JPH05121170A - Thin film el display element - Google Patents

Thin film el display element

Info

Publication number
JPH05121170A
JPH05121170A JP3306900A JP30690091A JPH05121170A JP H05121170 A JPH05121170 A JP H05121170A JP 3306900 A JP3306900 A JP 3306900A JP 30690091 A JP30690091 A JP 30690091A JP H05121170 A JPH05121170 A JP H05121170A
Authority
JP
Japan
Prior art keywords
insulating layer
nitride
film
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3306900A
Other languages
Japanese (ja)
Other versions
JP2837007B2 (en
Inventor
Nobue Ito
信衛 伊藤
Kazuhiro Inokuchi
和宏 井ノ口
Yoshiyasu Ando
芳康 安藤
Masayuki Suzuki
正幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Denso Corp
Original Assignee
Research Development Corp of Japan
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17962618&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05121170(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Research Development Corp of Japan, NipponDenso Co Ltd filed Critical Research Development Corp of Japan
Priority to JP3306900A priority Critical patent/JP2837007B2/en
Publication of JPH05121170A publication Critical patent/JPH05121170A/en
Application granted granted Critical
Publication of JP2837007B2 publication Critical patent/JP2837007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thin film EL display element having the improved adhesion between an insulating layer and a luminescent layer and the self-recovery type breakdown mode of the insulating layer. CONSTITUTION:A lower electrode 2, a lower insulating layer 3 made of a nitride insulating film, a luminescent layer 4, an upper insulating layer 5 made of the nitride insulating film, and an upper electrode 6 are laminated in sequence on a glass base 1 to form a thin film EL display element 100. Portions adjacent to the lower insulating layer 3 made of the nitride insulating film and the luminescent layer 4 of the upper insulating layer 5 are oxygen-free layers 3a, 5a made of a nitride containing no oxygen. Portions most apart from the luminescent layer 4 of the lower insulating layer 3 and the upper insulating layer 5 made of the nitrate insulating film are oxygen-containing layers 3b, 5b made of a nitride or an oxide containing oxygen. The adhesion between the insulating layer and the luminescent layer of the thin film EL display element 100 is improved, and the breakdown mode of the insulating layers can be made the self-recovery type in which no dielectric breakdown proceeds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種情報端末機器のデ
ィスプレイ等に使用される薄膜EL(Electroluminescen
ce)ディスプレイ素子に関し、特に、絶縁耐圧が高く破
壊し難くして信頼性を向上した薄膜ELディスプレイ素
子構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film EL (Electroluminescen) used for displays of various information terminal devices.
ce) The present invention relates to a display element, and more particularly to a thin film EL display element structure having a high withstand voltage and being hard to break and improving reliability.

【0002】[0002]

【従来技術】従来、薄膜ELディスプレイ素子は、硫化
亜鉛(ZnS)やアルカリ土類硫化物(CaS,SrS)等を
発光母体とし、それに発光中心としてマンガン(Mn),
テルビウム(Tb),サマリウム(Sm)などを少量ドーピ
ングして形成した発光層に電界をかけた時に発光する現
象を利用したものであり自発光型の平面ディスプレイ素
子として注目されている。薄膜ELディスプレイ素子
は、特に、車載用ディスプレイ装置のように高い表示品
質が要求される用途に適したディスプレイ素子であると
いえる。図8は、薄膜ELディスプレイ素子の典型的な
断面構造を示した模式図である。薄膜ELディスプレイ
素子10は、絶縁性基板であるガラス基板1上に、下部
電極(透明電極)2、下部絶縁層3、発光層4、上部絶
縁層5及び上部電極(金属電極又は透明電極)6を順次
積層し形成されている。このうち、発光層4を上下から
覆うように形成された下部絶縁層3及び上部絶縁層5は
薄膜ELディスプレイ素子10の信頼性を決定する大き
な要素である。下部絶縁層3及び上部絶縁層5の材料と
しては、Al23,SiO2,Ta25等の酸化物、Si34,
AlN 等の窒化物、PbTiO3 やPZTのような複合酸
化物等が提案されている。又、それらを複数組み合わせ
た積層構造の絶縁層も提案されている。
2. Description of the Related Art Conventionally, a thin film EL display element has zinc sulfide (ZnS), alkaline earth sulfide (CaS, SrS), etc. as a luminescent base, and manganese (Mn),
It utilizes a phenomenon of emitting light when an electric field is applied to a light emitting layer formed by doping a small amount of terbium (Tb), samarium (Sm), etc., and is attracting attention as a self-luminous flat display element. It can be said that the thin-film EL display element is a display element particularly suitable for applications requiring high display quality such as a vehicle-mounted display device. FIG. 8 is a schematic diagram showing a typical cross-sectional structure of a thin film EL display element. The thin film EL display element 10 includes a lower electrode (transparent electrode) 2, a lower insulating layer 3, a light emitting layer 4, an upper insulating layer 5 and an upper electrode (metal electrode or transparent electrode) 6 on a glass substrate 1 which is an insulating substrate. Are sequentially laminated. Among these, the lower insulating layer 3 and the upper insulating layer 5, which are formed so as to cover the light emitting layer 4 from above and below, are major factors that determine the reliability of the thin film EL display element 10. As the material of the lower insulating layer 3 and the upper insulating layer 5, oxides such as Al 2 O 3, SiO 2, Ta 2 O 5 and Si 3 N 4,
A nitride such as AlN and a complex oxide such as PbTiO 3 and PZT have been proposed. Further, an insulating layer having a laminated structure in which a plurality of them are combined has also been proposed.

【0003】[0003]

【発明が解決しようとする課題】ここで、薄膜ELディ
スプレイ素子は高電圧下で駆動されるため、絶縁層の絶
縁耐圧が高いことや誘電率が大きいことが要求される。
更に、薄膜ELディスプレイ素子を完成させるには、次
に述べるような性能も絶縁層には必要である。第1に、
硫化亜鉛(ZnS)を母体材料とした発光層との密着性が
薄膜ELディスプレイ素子の完成品に対してだけでな
く、その素子を構成する全プロセスを通じて良好でなけ
ればならない。つまり、プロセス途中で電極を希望の形
状に微細加工する際のウェットエッチング工程などにお
いても、発光層−絶縁層間でしばしば膜剥離が発生する
からである。第2に、絶縁破壊した場合においては、そ
の破壊が次々と伝播して大きな破壊となる破壊モードで
はなく破壊部分がピンポイントでおさまり破壊がそれ以
上拡大しない自己回復型の破壊モードの方が望ましい。
つまり、この自己回復型の破壊モードであれば、例え、
絶縁破壊が起きても目に見えない小さな破壊点が残るだ
けであり、薄膜ELディスプレイ素子の歩留り向上にも
つながることになる。ここで、絶縁層に窒化物を用いる
ことは公知である。これは、酸素プラズマを使用し発光
層上に酸化物系絶縁膜を形成しようとすると発光層の硫
化亜鉛が酸化され再結合中心が増加し発光効率が低下す
るためという理由による。しかしながら、従来、上述の
発光層に対して密着性と破壊モードの改善を総合的に考
慮した提案はなく、経験的に絶縁層の種類を決定してい
たのである。
Since the thin film EL display device is driven under a high voltage, it is required that the insulating layer has a high withstand voltage and a large dielectric constant.
Further, in order to complete the thin film EL display device, the insulating layer must have the following properties. First,
Adhesion to the light emitting layer using zinc sulfide (ZnS) as a base material must be good not only for the finished thin film EL display device but also for the whole process of forming the device. In other words, film peeling often occurs between the light emitting layer and the insulating layer even in a wet etching process or the like when the electrode is finely processed into a desired shape during the process. Secondly, in the case of dielectric breakdown, a self-healing breakdown mode in which the breakdown is pinpointed and the breakdown does not expand further is preferred, rather than a breakdown mode in which the breakdown propagates one after another and becomes a large breakdown. ..
In other words, if this self-healing destruction mode,
Even if dielectric breakdown occurs, only small invisible breaking points remain, which also leads to an improvement in the yield of thin film EL display elements. Here, it is known to use nitride for the insulating layer. This is because when an oxide-based insulating film is formed on the light emitting layer by using oxygen plasma, zinc sulfide in the light emitting layer is oxidized, the number of recombination centers increases, and the light emission efficiency decreases. However, conventionally, there is no proposal that comprehensively considers the improvement of the adhesiveness and the destruction mode for the above-mentioned light emitting layer, and the type of the insulating layer has been empirically determined.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、絶縁層と
発光層との密着性の向上を図ると共にその絶縁層の破壊
モードが絶縁破壊の進行しない自己回復型である薄膜E
Lディスプレイ素子を提供することである。
The present invention has been made to solve the above problems, and an object of the present invention is to improve the adhesiveness between an insulating layer and a light emitting layer and to prevent the destruction mode of the insulating layer. Self-healing thin film E in which insulation breakdown does not progress
It is to provide an L display device.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、絶縁性基板上に下部電極、下部絶縁
層、発光層、上部絶縁層及び上部電極を順次積層し形成
した薄膜ELディスプレイ素子であって、前記発光層と
隣接する前記下部絶縁層又は前記上部絶縁層を窒化物系
絶縁膜で構成し、該窒化物系絶縁膜の厚み方向の少なく
とも前記発光層との接触部分では酸素を含まない窒化物
とし、前記窒化物系絶縁膜の厚み方向の少なくとも前記
発光層から最も離れた部分では酸素を含む窒化物又は酸
化物としたことを特徴とする。
The structure of the invention for solving the above-mentioned problems is a thin film EL in which a lower electrode, a lower insulating layer, a light emitting layer, an upper insulating layer and an upper electrode are sequentially laminated on an insulating substrate. In the display element, the lower insulating layer or the upper insulating layer adjacent to the light emitting layer is composed of a nitride insulating film, and at least a contact portion with the light emitting layer in a thickness direction of the nitride insulating film. It is characterized in that the nitride does not contain oxygen, and the nitride or oxide containing oxygen is used at least in a portion farthest from the light emitting layer in a thickness direction of the nitride insulating film.

【0006】[0006]

【作用及び効果】薄膜ELディスプレイ素子の発光層と
隣接する下部絶縁層及び上部絶縁層は窒化物系絶縁膜に
て構成される。そして、その窒化物系絶縁膜の厚み方向
の少なくとも上記発光層との接触部分では酸素を含まな
い窒化物とし、上記窒化物系絶縁膜の厚み方向の少なく
とも上記発光層から最も離れた部分では酸素を含む窒化
物又は酸化物とされる。即ち、本発明の薄膜ELディス
プレイ素子の下部絶縁層及び上部絶縁層には窒化物系絶
縁膜を用い、その窒化物系絶縁膜内の含有酸素を膜厚方
向に制御する。これにより、硫化亜鉛(ZnS)に代表さ
れる発光層と窒化物系絶縁膜との密着性の向上を図ると
共に窒化物系絶縁膜の破壊モードを初期の絶縁破壊が伝
播することがない自己回復型とすることができる。
[Operation and effect] The lower insulating layer and the upper insulating layer adjacent to the light emitting layer of the thin film EL display device are composed of a nitride insulating film. Then, a nitride containing no oxygen is used in at least a portion in contact with the light emitting layer in the thickness direction of the nitride insulating film, and oxygen is used in at least a portion farthest from the light emitting layer in the thickness direction of the nitride insulating film. A nitride or an oxide containing That is, a nitride insulating film is used for the lower insulating layer and the upper insulating layer of the thin film EL display element of the present invention, and oxygen contained in the nitride insulating film is controlled in the film thickness direction. This improves the adhesiveness between the light emitting layer typified by zinc sulfide (ZnS) and the nitride-based insulating film, and self-recovers the breakdown mode of the nitride-based insulating film so that the initial breakdown does not propagate. It can be a mold.

【0007】発明者らは、薄膜ELディスプレイ素子の
発光層と絶縁層との間でしばしば生じる膜剥離現象の大
きな原因として以下のことを見出した。薄膜ELディス
プレイ素子の絶縁層形成法には緻密で良質な膜層が得ら
れるという理由からスパッタリング法、特に、反応性ス
パッタリング法が用いられることが多い。この方法で
は、例えば、絶縁層として酸化物系絶縁膜を形成しよう
とすると絶縁層形成時のチャンバー内に酸素が存在し、
それによる酸素プラズマは硫化亜鉛(ZnS)から成る発
光層表面を酸化する。この発光層表面の酸化により酸化
亜鉛(ZnO)が直接生じるという説が一般的な概念であ
った。これに対して、発明者らは上述の発光層表面の酸
素プラズマによる酸化により硫酸亜鉛(ZnSO4)が発
光層表面近傍に形成されることを見出した。この硫酸亜
鉛は硫化亜鉛或いは酸化亜鉛に比べて、図7に示したよ
うに、約10万倍も水に溶け易い物質であり、洗浄工程や
ウェットエッチング工程のように周囲に水が存在する
と、工程途中で形成された硫酸亜鉛が溶け出し、その部
分から膜剥離を生じるのである。
The inventors have found the following as a major cause of the film peeling phenomenon that often occurs between the light emitting layer and the insulating layer of a thin film EL display device. A sputtering method, in particular, a reactive sputtering method is often used as a method for forming an insulating layer of a thin film EL display element because a dense and high-quality film layer can be obtained. In this method, for example, when an oxide-based insulating film is formed as the insulating layer, oxygen exists in the chamber when the insulating layer is formed,
The resulting oxygen plasma oxidizes the surface of the light emitting layer made of zinc sulfide (ZnS). The general concept is that zinc oxide (ZnO) is directly produced by the oxidation of the surface of the light emitting layer. On the other hand, the inventors have found that zinc sulfate (ZnSO 4 ) is formed in the vicinity of the surface of the light emitting layer by the oxidation of the surface of the light emitting layer by oxygen plasma. Compared to zinc sulfide or zinc oxide, this zinc sulfate is a substance that is about 100,000 times more soluble in water as shown in FIG. 7, and when water is present in the surroundings such as in a cleaning process or a wet etching process, The zinc sulfate formed during the process dissolves out and film peeling occurs from that part.

【0008】以上の原因による膜剥離を防止するために
は、絶縁層成膜時の初期段階で酸素プラズマが存在しな
いようにしなければならない。非酸化物系の絶縁膜とし
て、最も代表的な窒化膜には、窒化珪素(SiNx)膜が
ある。又、発明者らは破壊モードについて鋭意実験研究
を行ったところ以下のような現象を見出した。つまり、
窒化珪素膜において、酸素を含有しない状態(SiNx
の膜は絶縁破壊が伝播モードとなり一度破壊が起きると
その破壊は大きな面積まで広がってしまった。一方、酸
素を含有する状態(SiOxy)の膜は初期の絶縁破壊が
伝播しない自己回復型の破壊モードを示した。以上述べ
たような結果から、発明者らは発光層−絶縁層の間の膜
剥離を防止すると共に破壊モードを自己回復型とするた
めの絶縁層は本発明の構成のようにすれば良いことが分
かった。即ち、絶縁膜の膜剥離現象は発光層との接触部
分の状態に、又、絶縁膜の破壊モードは逆に発光層から
最も離れた部分の状態に支配されるためである。
In order to prevent the peeling of the film due to the above reasons, it is necessary to prevent oxygen plasma from existing at the initial stage when the insulating layer is formed. A silicon nitride (SiN x ) film is a most typical nitride film as a non-oxide insulating film. In addition, the inventors of the present invention have found the following phenomenon as a result of earnest experimental research on the destruction mode. That is,
Silicon nitride film containing no oxygen (SiN x )
In the film, the dielectric breakdown became a propagation mode, and once the breakdown occurred, the breakdown spread to a large area. On the other hand, the film containing oxygen (SiO x N y ) exhibited a self-recovery breakdown mode in which the initial dielectric breakdown did not propagate. From the above-mentioned results, the inventors should provide the insulating layer for preventing the peeling of the film between the light emitting layer and the insulating layer and for making the breakdown mode self-recovering, to have the constitution of the present invention. I understood. That is, the film peeling phenomenon of the insulating film is controlled by the state of the contact portion with the light emitting layer, and the breakdown mode of the insulating film is conversely controlled by the state of the portion farthest from the light emitting layer.

【0009】[0009]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る薄膜ELディスプレイ素子
の縦断面を示した模式図である。薄膜ELディスプレイ
素子100は、絶縁性基板であるガラス基板1(厚さ
1.1mm,HOYA製NA40:ノンアルカリガラス)上に順次、
以下の薄膜が形成され構成されている。ガラス基板1上
には、ITO(Indium TinOxide:酸化インジウム−
錫)透明導電膜から成る下部電極(透明電極)2、窒化
物系絶縁膜から成る下部絶縁層3、発光層4、窒化物系
絶縁膜から成る上部絶縁層5及びAl 薄膜から成る上部
電極5が形成されている。尚、発光層4としては、母体
材料を硫化亜鉛(ZnS)としマンガン(Mn)を少量添加
してオレンジ色発光を呈するZnS:Mnを用いた。窒化
物系絶縁膜から成る下部絶縁層3及び上部絶縁層5の発
光層4に隣接した部分は酸素を含まない状態の無酸素層
3a,5aである。これら無酸素層3a,5aは酸素を
含まない窒化物から成る。又、窒化物系絶縁膜から成る
下部絶縁層3及び上部絶縁層5の発光層4から最も離れ
た部分では酸素を含んだ状態の有酸素層3b,5bであ
る。これら有酸素層3b,5bは酸素を含む窒化物又は
酸化物から成る。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a schematic view showing a vertical section of a thin film EL display device according to the present invention. The thin film EL display device 100 includes a glass substrate 1 (thickness:
1.1mm, HOYA NA40: non-alkali glass)
The following thin films are formed and configured. ITO (Indium Tin Oxide) is formed on the glass substrate 1.
Tin) lower electrode (transparent electrode) 2 made of a transparent conductive film, lower insulating layer 3 made of a nitride insulating film, light emitting layer 4, upper insulating layer 5 made of a nitride insulating film, and upper electrode 5 made of an Al thin film. Are formed. As the light emitting layer 4, ZnS: Mn was used, which was a zinc sulfide (ZnS) base material and a small amount of manganese (Mn) was added to emit orange light. The portions of the lower insulating layer 3 and the upper insulating layer 5 made of a nitride insulating film adjacent to the light emitting layer 4 are oxygen-free layers 3a and 5a containing no oxygen. These oxygen-free layers 3a and 5a are made of nitride containing no oxygen. Further, the most distant parts of the lower insulating layer 3 and the upper insulating layer 5 made of a nitride insulating film from the light emitting layer 4 are the aerobic layers 3b and 5b containing oxygen. These aerobic layers 3b and 5b are made of a nitride or oxide containing oxygen.

【0010】図2は、下部絶縁層3及び上部絶縁層5の
窒化物系絶縁膜の膜厚方向における窒素濃度及び酸素濃
度の分布を示した説明図である。窒化物系絶縁膜として
は、SiNxを基にした。窒化物系絶縁膜は、発光層に隣
接した接触部分ではSiNxの形であり、発光層から離れ
るにつれSiOxy の形となり、発光層から最も離れた
(表面)部分ではSiOxの形とした。即ち、上記無酸素
層3a,5aはSiNxから成り、上記有酸素層3b,5
bはSiOxから成る。
FIG. 2 is an explanatory view showing the distribution of nitrogen concentration and oxygen concentration in the film thickness direction of the nitride insulating film of the lower insulating layer 3 and the upper insulating layer 5. The nitride insulating film was based on SiN x . The nitride-based insulating film has a shape of SiN x in a contact portion adjacent to the light emitting layer, and has a shape of SiO x N y as the distance from the light emitting layer increases, and a shape of SiO x in a portion (front surface) farthest from the light emitting layer. And That is, the oxygen-free layers 3a and 5a are made of SiN x , and the aerobic layers 3b and 5a.
b consists of SiO x .

【0011】次に、上述の薄膜ELディスプレイ素子1
00の製造方法を以下に述べる。ガラス基板1上にIT
Oをアルゴン(Ar)及び酸素(O2)の混合ガス雰囲気中
で高周波スパッタして2000Åの厚さに成膜し、ウェット
エッチングにより図面の左右方向であるX方向にストラ
イプ状の透明な下部電極2を形成した。次に、Si 金属
をターゲットとし、アルゴン、酸素及び窒素(N2)の混
合ガスをチャンバー内に供給できるスパッタ装置を用
い、その混合ガス雰囲気中で高周波スパッタして下部電
極2上に窒化物系絶縁膜である下部絶縁層3を形成し
た。この成膜開始時には、チャンバー内にアルゴンガス
と酸素ガスのみを供給した。成膜途中では、徐々に供給
酸素量を減少させ、代わりに窒素ガスを供給し、徐々に
供給窒素量を増加させた。そして、成膜終了直前には、
酸素ガスの供給を停止し、アルゴンガスと窒素ガスのみ
を供給した。この膜厚は2000Åとした。下部絶縁層3上
の発光層4は、ZnS:Mnのペレットを作成し、電子ビ
ーム蒸着法で成膜した。Mn濃度は1wt%であり、膜厚
は6000Åである。次に、発光層4上に、窒化物系絶縁膜
である上部絶縁層5を形成した。上部絶縁層5は上記下
部絶縁層3の逆の構造である。即ち、成膜開始時にはス
パッタ装置のチャンバー内にアルゴンガスと窒素ガスの
みを供給し、徐々に窒素ガスを減少させ、酸素ガスを増
加させ最後は窒素ガスを0にし、アルゴンガスと酸素ガ
スのみで成膜した。この膜厚は下部絶縁層3と同様の20
00Åである。最後に、Alを電子ビーム蒸着法により200
0Åの厚みに成膜し、フォトエッチング法により図面に
垂直方向であるY方向にストライプ状の上部電極6を形
成した。尚、上述の構成の素子をSiNx-SiOxy-Si
x 品とする。
Next, the above-mentioned thin film EL display device 1
The manufacturing method of 00 is described below. IT on the glass substrate 1
O was sputtered in a mixed gas atmosphere of argon (Ar) and oxygen (O 2 ) to form a film having a thickness of 2000 Å, and the transparent lower electrode was striped in the X direction, which is the horizontal direction of the drawing, by wet etching. Formed 2. Next, using a sputtering apparatus capable of supplying a mixed gas of argon, oxygen, and nitrogen (N 2 ) into the chamber, using Si metal as a target, high-frequency sputtering is performed in the mixed gas atmosphere to perform nitride-based deposition on the lower electrode 2. The lower insulating layer 3 which is an insulating film was formed. At the start of this film formation, only argon gas and oxygen gas were supplied into the chamber. During the film formation, the supply oxygen amount was gradually decreased, nitrogen gas was supplied instead, and the supply nitrogen amount was gradually increased. And just before the film formation is finished,
The supply of oxygen gas was stopped, and only argon gas and nitrogen gas were supplied. This film thickness was 2000Å. For the light emitting layer 4 on the lower insulating layer 3, ZnS: Mn pellets were prepared and formed by an electron beam evaporation method. The Mn concentration is 1 wt% and the film thickness is 6000Å. Next, the upper insulating layer 5 which is a nitride insulating film was formed on the light emitting layer 4. The upper insulating layer 5 has a structure opposite to that of the lower insulating layer 3. That is, at the start of film formation, only argon gas and nitrogen gas are supplied into the chamber of the sputtering apparatus, the nitrogen gas is gradually decreased, the oxygen gas is increased, and finally the nitrogen gas is set to 0. Only argon gas and oxygen gas are used. A film was formed. This film thickness is the same as the lower insulating layer 3
It is 00Å. Lastly, Al was deposited by electron beam evaporation to 200
A film having a thickness of 0Å was formed, and a stripe-shaped upper electrode 6 was formed in the Y direction, which is a direction perpendicular to the drawing, by photoetching. Incidentally, the elements of the above-described configuration SiN x -SiO x N y -Si
Ox product.

【0012】上記SiNx-SiOxy-SiOx 品と比較実
験するため、下部絶縁層3及び上部絶縁層5の各々をS
iNxのみで形成した素子をSiNx品とする。又、下部絶
縁層3及び上部絶縁層5の各々をSiOxのみで形成した
素子をSiOx品とする。即ち、SiNx品の下部絶縁層3
及び上部絶縁層5はSi ターゲットをアルゴンガスと窒
素ガスのみの混合ガス雰囲気中でスパッタし、SiOx
の下部絶縁層3及び上部絶縁層5はアルゴンガスと酸素
ガスのみの混合ガス雰囲気中でスパッタし製作した。こ
れら下部絶縁層3及び上部絶縁層5の膜厚は全て2000Å
とした。
[0012] For comparison experiment with the SiN x -SiO x N y -SiO x products, each of the lower insulating layer 3 and the upper insulating layer 5 S
An element formed of only iN x is a SiN x product. Further, an element in which each of the lower insulating layer 3 and the upper insulating layer 5 is formed of only SiO x is referred to as a SiO x product. That is, the lower insulating layer 3 of the SiN x product
And the upper insulating layer 5 sputters a Si target in a mixed gas atmosphere of only argon gas and nitrogen gas, and the lower insulating layer 3 and the upper insulating layer 5 of the SiO x product are in a mixed gas atmosphere of only argon gas and oxygen gas. It was produced by sputtering. The thicknesses of the lower insulating layer 3 and the upper insulating layer 5 are all 2000 Å
And

【0013】本発明のSiNx-SiOxy-SiOx 品及び
SiNx品は、上部電極6のフォトエッチング工程でも膜
剥離を起こすことなく問題がなかった。しかし、SiOx
品は洗浄工程やフォトエッチング工程のウェットエッチ
ング工程で膜剥離を生じ満足な薄膜ELディスプレイ素
子を作ることができなかった。この場合の膜剥離は発光
層4と上部絶縁層5との間で生じた。この原因をX線光
電子分光法により分析した。その結果、膜剥離したSi
x品は発光層(ZnS:Mn)の最表面部分にZnSO4
形成されていることが判明した。図7にて分かるよう
に、ZnSO4はZnS,ZnOに比べ10万倍も水に対して
溶け易く、発光層と絶縁層との間に形成されたZnSO4
層が洗浄工程やフォトエッチング工程のウェットエッチ
ング工程で水に溶解し、そこから膜剥離が生じたと考え
られる。このZnSO4は発光層の母材であるZnSが絶
縁膜(SiOx)形成時のスパッタで生じる酸素プラズマ
により酸化され形成されたと考えられる。ここで、従
来、ZnS は酸化により直接ZnO となるというのが通
説であった。本発明のSiNx-SiOxy-SiOx 品及び
SiNx品は、発光層のZnS が直接酸素プラズマに曝さ
れないためZnSO4が形成されず膜剥離が生じなかった
と考えられる。
The SiN x -SiO x N y -SiO x product and the SiN x product of the present invention did not cause film peeling even in the photoetching process of the upper electrode 6 and had no problem. However, SiO x
The product peeled off in the cleaning process and the wet etching process such as the photo-etching process, and a satisfactory thin film EL display device could not be manufactured. Film peeling in this case occurred between the light emitting layer 4 and the upper insulating layer 5. The cause was analyzed by X-ray photoelectron spectroscopy. As a result, the peeled Si
It was found that ZnSO 4 was formed on the outermost surface of the light emitting layer (ZnS: Mn) in the O x product. As can be seen from FIG. 7, ZnSO 4 is 100,000 times more soluble in water than ZnS and ZnO, and ZnSO 4 formed between the light emitting layer and the insulating layer is formed.
It is considered that the layer was dissolved in water during the wet etching process such as the cleaning process and the photoetching process, and the film peeling occurred from there. It is considered that this ZnSO 4 was formed by oxidizing ZnS, which is the base material of the light emitting layer, by the oxygen plasma generated by sputtering during the formation of the insulating film (SiO x ). Here, conventionally, it has been generally accepted that ZnS is directly converted into ZnO by oxidation. It is considered that the ZnS 4 of the light-emitting layer of the SiN x -SiO x N y -SiO x product and the SiN x product of the present invention were not directly exposed to oxygen plasma, and thus ZnSO 4 was not formed and film peeling did not occur.

【0014】次に、完成した本発明のSiNx-SiOxy
-SiOx 品とSiNx品とに対して絶縁破壊するまで駆動
電圧を上昇させ絶縁破壊後の様子を比べた。両者が絶縁
破壊する電圧値にはあまり差がなかったが、両者の破壊
モードは大きく異なった。即ち、SiNx-SiOxy-Si
x 品は絶縁破壊が直径0.1mm〜0.5mm程度の穴が形成さ
れただけでそれ以上進行しなかった(自己回復型)。そ
れに対して、SiNx品は最初小さな絶縁破壊が生じると
瞬時にして伝播し、発光画素全体がまたたく間に壊れて
しまった(伝播型)。この破壊モードの違いの原因は不
明であるが、窒化物系絶縁膜の発光層に接触する面とは
反対の最表面部分に酸素が存在する場合に自己回復型の
破壊モードを示す実験結果が得られている。
Next, the completed SiN x -SiO x N y of the present invention.
-The drive voltage was increased until the dielectric breakdown occurred for the SiO x product and the SiN x product, and the states after the dielectric breakdown were compared. Although there was not much difference in the voltage value at which the dielectric breakdown occurred, the breakdown modes of the two were significantly different. That is, SiN x -SiO x N y -Si
With respect to the O x product, the dielectric breakdown only formed a hole with a diameter of about 0.1 mm to 0.5 mm and did not proceed any further (self-recovery type). On the other hand, in the case of the SiN x product, when a small dielectric breakdown occurs at first, it propagates instantly, and the entire light emitting pixel is broken in a blink (propagation type). The cause of this difference in breakdown mode is unknown, but experimental results showing a self-recovery breakdown mode when oxygen is present at the outermost surface of the nitride-based insulating film opposite to the surface in contact with the light emitting layer Has been obtained.

【0015】図3は、本発明に係る薄膜ELディスプレ
イ素子の他の実施例における縦断面を示した模式図であ
る。尚、この図では、発光層4より上側の構成を示して
いるが、発光層4の下側に対しても対象的に構成されて
いる。発光層4上に上部絶縁層5が形成してある。この
上部絶縁層5は上述の実施例と同様のSiNx-SiOxy
-SiOx の構成である。本実施例では、上部絶縁層5上
に五酸化タンタル(Ta25)の膜厚4000Åから成る絶縁
層7が形成されている。この絶縁層7は絶縁耐圧を上部
絶縁層5のみの場合から更に向上させるために形成した
ものである。このように、他の種類の絶縁層を上部絶縁
層5上に積み重ねて形成しても効果は上述と同様とな
る。
FIG. 3 is a schematic view showing a vertical section in another embodiment of the thin film EL display element according to the present invention. It should be noted that although the configuration above the light emitting layer 4 is shown in this figure, the configuration below the light emitting layer 4 is also symmetrical. An upper insulating layer 5 is formed on the light emitting layer 4. The upper insulating layer 5 is similar SiN x -SiO the above-described examples x N y
It is a configuration of -SiO x. In this embodiment, an insulating layer 7 made of tantalum pentoxide (Ta 2 O 5 ) having a film thickness of 4000 Å is formed on the upper insulating layer 5. The insulating layer 7 is formed to further improve the withstand voltage compared with the case of only the upper insulating layer 5. In this way, the effect is the same as that described above even if another type of insulating layer is stacked and formed on the upper insulating layer 5.

【0016】図4〜図6は、本発明に係る窒化物系絶縁
膜の膜厚方向の他の実施例における窒素濃度及び酸素濃
度の分布を示した説明図である。図4では、窒化物系絶
縁膜のうち発光層との接触部分のみSiNx層で構成し、
発光層から離れるとSiOxy 層の構成となっている。
このものでは、SiOx層は存在しない。図5では、窒化
物系絶縁膜は発光層との接触部分からSiNx層が続き、
発光層から最も離れた部分である最外殻表面にSiOx
y 層を形成したものである。図6では、窒化物系絶縁膜
は発光層との接触部分からSiNx層が続き、発光層から
最も離れた部分である最外殻表面にSiOx層が形成され
ている。図4〜図6に示された窒化物系絶縁膜の構造は
全て上述の実施例と同様に膜剥離及び破壊モードの改善
に効果を発揮する。上述の実施例での発光層としてはZ
nS:Mnで説明したが、ZnS:Tb(緑色発光)やZn
S:Sm(赤色発光)など他の添加物を入れた場合も同
様である。本発明では窒化物系絶縁膜にSiNx系を用い
たがAlN 系のような他の窒化物で構成しても良い。
尚、本実施例では、下部絶縁層と上部絶縁層とを対称的
に構成したが、絶縁破壊モードの改善と膜剥離防止効果
は、上部絶縁層が支配的であり上部絶縁層のみ本発明で
構成してもかまわない。
4 to 6 are explanatory views showing distributions of nitrogen concentration and oxygen concentration in another embodiment of the nitride type insulating film according to the present invention in the film thickness direction. In FIG. 4, only the contact portion of the nitride-based insulating film with the light emitting layer is composed of the SiN x layer,
When it is separated from the light emitting layer, it has a structure of a SiO x N y layer.
In this one, there is no SiO x layer. In FIG. 5, the nitride-based insulating film has a SiN x layer continuing from the contact portion with the light emitting layer,
SiO x N on the outermost shell surface, which is the part farthest from the light emitting layer
The y layer is formed. In FIG. 6, the nitride insulating film has a SiN x layer continuing from the contact portion with the light emitting layer, and the SiO x layer is formed on the outermost shell surface that is the farthest portion from the light emitting layer. The structures of the nitride-based insulating films shown in FIGS. 4 to 6 are all effective in improving the film peeling and the breakdown mode as in the above-mentioned embodiments. As the light emitting layer in the above embodiment, Z
As explained with nS: Mn, ZnS: Tb (green emission) and Zn
The same applies when other additives such as S: Sm (red emission) are added. In the present invention, the nitride-based insulating film is made of SiN x series, but may be made of other nitrides such as AlN series.
In this example, the lower insulating layer and the upper insulating layer were symmetrically configured, but the improvement of the dielectric breakdown mode and the effect of preventing film peeling are dominated by the upper insulating layer, and only the upper insulating layer is provided by the present invention. You can configure it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る薄膜ELディ
スプレイ素子の縦断面を示した模式図である。
FIG. 1 is a schematic view showing a vertical section of a thin film EL display device according to a specific example of the present invention.

【図2】同実施例に係る窒化物系絶縁膜の膜厚方向にお
ける窒素濃度及び酸素濃度の分布を示した説明図であ
る。
FIG. 2 is an explanatory diagram showing distributions of nitrogen concentration and oxygen concentration in a film thickness direction of a nitride insulating film according to the example.

【図3】本発明に係る薄膜ELディスプレイ素子の他の
実施例における縦断面を示した模式図である。
FIG. 3 is a schematic view showing a vertical section in another embodiment of the thin film EL display device according to the present invention.

【図4】本発明に係る窒化物系絶縁膜の膜厚方向の他の
実施例における窒素濃度及び酸素濃度の分布を示した説
明図である。
FIG. 4 is an explanatory diagram showing distributions of nitrogen concentration and oxygen concentration in another example of the nitride-based insulating film according to the present invention in the film thickness direction.

【図5】本発明に係る窒化物系絶縁膜の膜厚方向の他の
実施例における窒素濃度及び酸素濃度の分布を示した説
明図である。
FIG. 5 is an explanatory view showing distributions of nitrogen concentration and oxygen concentration in another example of the nitride-based insulating film according to the present invention in the film thickness direction.

【図6】本発明に係る窒化物系絶縁膜の膜厚方向の他の
実施例における窒素濃度及び酸素濃度の分布を示した説
明図である。
FIG. 6 is an explanatory diagram showing distributions of nitrogen concentration and oxygen concentration in another example of the nitride-based insulating film according to the present invention in the film thickness direction.

【図7】硫化亜鉛とその酸化物の水に対する溶解度を示
した表である。
FIG. 7 is a table showing the solubility of zinc sulfide and its oxide in water.

【図8】従来の薄膜ELディスプレイ素子の縦断面を示
した模式図である。
FIG. 8 is a schematic view showing a vertical section of a conventional thin film EL display device.

【符号の説明】[Explanation of symbols]

1−ガラス基板(絶縁性基板) 2−下部電極 3−下部絶縁層(窒化物系絶縁膜) 3a−無酸素層(酸素を含まない窒化物) 3b−有酸素層(酸素を含む窒化物又は酸化物) 4−発光層 5−上部絶縁層(窒化物系絶縁膜) 5a−無酸素層(酸素を含まない窒化物) 5b−有酸素層(酸素を含む窒化物又は酸化物) 6−上部電極 1-Glass Substrate (Insulating Substrate) 2-Lower Electrode 3-Lower Insulating Layer (Nitride Insulating Film) 3a-Oxygen-Free Layer (Nitride Not Containing Oxygen) 3b-Aerobic Layer (Nitride Containing Oxygen or Oxide) 4-Emitting layer 5-Upper insulating layer (nitride-based insulating film) 5a-Oxygen-free layer (nitride that does not contain oxygen) 5b-Aerobic layer (nitride or oxide that contains oxygen) 6-Upper part electrode

フロントページの続き (72)発明者 安藤 芳康 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 鈴木 正幸 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front page continuation (72) Inventor Yoshiyasu Ando 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihon Denso Co., Ltd. (72) Inventor Masayuki Suzuki 1-1-cho, Showa-cho, Kariya city, Aichi prefecture Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に下部電極、下部絶縁層、
発光層、上部絶縁層及び上部電極を順次積層し形成した
薄膜ELディスプレイ素子であって、 前記発光層と隣接する前記下部絶縁層又は前記上部絶縁
層を窒化物系絶縁膜で構成し、該窒化物系絶縁膜の厚み
方向の少なくとも前記発光層との接触部分では酸素を含
まない窒化物とし、前記窒化物系絶縁膜の厚み方向の少
なくとも前記発光層から最も離れた部分では酸素を含む
窒化物又は酸化物としたことを特徴とする薄膜ELディ
スプレイ素子。
1. A lower electrode, a lower insulating layer, and
A thin film EL display device comprising a light emitting layer, an upper insulating layer and an upper electrode, which are sequentially laminated, wherein the lower insulating layer or the upper insulating layer adjacent to the light emitting layer is composed of a nitride-based insulating film, A nitride containing no oxygen in at least a contact portion with the light emitting layer in the thickness direction of the physical insulating film, and a nitride containing oxygen in at least a portion farthest from the light emitting layer in the thickness direction of the nitride insulating film. Alternatively, a thin film EL display device characterized by using an oxide.
JP3306900A 1991-10-24 1991-10-24 EL display element Expired - Lifetime JP2837007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306900A JP2837007B2 (en) 1991-10-24 1991-10-24 EL display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306900A JP2837007B2 (en) 1991-10-24 1991-10-24 EL display element

Publications (2)

Publication Number Publication Date
JPH05121170A true JPH05121170A (en) 1993-05-18
JP2837007B2 JP2837007B2 (en) 1998-12-14

Family

ID=17962618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306900A Expired - Lifetime JP2837007B2 (en) 1991-10-24 1991-10-24 EL display element

Country Status (1)

Country Link
JP (1) JP2837007B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
JP2014206745A (en) * 2001-11-30 2014-10-30 株式会社半導体エネルギー研究所 Semiconductor device and vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206745A (en) * 2001-11-30 2014-10-30 株式会社半導体エネルギー研究所 Semiconductor device and vehicle
JP2016027408A (en) * 2001-11-30 2016-02-18 株式会社半導体エネルギー研究所 vehicle
US9493119B2 (en) 2001-11-30 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US10325940B2 (en) 2001-11-30 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US10629637B2 (en) 2001-11-30 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US10957723B2 (en) 2001-11-30 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device

Also Published As

Publication number Publication date
JP2837007B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JP2837004B2 (en) EL display element
JPH05121170A (en) Thin film el display element
JPH05144571A (en) Thin film electroluminescent display element
JPH01186588A (en) Display device and its manufacture
JPH0515037B2 (en)
JP3258780B2 (en) Electroluminescence device and method of manufacturing the same
JP3614182B2 (en) Method for manufacturing electroluminescence element
JP2844964B2 (en) Manufacturing method of EL display device
JP3308308B2 (en) Thin film EL display element and method of manufacturing the same
JP2502560B2 (en) Method for forming dielectric film
JPH01276592A (en) Manufacture of multi-color display thin film el element
KR950013668B1 (en) Thin el display element and manufacture method thereof
JPH07235381A (en) Thin film type electroluminescent element
JPH0888080A (en) Electroluminescent element and its manufacture
JPS6321788A (en) Thin film electroluminescence device
JP2905657B2 (en) Method for manufacturing electroluminescent element
JPH01112691A (en) Manufacture of thin film el element
JPS6366895A (en) Method of aging thin film el device
JPH02132791A (en) Thin-film el element
JPH01227395A (en) Manufacture of thin film el element
JPH01194289A (en) Membranous electroluminescence element and its manufacture
JPH0896965A (en) Electroluminescent element and manufacture thereof
JPH0896966A (en) Electroluminecent element and manufacture thereof
KR20000051875A (en) Electroluminescent device having flat surface and its fabricating method
JPH088147B2 (en) Thin film EL device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14