumference side by conduction, radiation | emission, and reflection from the heat-transfer member 11. For this reason, the inner peripheral side of the laminated core 9 can surely reach a predetermined temperature. Furthermore, since the inner peripheral side reaches the predetermined temperature earlier than the outer peripheral side, the time during which the inner peripheral side is maintained at the predetermined temperature can be made longer than the outer peripheral side. Therefore, the effect of annealing on the inner peripheral side can be enhanced, and the iron loss can be reduced. Thus, according to the embodiment of the present invention, it is possible to reduce the iron loss while shortening the heating time.

さらに、スリット93には伝熱部材11が入れ込まれており、伝熱部材11によっても歯92が加熱される。すなわち、伝熱部材11は、ヒーター2とともに、歯92を加熱する熱源(赤外線源)として機能する。このため、治具1が伝熱部材11を有する構成であれば、加熱時間のさらなる短縮を図ることができる。また、伝熱部材11が積層コア9よりも熱伝導率が高い材料により形成される構成であれば、伝熱部材11から歯92に伝達される熱の軸線方向の均一化を図ることができる。したがって、焼鈍による歪の除去の効果を十分に得つつ、加熱時間の短縮を図ることができる。
たとえば、偏温が大きい場合には、温度上昇が最も早い部位を基準として目標温度を設定すると、温度上昇が遅い部位では焼鈍の効果が十分に得られないおそれがある。一方、温度上昇が最も遅い部位を基準として目標温度を設定すると、温度上昇が早い部位では温度が高くなりすぎ、被膜への影響や積層コア9自体の変形が生じるおそれがある。これに対して本発明の実施形態によれば、偏温を防止または抑制して積層コア9の全体を均一に温度上昇させることができる。このため、積層コア9の全体に焼鈍の効果が得られるとともに、温度が高くなりすぎる部位が生じないようにできる。
Further, the heat transfer member 11 is inserted into the slit 93, and the teeth 92 are also heated by the heat transfer member 11. That is, the heat transfer member 11 functions as a heat source (infrared ray source) for heating the teeth 92 together with the heater 2. For this reason, if the jig 1 has the heat transfer member 11, the heating time can be further shortened. Further, if the heat transfer member 11 is formed of a material having a higher thermal conductivity than the laminated core 9, the axial direction of heat transferred from the heat transfer member 11 to the teeth 92 can be made uniform. . Therefore, it is possible to shorten the heating time while sufficiently obtaining the effect of removing strain by annealing.
For example, when the temperature deviation is large, if the target temperature is set with reference to the part where the temperature rise is the fastest, the effect of annealing may not be sufficiently obtained at the part where the temperature rise is slow. On the other hand, if the target temperature is set with reference to the part where the temperature rise is the slowest, the temperature becomes too high at the part where the temperature rise is fast, and there is a possibility that the effect on the coating or the deformation of the laminated core 9 itself may occur. On the other hand, according to the embodiment of the present invention, the temperature of the entire laminated core 9 can be increased uniformly by preventing or suppressing the temperature deviation. For this reason, the effect of annealing can be obtained on the entire laminated core 9, and a portion where the temperature becomes too high can be prevented.

複数の積層コア9を焼鈍する場合には、複数の積層コア9を軸線方向に重ねて(または並べて)配設し、単数または複数の棒状のヒーター2および伝熱部材11を、重ねられた複数の積層コア9の内周側をまとめて貫通するように配設する。このような構成によれば、複数の積層コア9を同時に加熱することができるため、積層コア9の生産性の向上を図ることができる。なお、図1においては、2個の積層コア9が重ねられる構成を示すが、重ねられる積層コア9の数は限定されない。   When annealing a plurality of laminated cores 9, a plurality of laminated cores 9 are arranged so as to be overlapped (or arranged side by side) in the axial direction, and one or a plurality of rod-shaped heaters 2 and heat transfer members 11 are overlapped. The laminated cores 9 are arranged so as to penetrate through the inner peripheral side of the laminated core 9. According to such a structure, since the several laminated core 9 can be heated simultaneously, the improvement of the productivity of the laminated core 9 can be aimed at. Although FIG. 1 shows a configuration in which two laminated cores 9 are stacked, the number of stacked cores 9 to be stacked is not limited.

また、図1においては、ヒーター2が直線状に形成される構成を示すが、ヒーター2の形状は限定されない。たとえば、U字状のヒーター2が適用される構成であってもよい。さらに、上述の説明では、ヒーター2が積層コアの内周側にのみ配設される構成を示したが、本発明はこの構成に限定されるものではない。たとえば、加熱の効率化の観点から、必要に応じて、さらにヒーター2が積層コア9の外側にも配置される構成であってもよい。   1 shows a configuration in which the heater 2 is linearly formed, the shape of the heater 2 is not limited. For example, the structure to which the U-shaped heater 2 is applied may be used. Further, in the above description, the configuration in which the heater 2 is disposed only on the inner peripheral side of the laminated core is shown, but the present invention is not limited to this configuration. For example, from the viewpoint of increasing the efficiency of heating, a configuration in which the heater 2 is further disposed outside the laminated core 9 as necessary may be employed.

以上、本発明の実施形態を、図面を参照して詳細に説明したが、前記実施形態は本発明の実施にあたっての具体例を示したに過ぎない。本発明の技術的範囲は、前記実施形態に限定されるものではない。本発明は、その趣旨を逸脱しない範囲において、種々の変更が可能であり、それらも本発明の技術的範囲に含まれる。   As mentioned above, although embodiment of this invention was described in detail with reference to drawings, the said embodiment only showed the specific example in implementation of this invention. The technical scope of the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the spirit thereof, and these are also included in the technical scope of the present invention.

たとえば、積層コア9の加熱に用いられるヒーター2の数は限定されるものではない。ヒーター2の数は、加熱対象である積層コア9の寸法や形状などに応じて適宜設定される。また、前記実施形態においては、2個の積層コア9を軸線方向に重ねて同時に加熱する構成を示したが、同時に加熱する積層コア9の数は限定されるものではない。1個の積層コア9のみを加熱する構成であってもよく、3個以上の積層コア9を重ねて同時に加熱する構成であってもよい。   For example, the number of heaters 2 used for heating the laminated core 9 is not limited. The number of heaters 2 is appropriately set according to the dimensions and shape of the laminated core 9 to be heated. Moreover, in the said embodiment, although the structure which piles up the two laminated cores 9 in the axial direction and heats simultaneously is shown, the number of the laminated cores 9 heated simultaneously is not limited. Only one laminated core 9 may be heated, or three or more laminated cores 9 may be stacked and heated simultaneously.

本発明は、電磁鋼板が積層されて構成される積層コアのひずみを除去するための焼鈍に適用できる。また、電磁鋼板が積層されて構成される積層コアに限定されず、他の種々の積層コアの焼鈍に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to annealing for removing strain of a laminated core configured by laminating electromagnetic steel sheets. Moreover, it is not limited to the laminated core comprised by laminating | stacking an electromagnetic steel plate, It can apply to the annealing of another various laminated core.

1:治具、11:伝熱部材、111:内側面、112:円周側面(第1の例)、113:傾斜面(第2の例)、12:連結部材、13:蓋部材、14:遮熱部材、2:ヒーター、8;チャンバー、9:積層コア、91:電磁鋼板、92:歯、921:頂面、922:側面、93:スリット 1: Jig, 11: Heat transfer member, 111: Inner side surface, 112: Circumferential side surface (first example), 113: Inclined surface (second example), 12: Connecting member, 13: Lid member, 14 : Heat shield member, 2: Heater, 8; Chamber, 9: Laminated core, 91: Electrical steel sheet, 92: Teeth, 921: Top surface, 922: Side surface, 93: Slit

Claims (5)

積層された電磁鋼板を有し内周側に複数の歯が形成される積層コアの焼鈍方法であって、
棒状のヒーターを前記積層コアの内周側に配置するとともに、前記積層コアよりも熱伝導率が高い材料からなる棒状または板状の伝熱部材を前記歯どうしの間に入れ込み、
前記ヒーターおよび前記伝熱部材の軸線方向の寸法は前記積層コアの軸線方向の寸法よりも長く、前記ヒーターおよび前記伝熱部材の端部を前記積層コアの端面から突出させ、
前記積層コアの端面を、前記伝熱部材に接合された蓋部材によって覆い、
前記積層コアの端面と前記蓋部材との間であって前記蓋部材の前記積層コアの前記端面の側の面には、前記蓋部材および前記伝熱部材よりも熱伝導率が低い材料からなり、前記積層コアの軸線方向視において前記蓋部材と略同じ寸法および形状である遮熱部材を介在させ、
前記ヒーターによって前記歯および前記伝熱部材を加熱するとともに、前記伝熱部材によっても前記歯を加熱することを特徴とする積層コアの焼鈍方法。
A laminated core annealing method in which a plurality of teeth are formed on the inner peripheral side having a laminated electrical steel sheet,
A rod-shaped heater is disposed on the inner peripheral side of the laminated core, and a rod-shaped or plate-shaped heat transfer member made of a material having a higher thermal conductivity than the laminated core is inserted between the teeth,
The dimension in the axial direction of the heater and the heat transfer member is longer than the dimension in the axial direction of the laminated core, and the end portions of the heater and the heat transfer member are projected from the end face of the laminated core,
Covering the end face of the laminated core with a lid member joined to the heat transfer member,
The surface between the end surface of the laminated core and the lid member and on the side of the end surface of the laminated core of the lid member is made of a material having lower thermal conductivity than the lid member and the heat transfer member. In the axial direction view of the laminated core, a heat shield member having substantially the same size and shape as the lid member is interposed,
The method for annealing a laminated core, wherein the teeth and the heat transfer member are heated by the heater, and the teeth are also heated by the heat transfer member.
前記伝熱部材は、半径方向中心側に向かうにしたがって先細り形状となる略二等辺三角形に形成されていることを特徴とする請求項1に記載の積層コアの焼鈍方法。2. The method of annealing a laminated core according to claim 1, wherein the heat transfer member is formed in a substantially isosceles triangle having a tapered shape toward the center in the radial direction. 前記積層コアの一方の端面を上側を向かせるとともに、前記一方の端面に前記蓋部材を載置して前記積層コアの前記一方の端面に前記蓋部材および前記伝熱部材の自重を掛けることを特徴とする請求項またはに記載の積層コアの焼鈍方法。 One end surface of the laminated core is directed upward, the lid member is placed on the one end surface, and the weight of the lid member and the heat transfer member is applied to the one end surface of the laminated core. The method for annealing a laminated core according to claim 1 or 2 , characterized in that: 前記ヒーターは、赤外線を放射するヒーターであることを特徴とする請求項1からのいずれか1項に記載の積層コアの焼鈍方法。 The method for annealing a laminated core according to any one of claims 1 to 3 , wherein the heater is a heater that emits infrared rays. 前記ヒーターは、棒状のハロゲンヒーターであることを特徴とする請求項に記載の積層コアの焼鈍方法。 The heater, the annealing method of the laminated core according to claim 4, characterized in that a rod-shaped halogen heater.
JP2013270281A 2013-12-26 2013-12-26 Method for annealing laminated core Active JP6201747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013270281A JP6201747B2 (en) 2013-12-26 2013-12-26 Method for annealing laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270281A JP6201747B2 (en) 2013-12-26 2013-12-26 Method for annealing laminated core

Publications (2)

Publication Number Publication Date
JP2015126625A JP2015126625A (en) 2015-07-06
JP6201747B2 true JP6201747B2 (en) 2017-09-27

Family

ID=53536969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270281A Active JP6201747B2 (en) 2013-12-26 2013-12-26 Method for annealing laminated core

Country Status (1)

Country Link
JP (1) JP6201747B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658471B2 (en) * 2016-11-25 2020-03-04 トヨタ自動車株式会社 Method for manufacturing rotor core and method for manufacturing motor core
JP2020080596A (en) * 2018-11-12 2020-05-28 株式会社豊田中央研究所 Annealing method for rotating electric machine stator core
JP7117978B2 (en) * 2018-11-13 2022-08-15 株式会社豊田中央研究所 Annealing method for rotary electric machine stator core
JP7329961B2 (en) * 2019-05-15 2023-08-21 住友重機械工業株式会社 Heat treatment method for iron core member, jig for heat treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014601A (en) * 2002-06-04 2004-01-15 Hitachi Metals Ltd Thermal treatment method of ring core
JP5139903B2 (en) * 2008-07-16 2013-02-06 株式会社三井ハイテック Laminated iron core and method for manufacturing the same
JP6021270B2 (en) * 2012-01-25 2016-11-09 新日鐵住金株式会社 Annealing method for metal parts

Also Published As

Publication number Publication date
JP2015126625A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP6021270B2 (en) Annealing method for metal parts
JP6201747B2 (en) Method for annealing laminated core
JP6102731B2 (en) Method for annealing laminated core
WO2018003604A1 (en) Optical device and laser device
US10978420B2 (en) Semiconductor chip mounting apparatus and semiconductor chip mounting method
JP5444134B2 (en) Stator heating method and apparatus using induction heating
KR101838110B1 (en) Induction heating system of generator retaining ring
WO2016199684A1 (en) Method for manufacturing joining member, and device for manufacturing joining member
JP6502608B2 (en) Welded parts, gears and transmission gears
AU2015206075A1 (en) A wire tray for a microwave oven or a cooking appliance with microwave heating function
JPWO2020170413A1 (en) Welding method for members containing copper and manufacturing method for rotary electric machines
JP6102732B2 (en) Laminated core annealing equipment
JP2004356421A (en) Optical fiber laser
JP5891255B2 (en) Heat treatment equipment
JP5293453B2 (en) Filament lamp
JP2016150342A (en) Method for manufacturing clad steel product, assembly slab, and apparatus for manufacturing clad steel product
EP2683216A1 (en) Cooking device
JP2020188601A (en) Heat treatment method of iron core member, iron core member, heat treatment jig
JP6415922B2 (en) Reflecting unit and heating device to which the reflecting unit is attached
JP3922071B2 (en) CRT separation method and apparatus
JP2009295451A (en) Far-infrared panel heater
JP2019180310A (en) Laver heating apparatus
WO2012132077A1 (en) Induction heating device
KR20180045481A (en) Welding Preheating Pad
RU2254637C1 (en) Method for activating non-diffusive gas absorbers of cathode-ray tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350