JPH05121105A - Cobalt air secondary battery - Google Patents

Cobalt air secondary battery

Info

Publication number
JPH05121105A
JPH05121105A JP3308370A JP30837091A JPH05121105A JP H05121105 A JPH05121105 A JP H05121105A JP 3308370 A JP3308370 A JP 3308370A JP 30837091 A JP30837091 A JP 30837091A JP H05121105 A JPH05121105 A JP H05121105A
Authority
JP
Japan
Prior art keywords
air
cobalt
negative electrode
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3308370A
Other languages
Japanese (ja)
Other versions
JP3005962B2 (en
Inventor
Naoki Kato
直樹 加藤
Takaharu Akuto
敬治 阿久戸
Masaaki Takeuchi
正明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3308370A priority Critical patent/JP3005962B2/en
Publication of JPH05121105A publication Critical patent/JPH05121105A/en
Application granted granted Critical
Publication of JP3005962B2 publication Critical patent/JP3005962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To eliminate a configuration change of a negative electrode to realize a long service life by using porous cobalt for a negative electrode active material in an air cell and enabling charging without using an additive agent. CONSTITUTION:An electrolyte 4 is in contact with cobalt 1 and an air electrode 3 while interposing a separator 2, and takes in air from outside through an air hole 10. Oxygen is uniformly supplied to a whole surface 4 the air electrode 3 by means of a diffusion paper. A water-repellent film 5 prevents the electrolyte 4 from leaking to the outside of an air battery. The porous cobalt 1 is used for a negative electrode active material of an air cell to enlarge a contact surface with the electrolyte 4. The separator 2 is errosion-proof against the electrolyte 4. When a carbon material or a specified metallic material is used for the electrode 3, an alkaline solution having excellent ionic conductivity can be used for the electrolyte 4. Accordingly, the use of the cobalt 1 for the negative electrode active material enables charging as a single body and facilitates manufacturing. Therefore, an additive agent becomes unnecessary, a configuration change of a negative electrode is eliminated, and a long service life is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コバルト空気2次
電池、さらに詳細には負極を金属活物質、正極を酸素活
物質、電解液をアルカリ水溶液で構成する空気電池に係
わり、充電機能を有する空気電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cobalt-air secondary battery, and more particularly to an air battery having a negative electrode made of a metal active material, a positive electrode made of an oxygen active material, and an electrolyte solution made of an alkaline aqueous solution, and having a charging function. Regarding air batteries.

【0002】[0002]

【従来の技術及び問題点】空気電池は、正極活物質に空
気中の酸素を使用するので、エネルギ密度が高く、負極
活物質に亜鉛を用いたものは、1次電池として既に実用
化されている。この高エネルギ密度の特徴をさらに生か
すため、空気電池の充電を可能とする2次電池化の試み
がかねてより行なわれてきた。空気電池の充放電は、負
極活物質に用いる金属の電気化学的性質に大きく依存す
るが、これに起因する問題点も多く2次電池化を難しく
している。例えば、亜鉛空気電池では、放電による負極
の溶解が、充電時の樹枝状結晶(デンドライト)析出を
引き起こすため、これが不動態化などの原因となり、電
池寿命特性の低下をまねく。この対策として、従来、次
のような手段が検討されてきた。負極活物質に添加剤を
混合した不溶性負極の作製、あるいは、電解液中に添加
剤を加えることによる樹枝状結晶生長の抑制などであ
る。
2. Description of the Related Art Air batteries use oxygen in the air as a positive electrode active material, and thus have a high energy density, and those using zinc as a negative electrode active material have already been put to practical use as primary batteries. There is. In order to make the best use of the feature of this high energy density, attempts have been made to make a secondary battery capable of charging an air battery. Charge and discharge of an air battery largely depend on the electrochemical properties of the metal used for the negative electrode active material, but there are many problems resulting from this, making it difficult to make a secondary battery. For example, in a zinc-air battery, the dissolution of the negative electrode due to discharge causes the deposition of dendrites (dendrites) during charging, which causes passivation and the like, leading to a deterioration in battery life characteristics. As measures against this, conventionally, the following means have been studied. For example, preparation of an insoluble negative electrode in which an additive is mixed with a negative electrode active material, or suppression of dendritic crystal growth by adding the additive to an electrolytic solution.

【0003】また、亜鉛以外の金属では、アルミニウム
を負極活物質とする、アルミニウム空気電池も検討され
ている。この電池では、放電で生成するAl(OH)3
を還元することが極めて困難なため、Al(OH)3
新しいアルミニウムと取り替えるという、変則的な充電
方式がとられている。従って、この場合は一般的な2次
電池とは異なり、その用途はかなり制限されたものにな
る。
Also, for metals other than zinc, aluminum-air batteries using aluminum as the negative electrode active material are also under study. In this battery, Al (OH) 3 generated by discharge
Since it is extremely difficult to reduce Al, the irregular charging method of replacing Al (OH) 3 with new aluminum is adopted. Therefore, in this case, unlike a general secondary battery, its use is considerably limited.

【0004】[0004]

【発明の目的】本発明の目的は、上記問題点を解決する
こと、すなわち添加剤を用いることなく充電が可能で、
長寿命な空気電池を提供することにある。
It is an object of the present invention to solve the above problems, that is, charging is possible without using additives,
It is to provide a long-life air battery.

【0005】[0005]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明のコバルト2次電池は、空気電池の負極活
物質に、コバルトを用いることを特徴とするものであ
る。
In order to solve the above problems, the cobalt secondary battery of the present invention is characterized by using cobalt as a negative electrode active material of an air battery.

【0006】従来の、亜鉛などを負極活物質とする空気
電池の2次電池化技術では、充電時に問題となる負極の
溶解や形態変化を抑制するため、添加剤を用いるなどの
方法でこれを行なってきた。これに対し本発明は、こう
した添加剤などがなくても、溶解、形態変化をほとんど
伴うことがない、コバルトを負極活物質に使用すること
を特徴とする。
In the conventional technology for forming a secondary battery of an air battery using zinc or the like as a negative electrode active material, an additive is used to suppress dissolution or morphological change of the negative electrode, which is a problem during charging. I've done it. On the other hand, the present invention is characterized in that cobalt is used as the negative electrode active material, which hardly causes dissolution and shape change even without such additives.

【0007】[0007]

【実施例】図1は本発明に関する電池の実施例を説明す
る図である。同図は本発明電池の断面概略図を示したも
のであり、1はコバルト、2はセパレータ、3は空気
極、4は電解液、5は撥水膜、6は拡散紙、7は負極電
池ケース、8は正極電池ケース、9は絶縁体、10は空
気孔をそれぞれ表す。
EXAMPLE FIG. 1 is a diagram for explaining an example of a battery according to the present invention. The figure shows a schematic cross-sectional view of the battery of the present invention. 1 is cobalt, 2 is separator, 3 is air electrode, 4 is electrolyte, 5 is water repellent film, 6 is diffusion paper, and 7 is negative battery A case, 8 is a positive battery case, 9 is an insulator, and 10 is an air hole.

【0008】ここで、電解液4は、セパレータ2を挟ん
で、コバルト1および空気極3と接している。10は空
気孔で、ここから外の空気を取り込む。また、拡散紙6
は、酸素を空気極3全面に均一に供給させるためのもの
であり、撥水膜5は、電解液が電池の外へ漏出すること
を防ぐ。
Here, the electrolytic solution 4 is in contact with the cobalt 1 and the air electrode 3 with the separator 2 interposed therebetween. Reference numeral 10 is an air hole through which outside air is taken. Also, diffusion paper 6
Is for uniformly supplying oxygen to the entire surface of the air electrode 3, and the water-repellent film 5 prevents the electrolytic solution from leaking out of the battery.

【0009】次に電池の動作機構について説明する。ま
ず放電は、正極および負極を外部負荷に接続すると、電
池内部で以下に示す右向きの電気化学反応が起こる。
Next, the operating mechanism of the battery will be described. First, in discharging, when the positive electrode and the negative electrode are connected to an external load, the following rightward electrochemical reaction occurs inside the battery.

【0010】[0010]

【式1】 [Formula 1]

【0011】[0011]

【式2】 [Formula 2]

【0012】ここで、括弧内の電位は標準起電力であ
る。これより、この電池の理論開放起電力は、1.13
Vとなる。実際には、負極活物質に多孔性コバルト、正
極(触媒極)に白金、電解液に水酸化カリウム(1mo
l/l)を用いた電池構成で、開放起電力0.88Vが
得られた。また充電は、外から電圧を加えることで上に
示した左向きの反応が起こるが、このとき実際に必要な
電圧のしきい値は、1.3V〜1.4Vであった。次
に、この電池系による充放電測定は、以下のように行な
った。まず完全に電池を放電させ、下記の(a)〜
(d)を1つのサイクルとして、これを繰り返した。
Here, the potential in parentheses is the standard electromotive force. From this, the theoretical open electromotive force of this battery is 1.13.
It becomes V. In reality, the negative electrode active material is porous cobalt, the positive electrode (catalyst electrode) is platinum, and the electrolyte is potassium hydroxide (1 mo
An open electromotive force of 0.88 V was obtained with the battery configuration using 1 / l). In charging, the above-mentioned leftward reaction occurs by applying a voltage from the outside, and the threshold value of the voltage actually required at this time was 1.3V to 1.4V. Next, the charge / discharge measurement by this battery system was performed as follows. First, the battery is completely discharged, and the following (a) to
This was repeated with (d) as one cycle.

【0013】(a)1.6Vの定電圧充電を5時間行な
う(完全充電ではない)。
(A) 1.6V constant voltage charging is carried out for 5 hours (not complete charging).

【0014】(b)10分間休止。(B) Rest for 10 minutes.

【0015】(c)3mAの定電流放電を、電圧が0V
に降下するまで続ける。
(C) A constant current discharge of 3 mA, a voltage of 0 V
Continue until you descend.

【0016】(d)10分間休止。(D) Rest for 10 minutes.

【0017】測定結果を図2に示す。ここで、斜線を引
いてあるのが電圧、他方が電流である。なお、このグラ
フは電流を電圧に対し5分遅らせて描いてある。図か
ら、放電では充電時の電気量の約80%が放出されてい
ることがわかる。またサイクル特性では、50回の充放
電を繰り返しても、1回目の60%以上の放電時間が観
察された。さらに、コバルトの電解液中への溶解、ある
いは形態変化はほとんど見られなかった。
The measurement results are shown in FIG. Here, the shaded area is the voltage and the other is the current. This graph is drawn with the current delayed by 5 minutes with respect to the voltage. From the figure, it can be seen that about 80% of the amount of electricity at the time of charging is discharged by discharging. Further, in the cycle characteristics, 60% or more of the first discharge time was observed even after repeating 50 times of charge and discharge. Furthermore, there was almost no dissolution of cobalt in the electrolytic solution or change in the morphology.

【0018】以上より本空気電池は、2次電池として充
分機能することは明らかである。この測定において、コ
バルト電極は、コバルト粉末を圧縮し、直径2.4c
m、厚さ0.8mmの円板状に成形することで多孔化を
行なった。これにより電解液がコバルト電極の内部にも
入り込み、電極全体を充放電反応に参加させることがで
きた。このことは、コバルト電極の多孔化の利点を示す
ものである。また、この電極を用いて2mAの定電流放
電を行なった測定で、電池容量128mAhの結果を得
た。
From the above, it is clear that the present air battery sufficiently functions as a secondary battery. In this measurement, the cobalt electrode was obtained by compressing the cobalt powder to have a diameter of 2.4c.
m was formed into a disk shape having a thickness of 0.8 mm to make it porous. As a result, the electrolytic solution entered the inside of the cobalt electrode and the entire electrode was able to participate in the charge / discharge reaction. This shows the advantage of making the cobalt electrode porous. In addition, a constant current discharge of 2 mA was performed using this electrode, and a result of a battery capacity of 128 mAh was obtained.

【0019】以上の実施例において、コバルト1は、多
孔化などにより電解液4との接触面積を大きくしたもの
を使用した。。また、セパレータ2は、フィルム状のセ
ロハン、ポリエチレン、ポリビニルアルコール、セラミ
ックなど電解液に侵されないものであればいかなるもの
でもよい。。空気電極3は、木炭類、カーボンブラック
などの炭素材料や、白金、金、多孔性ニッケルなどの金
属材料を使用することができ、電解液4は、KOH、N
aOHなどイオン伝導性のよいアルカリ性溶液を使用す
ることができる。撥水膜5は、多孔性ポリテトラフルオ
ロエチレンなど、電解液4をはじく性質のもの、拡散紙
6は、セルロースなど。電池ケース7および8は、AB
S樹脂やフッ素樹脂など、電解液4に侵されない材質の
ものであれば特に限定されない。絶縁体9は合成ゴム、
ポリマーなどの弾力性があり、絶縁性の大きなもの、な
どを使用できる。また、空気孔10は、空気極に充分な
酸素を送り込める大きさであればよい。
In the above examples, the cobalt 1 used has a large contact area with the electrolytic solution 4 due to porosity or the like. . Further, the separator 2 may be any film-like cellophane, polyethylene, polyvinyl alcohol, ceramic or the like as long as it is not affected by the electrolytic solution. . The air electrode 3 can use a carbon material such as charcoal or carbon black, or a metal material such as platinum, gold, or porous nickel, and the electrolyte solution 4 can be KOH or N.
An alkaline solution having good ion conductivity such as aOH can be used. The water repellent film 5 has a property of repelling the electrolytic solution 4 such as porous polytetrafluoroethylene, and the diffusion paper 6 is cellulose or the like. Battery cases 7 and 8 are AB
There is no particular limitation as long as it is made of a material that is not affected by the electrolytic solution 4, such as S resin or fluororesin. Insulator 9 is synthetic rubber,
An elastic material such as a polymer having a large insulating property can be used. Further, the air holes 10 may be of any size as long as sufficient oxygen can be sent to the air electrode.

【0020】[0020]

【発明の効果】以上説明したように、本発明では負極活
物質にコバルトを使用して充電可能な空気電池を実現し
た。この場合、次のような優れた効果がある。
As described above, in the present invention, a rechargeable air battery is realized by using cobalt as the negative electrode active material. In this case, there are the following excellent effects.

【0021】負極はコバルト単体だけでよく、電解液も
含めて、添加剤などを必要としないため、電池の作製が
容易である。負極の形態変化がなく、長寿命である。
The negative electrode is made of only cobalt, and no additives such as an electrolytic solution are required. Therefore, the battery can be easily manufactured. The negative electrode has no change in shape and has a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコバルト2次電池の断面概略である。FIG. 1 is a schematic sectional view of a cobalt secondary battery of the present invention.

【図2】本発明の実施例の説明に供する、コバルト電極
を用いた空気電池の充放電特性を示す。
FIG. 2 shows charge / discharge characteristics of an air battery using a cobalt electrode, which is used for explaining an example of the present invention.

【符号の説明】[Explanation of symbols]

1 コバルト 2 セパレータ 3 空気極 4 電解液 5 撥水膜 6 拡散紙 7 負極電池ケース 8 正極電池ケース 9 絶縁体 10 空気孔 1 Cobalt 2 Separator 3 Air electrode 4 Electrolyte 5 Water repellent film 6 Diffusion paper 7 Negative battery case 8 Positive battery case 9 Insulator 10 Air holes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】空気電池の負極活物質に、コバルトを用い
ることを特徴とするコバルト空気2次電池。
1. A cobalt-air secondary battery, wherein cobalt is used as a negative electrode active material of the air battery.
【請求項2】コバルトが多孔性である請求項1記載のコ
バルト空気2次電池。
2. The cobalt-air secondary battery according to claim 1, wherein the cobalt is porous.
JP3308370A 1991-10-28 1991-10-28 Cobalt air secondary battery Expired - Fee Related JP3005962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3308370A JP3005962B2 (en) 1991-10-28 1991-10-28 Cobalt air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3308370A JP3005962B2 (en) 1991-10-28 1991-10-28 Cobalt air secondary battery

Publications (2)

Publication Number Publication Date
JPH05121105A true JPH05121105A (en) 1993-05-18
JP3005962B2 JP3005962B2 (en) 2000-02-07

Family

ID=17980251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308370A Expired - Fee Related JP3005962B2 (en) 1991-10-28 1991-10-28 Cobalt air secondary battery

Country Status (1)

Country Link
JP (1) JP3005962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143436B1 (en) * 2009-01-16 2012-05-22 도요타 지도샤(주) Air secondary battery and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143436B1 (en) * 2009-01-16 2012-05-22 도요타 지도샤(주) Air secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP3005962B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US8663842B2 (en) Silver positive electrode for alkaline storage batteries
JP5172138B2 (en) Alkaline storage battery
JP2003502808A (en) Alkaline battery with improved anode
US3288642A (en) Rechargeable dry cell having gelled electrolyte
JP4617105B2 (en) Coin-type all-solid-state battery
JPS5928027B2 (en) Rechargeable chemical battery or storage battery
Pavlov et al. Nickel-zinc batteries with long cycle life
US3553027A (en) Electrochemical cell with lead-containing electrolyte and method of generating electricity
JP3005962B2 (en) Cobalt air secondary battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
CN100589263C (en) Positve electrode material, positve electrode and battery containing the material and preparing process thereof
US4292383A (en) Bilevel rechargeable cell
HU208596B (en) Rechargeable electrochemical cell
JP2517936B2 (en) Air zinc battery
US20120070739A1 (en) Galvanic element having a mercury-free negative electrode
JP2926732B2 (en) Alkaline secondary battery
US3672997A (en) Sealed metallic oxide-indium secondary battery
JP2001283902A (en) Alkaline battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH01134862A (en) Alkaline zinc storage battery
KR100287123B1 (en) Alkali-zinc secondary battery
JPH09213363A (en) Manufacture of alkali storage battery
JP2000195568A (en) Air battery
KR100287122B1 (en) Alkali-zinc secondary battery
JP2000058047A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees