JPH05121087A - Temperature control device of fuel cell power generating device - Google Patents

Temperature control device of fuel cell power generating device

Info

Publication number
JPH05121087A
JPH05121087A JP3285229A JP28522991A JPH05121087A JP H05121087 A JPH05121087 A JP H05121087A JP 3285229 A JP3285229 A JP 3285229A JP 28522991 A JP28522991 A JP 28522991A JP H05121087 A JPH05121087 A JP H05121087A
Authority
JP
Japan
Prior art keywords
combustion air
temperature
gas
reaction tube
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285229A
Other languages
Japanese (ja)
Inventor
Genichi Ikeda
元一 池田
Nobuhiro Iwasa
信弘 岩佐
Hiromasa Yoshida
弘正 吉田
Naonobu Yokoyama
尚伸 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3285229A priority Critical patent/JPH05121087A/en
Publication of JPH05121087A publication Critical patent/JPH05121087A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To allow a blower to manage its work with a minor capacity by permitting the off gas or part of the combustion air to flow through a bypass line so that the temp. of a reaction pipe becomes a level suitable for modification of the raw material which needs modification. CONSTITUTION:The temp. of a reaction pipe 2 is sensed by a temp. sensor 22, and a signal thus detected is fed to a temp. regulator 23, and a flow adjusting valve 20 is controlled on the basis of the deviation of this sensed temp. from the target value for the specified temp. suitable for the modification of the reaction pipe 2. Accordingly a part of the combustion air becomes a combustion air amount controlled by the flow adjusting valve 20. flows through a bypass line 21 without being preheated by a heat exchanger 10, and is supplied to a burner 4 together with the remaining portion of combustion air preheated by the heat exchanger 10, so that the temp. of the reaction pipe 2 is controlled to a specified level. Therefore. the control can be made with quick response and stability, and also the capacity of blower may remain small because the combustion air amount is controlled with constant air-fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料改質器と燃料電池
とを主要構成部とし、燃料改質器にて燃料電池の燃料極
からのオフガスの燃焼により生じる熱媒体により反応管
を加熱して反応管を通流する改質原料を水素に富むガス
に改質する際、反応管の温度を制御する燃料電池発電装
置の温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly comprises a fuel reformer and a fuel cell, and heats a reaction tube by a heat medium produced by combustion of off-gas from a fuel electrode of the fuel cell in the fuel reformer. The present invention relates to a temperature control device for a fuel cell power generator that controls the temperature of the reaction tube when reforming the reforming raw material flowing through the reaction tube into a gas rich in hydrogen.

【0002】[0002]

【従来の技術】燃料電池発電装置は燃料改質器と燃料電
池とを主要構成部として構成され、燃料改質器から排出
される燃焼排ガスにより燃料改質器での燃焼に供される
燃料電池から排出されるオフガスや燃焼空気を予熱する
加熱器としての熱交換器を備える図3に示す系統を有す
る燃料電池発電装置が知られている。
2. Description of the Related Art A fuel cell power generator is mainly composed of a fuel reformer and a fuel cell, and is used for combustion in the fuel reformer by combustion exhaust gas discharged from the fuel reformer. There is known a fuel cell power generation device having a system shown in FIG. 3 that includes a heat exchanger as a heater that preheats off-gas and combustion air discharged from the exhaust gas.

【0003】図3において燃料改質器1は触媒が充填さ
れた反応管2を内蔵する炉容器3と、この炉容器3の上
部に設けられるバーナ4とを備えている。燃料電池5は
電解質保持層6とこれを挟持する燃料極7及び酸化剤極
8等とから構成されている。加熱器としての熱交換器1
0は燃料改質器1の炉容器3から排出される燃焼排ガス
が燃料電池5の燃料極7から排出される電池反応に寄与
しない水素を含むオフガスと燃料改質器1のバーナ4に
供給するオフガス燃焼用の燃焼空気と熱交換してオフガ
ス及び燃焼空気を予熱する。
In FIG. 3, a fuel reformer 1 comprises a furnace vessel 3 containing a reaction tube 2 filled with a catalyst, and a burner 4 provided above the furnace vessel 3. The fuel cell 5 is composed of an electrolyte holding layer 6 and a fuel electrode 7 and an oxidant electrode 8 which sandwich the electrolyte holding layer 6 therebetween. Heat exchanger 1 as a heater
0 indicates that the combustion exhaust gas discharged from the furnace container 3 of the fuel reformer 1 is supplied to the burner 4 of the fuel reformer 1 and the off gas containing hydrogen that does not contribute to the cell reaction discharged from the fuel electrode 7 of the fuel cell 5. Preheat the offgas and the combustion air by exchanging heat with the combustion air for offgas combustion.

【0004】改質原料供給系11は燃料改質器1の反応
管2に接続され、水蒸気が付加された改質原料を反応管
2に供給する。改質ガス供給系12は反応管2と燃料電
池5の燃料極7とに接続され、反応管2から排出される
水素に富む改質ガスを燃料極7に供給する。オフガス排
出系13は熱交換器10を経由して燃料極7と燃料改質
器1のバーナ4とに接続され、燃料極7から排出される
オフガスを熱交換器10を経てバーナ4に供給する。
The reforming raw material supply system 11 is connected to the reaction tube 2 of the fuel reformer 1 and supplies the reforming raw material to which steam has been added to the reaction tube 2. The reformed gas supply system 12 is connected to the reaction tube 2 and the fuel electrode 7 of the fuel cell 5, and supplies the hydrogen-rich reformed gas discharged from the reaction tube 2 to the fuel electrode 7. The off-gas discharge system 13 is connected to the fuel electrode 7 and the burner 4 of the fuel reformer 1 via the heat exchanger 10, and supplies the off-gas discharged from the fuel electrode 7 to the burner 4 via the heat exchanger 10. ..

【0005】燃焼空気供給系14はブロワ15を備えて
バーナ4に熱交換器10を経由して接続され、ブロワ1
5により吸気された空気を昇圧し、熱交換器10を経て
バーナ4に燃焼空気として供給する。排ガス排出系16
は炉容器3に熱交換器10を経由して接続され、炉容器
3内でバーナ4により燃焼した燃焼ガスの燃焼排ガスを
熱交換器10を経て外部に排出する。
The combustion air supply system 14 is equipped with a blower 15 and is connected to the burner 4 via a heat exchanger 10.
The air sucked by 5 is pressurized and supplied to the burner 4 as combustion air via the heat exchanger 10. Exhaust gas exhaust system 16
Is connected to the furnace vessel 3 via a heat exchanger 10, and the combustion exhaust gas of the combustion gas burned by the burner 4 in the furnace vessel 3 is discharged to the outside via the heat exchanger 10.

【0006】空気供給系17は燃料電池5の酸化剤極8
に接続され、空気を酸化剤ガスとして酸化剤極8に供給
する。空気排出系18は酸化剤極8に接続され、酸化剤
極8から電池反応をした空気を外部に排出する。
The air supply system 17 is an oxidizer electrode 8 of the fuel cell 5.
And supplies air to the oxidant electrode 8 as oxidant gas. The air discharge system 18 is connected to the oxidant electrode 8 and discharges air that has undergone a battery reaction from the oxidant electrode 8 to the outside.

【0007】このような構成により、燃料電池5の燃料
極7から排出される燃料電池5の負荷に対応する量のオ
フガスはオフガス排出系13を経てバーナ4に供給さ
れ、ブロワ15によりバーナ4に供給される燃焼空気に
より燃焼し、この際生じる燃焼ガスは反応管2を加熱す
る。一方、水蒸気が付加された改質原料は改質原料供給
系11を経て反応管2に供給されて加熱された反応管2
内を通流し、触媒の下に水素に富むガスに改質されて改
質ガスとなる。
With such a configuration, the amount of off-gas discharged from the fuel electrode 7 of the fuel cell 5 corresponding to the load of the fuel cell 5 is supplied to the burner 4 via the off-gas discharge system 13, and is supplied to the burner 4 by the blower 15. Combustion is performed by the supplied combustion air, and the combustion gas generated at this time heats the reaction tube 2. On the other hand, the reforming raw material to which steam is added is supplied to the reaction tube 2 through the reforming raw material supply system 11 and heated to the reaction tube 2.
It flows through the inside and is reformed into a gas rich in hydrogen under the catalyst to become a reformed gas.

【0008】この改質ガスは改質ガス供給系12を経て
燃料電池5の燃料極7に供給され、この改質ガスと空気
供給系17を経て酸化剤極8に供給される空気とにより
燃料電池5は電池反応を起こして発電する。この際燃料
極7から排出されるオフガスは前述のようにバーナ4に
供給され、一方酸化剤極8から排出される空気は空気排
出系18を経て外部に排出される。
The reformed gas is supplied to the fuel electrode 7 of the fuel cell 5 through the reformed gas supply system 12, and the reformed gas and the air supplied to the oxidant electrode 8 through the air supply system 17 are used as fuel. The battery 5 causes a battery reaction to generate power. At this time, the off gas discharged from the fuel electrode 7 is supplied to the burner 4 as described above, while the air discharged from the oxidant electrode 8 is discharged to the outside via the air discharge system 18.

【0009】また、燃料改質器1のバーナ4によりオフ
ガスが燃焼して生じた燃焼ガスにより反応管2を加熱し
た後の燃焼排ガスは排ガス排出系16を経て外部に排出
される。この際燃焼排ガス,オフガス及び燃焼空気は熱
交換器10を経由して流れるので、オフガスと燃焼空気
とは熱交換器10により燃焼排ガスと熱交換して燃焼排
ガスにより予熱される。
Further, the combustion exhaust gas after heating the reaction tube 2 with the combustion gas generated by burning the off gas by the burner 4 of the fuel reformer 1 is discharged to the outside through the exhaust gas discharge system 16. At this time, the combustion exhaust gas, the off gas, and the combustion air flow through the heat exchanger 10. Therefore, the off gas and the combustion air exchange heat with the combustion exhaust gas by the heat exchanger 10 and are preheated by the combustion exhaust gas.

【0010】なお、図3では熱交換器10によりオフガ
スと燃焼空気との両者を燃焼排ガスにより予熱している
が、オフガスと燃焼空気とのいずれか一方を熱交換器を
介して予熱することも行なわれている。
Although both the off gas and the combustion air are preheated by the combustion exhaust gas by the heat exchanger 10 in FIG. 3, either the off gas or the combustion air may be preheated by the heat exchanger. Has been done.

【0011】ところで、バーナ4による燃焼により生じ
た燃焼ガスにより加熱される反応管2の温度は改質原料
に適する温度に制御される。この温度制御は燃焼空気の
流量、すなわち空燃比を変えることにより行なわれる。
By the way, the temperature of the reaction tube 2 heated by the combustion gas generated by the combustion by the burner 4 is controlled to a temperature suitable for the reforming raw material. This temperature control is performed by changing the flow rate of combustion air, that is, the air-fuel ratio.

【0012】[0012]

【発明が解決しようとする課題】上記の燃料電池発電装
置においては、燃料改質器の反応管の温度制御をバーナ
に供給される燃焼空気の流量、すなわち空燃比を変化さ
せることにより行なっている。したがって、燃料電池の
負荷変化等の過渡時に反応管に供給する熱のバランスが
くずれ、反応管の温度が所定温度より上昇する場合、空
燃比を大きく、すなわち燃焼空気量を大きくすることに
より、反応管の温度を低下させて温度制御している。こ
のため燃焼空気を送気するブロワの容量を大きくなけれ
ばならないという欠点がある。
In the above fuel cell power generator, the temperature control of the reaction tube of the fuel reformer is performed by changing the flow rate of the combustion air supplied to the burner, that is, the air-fuel ratio. .. Therefore, when the balance of the heat supplied to the reaction tube is lost during a transition such as a load change of the fuel cell and the temperature of the reaction tube rises above a predetermined temperature, the reaction is increased by increasing the air-fuel ratio, that is, increasing the amount of combustion air. The temperature of the tube is lowered to control the temperature. For this reason, there is a drawback that the capacity of the blower for sending the combustion air must be large.

【0013】また、燃焼空気は熱交換器を経由してバー
ナに供給されるので、反応管の温度への影響は緩慢なも
のとなり、応答性が早く安定した温度制御ができないと
いう欠点がある。
Further, since the combustion air is supplied to the burner via the heat exchanger, the influence on the temperature of the reaction tube becomes slow, and there is a drawback that the responsiveness is fast and stable temperature control cannot be performed.

【0014】本発明の目的は、燃焼空気送出用のブロワ
の容量を小さくするとともに負荷変化等の過渡時にも応
答性が早く安定した反応管の温度制御ができる燃料電池
発電装置の温度制御装置を提供することである。
An object of the present invention is to provide a temperature control device for a fuel cell power generator, which can reduce the capacity of a blower for delivering combustion air and can control the temperature of a reaction tube with a stable and fast response even during a transition such as a load change. Is to provide.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば燃料電池と、この電池の燃料極から
のオフガスを燃焼空気により燃焼して生じる熱媒体によ
り触媒が充填された反応管を加熱して反応管を通流する
改質原料を水素に富むガスに改質する燃料改質器と、こ
の改質器から排出される燃焼排ガスによりオフガスと燃
焼空気との少なくとも一方を予熱する加熱器とを備え、
加熱される反応管の温度を制御する燃料電池発電装置の
温度制御装置において、オフガス又は燃焼空気が加熱器
をバイパスし、流量調整弁を備えるバイパス系と、反応
管の温度を検出する温度検出器と、この検出器での検出
温度と反応管の温度の目標値との偏差から流量調整弁を
制御する制御手段とを備えるものとする。
In order to solve the above-mentioned problems, according to the present invention, a catalyst is filled with a fuel cell and a heat medium generated by burning off-gas from the fuel electrode of this cell with combustion air. A fuel reformer for heating the reaction tube to reform the reforming raw material flowing through the reaction tube into a gas rich in hydrogen, and at least one of off-gas and combustion air by the combustion exhaust gas discharged from the reformer. With a heater to preheat,
In a temperature control device for a fuel cell power generator that controls the temperature of a heated reaction tube, a bypass system including a flow rate adjusting valve and a temperature detector that detects the temperature of the reaction tube by offgas or combustion air bypassing the heater. And a control means for controlling the flow rate adjusting valve based on the deviation between the temperature detected by the detector and the target value of the temperature of the reaction tube.

【0016】[0016]

【作用】燃料改質器からの燃焼排ガスによりオフガス又
は燃焼空気を予熱する加熱器をバイパスし、流量調整弁
を備えたバイパス系を設け、温度検出器で検出した反応
管の温度と反応管を通流する改質原料の改質に適する温
度の目標値との偏差から制御手段により流量調整弁を制
御することにより、空燃比を一定にしても加熱器をバイ
パスするバイパス系を流量制御されて流れる予熱されな
いオフガス又は燃焼空気が、加熱器を経由し予熱された
オフガス又は燃焼空気と混合してバーナに供給されるの
で、バーナによる燃焼により生じた熱媒体に与えられる
熱量を変化させ、このため負荷変化の過渡時にも応答性
の早い安定した反応管の温度制御ができる。
[Function] Bypassing the heater that preheats off-gas or combustion air by the combustion exhaust gas from the fuel reformer, and providing a bypass system equipped with a flow rate adjusting valve, the temperature of the reaction tube detected by the temperature detector and the reaction tube By controlling the flow rate adjusting valve from the deviation from the target value of the temperature suitable for reforming the reforming raw material flowing through, the flow rate of the bypass system that bypasses the heater is controlled by controlling the flow rate adjusting valve by the control means. Since the non-preheated off-gas or combustion air flowing through the heater is mixed with the pre-heated off-gas or combustion air and supplied to the burner, the amount of heat given to the heat medium generated by the combustion by the burner is changed, and Stable temperature control of the reaction tube with fast response can be performed even during transient load changes.

【0017】[0017]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による温度制御装置を
備えた燃料電池発電装置の系統図である。なお、図1に
おいて図3の従来例と同一部品には同じ符号を付し、そ
の説明を省略する。図1において従来例と異なるのは、
熱交換器10をバイパスして燃焼空気供給系14から分
岐,合流し、流量調整弁20を備えるバイパス系21
と、反応管2の温度を検出する温度検出器22と、この
検出器での検出温度と反応管2の改質に適する所定温度
の目標値との偏差から流量調整弁20を制御する温度調
節器23とを設けたことである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a fuel cell power generator including a temperature control device according to an embodiment of the present invention. In FIG. 1, the same parts as those in the conventional example of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. 1 differs from the conventional example in that
Bypass system 21 that bypasses the heat exchanger 10 and branches and merges from the combustion air supply system 14 and that includes a flow rate adjustment valve 20.
And a temperature detector 22 for detecting the temperature of the reaction tube 2, and a temperature adjustment for controlling the flow rate adjusting valve 20 from the deviation between the temperature detected by this detector and a target value of a predetermined temperature suitable for reforming the reaction tube 2. And the container 23 is provided.

【0018】なお、温度検出器22はその検出端を反応
管2に設置する代わりに反応管2近傍の炉容器内に設置
してもよい。
The temperature detector 22 may be installed in the furnace vessel near the reaction tube 2 instead of installing the detection end in the reaction tube 2.

【0019】このような構成により、燃料電池5の燃料
極7から燃料電池5の負荷に対応する量のオフガスは、
オフガス排出系13を経、熱交換器10にて排ガス排出
系16を経る燃焼排ガスにより予熱されてバーナ4に供
給される。一方、燃焼空気は、バーナ4に供給されるオ
フガス量に対して一定の空燃比に制御した燃焼空気量に
してブロワ15によりバイパス系21を備える燃焼空気
供給系14を経てバーナ4に供給される。この際熱交換
器10を流れる燃焼空気は燃焼排ガスにより予熱され、
バイパス系21を流れる燃焼空気は予熱されない。この
ようにしてバーナ4に供給される燃焼空気によりバーナ
4に供給されるオフガスは燃焼し、この際生じた燃焼ガ
スにより反応管2を加熱し、反応管2を通流する改質原
料を水素に富むガスに改質する。
With such a configuration, the amount of off gas corresponding to the load of the fuel cell 5 from the fuel electrode 7 of the fuel cell 5 is
It is preheated by the combustion exhaust gas passing through the off-gas exhaust system 13 and the exhaust gas exhaust system 16 in the heat exchanger 10 and supplied to the burner 4. On the other hand, the combustion air is supplied to the burner 4 through the combustion air supply system 14 including the bypass system 21 by the blower 15 with a combustion air amount controlled to a constant air-fuel ratio with respect to the amount of off gas supplied to the burner 4. .. At this time, the combustion air flowing through the heat exchanger 10 is preheated by the combustion exhaust gas,
The combustion air flowing through the bypass system 21 is not preheated. In this way, the off-gas supplied to the burner 4 is combusted by the combustion air supplied to the burner 4, and the combustion gas generated at this time heats the reaction tube 2 so that the reforming raw material flowing through the reaction tube 2 is hydrogen. Reform to rich gas.

【0020】この際、反応管2の温度は改質原料の改質
に適する温度に次記のようにして制御される。すなわち
温度検出器22で反応管2の温度を検出し、この検出温
度の信号が温度調節器23に入力され、この調節器によ
り検出温度と反応管2の改質原料の改質に適する所定温
度の目標値との偏差から流量調整弁20を制御する。し
たがって一定空燃比の燃焼空気の一部が流量調整弁20
により制御された燃焼空気量となって熱交換器10にて
予熱されずにバイパス系21を流れ、熱交換器10にて
予熱された残りの燃焼空気量とともにバーナ4に供給さ
れるので、反応管2の温度は所定温度に制御される。
At this time, the temperature of the reaction tube 2 is controlled to a temperature suitable for reforming the reforming raw material as follows. That is, the temperature of the reaction tube 2 is detected by the temperature detector 22, and a signal of the detected temperature is input to the temperature controller 23, which detects the detected temperature and a predetermined temperature suitable for reforming the reforming raw material of the reaction tube 2. The flow rate adjusting valve 20 is controlled based on the deviation from the target value of. Therefore, a part of the combustion air having a constant air-fuel ratio is partially flow-controlled valve 20.
The amount of combustion air controlled by the heat exchanger 10 flows through the bypass system 21 without being preheated, and is supplied to the burner 4 together with the remaining amount of combustion air preheated in the heat exchanger 10. The temperature of the tube 2 is controlled to a predetermined temperature.

【0021】したがって反応管2の温度はバイパス系2
1を経て熱交換器10にて予熱されない流量制御された
燃焼空気を介して制御されるので、応答性が早く安定し
た制御が得られるとともに、燃焼空気量は一定空燃比で
制御されるので、ブロワの容量は従来より小さいもので
よい。
Therefore, the temperature of the reaction tube 2 is set to the bypass system 2
Since the flow rate is controlled via the flow-controlled combustion air that is not preheated by the heat exchanger 10 via 1, the response is quick and stable, and the combustion air amount is controlled at a constant air-fuel ratio. The capacity of the blower may be smaller than the conventional one.

【0022】図2は本発明の異なる実施例による温度制
御装置を備えた燃料電池発電装置の系統図である。図2
において図1の燃焼空気が熱交換器10をバイパスする
バイパス系21を取除き、オフガスが熱交換器10をバ
イパスし、流量調整弁25を備えたバイパス系26と、
温度検出器22での反応管2の検出温度と反応管2の改
質原料の改質に適する所定温度の目標値との偏差から流
量調整弁25を制御する温度調節器27とを設けた他は
図1のものと同じである
FIG. 2 is a system diagram of a fuel cell power generator having a temperature controller according to another embodiment of the present invention. Figure 2
In FIG. 1, the combustion air in FIG. 1 removes the bypass system 21 that bypasses the heat exchanger 10, the off gas bypasses the heat exchanger 10, and the bypass system 26 including the flow rate adjusting valve 25,
A temperature controller 27 for controlling the flow rate adjusting valve 25 is provided based on a deviation between a temperature detected by the temperature detector 22 of the reaction tube 2 and a target value of a predetermined temperature suitable for reforming the reforming raw material in the reaction tube 2. Is the same as that of FIG.

【0023】このような構成により、前述と同様に温度
検出器22での反応管2の検出温度の信号が温度調節器
27に入力され、この調節器により流量調整弁25を制
御して熱交換器10を経由しないで予熱されないオフガ
スが流量制御されてバイパス系26を流れる。そしてこ
のオフガスが熱交換器10を経由して予熱されるオフガ
スと混合してバーナ4に供給されて一定空燃比の燃焼空
気により燃焼し、この際生じる燃焼ガスにより反応管2
を加熱することにより、バイパス系26を流れる予熱さ
れない流量制御されたオフガスを介して反応管2の温度
は所定温度に制御され、前述と同じ効果が得られる。
With this configuration, the signal of the temperature detected by the reaction tube 2 in the temperature detector 22 is input to the temperature controller 27, and the flow rate adjusting valve 25 is controlled by this controller to perform heat exchange. The off-gas that is not preheated without passing through the vessel 10 is flow-controlled and flows through the bypass system 26. The off-gas is mixed with the pre-heated off-gas via the heat exchanger 10 and is supplied to the burner 4 to be burned by the combustion air having a constant air-fuel ratio.
By heating, the temperature of the reaction tube 2 is controlled to a predetermined temperature through the flow rate-controlled off-gas that does not preheat and flows through the bypass system 26, and the same effect as described above can be obtained.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば燃料改質器からの燃焼排ガスにより燃料電池か
らのオフガス又は燃焼空気を予熱する加熱器をバイパス
し、流量調整弁を備えたバイパス系を設け、反応管の温
度を改質原料の改質に適する温度になるようにオフガス
又は燃焼空気の一部がバイパス系を流れるように制御し
たことにより、バーナに供給されるオフガスは、このオ
フガスに対し一定空燃比にした燃焼空気により燃焼する
際、オフガス又は燃焼空気の一部が流量制御されて予熱
されずにバイパス系を経てバーナに供給されて燃焼し、
この際生じる熱媒体により反応管を加熱するので、反応
管の温度は応答性が早く安定して制御されるとともに燃
焼空気は一定の空燃比でバーナに供給するので、ブロワ
の容量は従来に比べて小さくなるという効果がある。
As is clear from the above description, according to the present invention, the heater for preheating the off gas or the combustion air from the fuel cell by the combustion exhaust gas from the fuel reformer is bypassed, and the flow control valve is provided. By providing a bypass system and controlling the temperature of the reaction tube to a temperature suitable for reforming the reforming raw material so that part of the offgas or combustion air flows through the bypass system, the offgas supplied to the burner is When burning with a combustion air having a constant air-fuel ratio to this off-gas, a part of the off-gas or combustion air is not flow-controlled and is not preheated but is supplied to the burner through the bypass system and burned,
Since the reaction tube is heated by the heat medium generated at this time, the temperature of the reaction tube is controlled quickly and stably, and the combustion air is supplied to the burner at a constant air-fuel ratio. Has the effect of becoming smaller.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による温度制御装置を備えた燃
料電池発電装置の系統図
FIG. 1 is a system diagram of a fuel cell power generator including a temperature control device according to an embodiment of the present invention.

【図2】本発明の異なる実施例による温度制御装置を備
えた燃料電池発電装置の系統図
FIG. 2 is a system diagram of a fuel cell power generator including a temperature control device according to another embodiment of the present invention.

【図3】従来の温度制御装置を備えた燃料電池発電装置
の系統図
FIG. 3 is a system diagram of a fuel cell power generator including a conventional temperature control device.

【符号の説明】[Explanation of symbols]

1 燃料改質器 2 反応管 5 燃料電池 10 熱交換器 20 流量調整弁 21 バイパス系 22 温度検出器 23 温度調節器 25 流量調整弁 26 バイパス系 27 温度調節器 DESCRIPTION OF SYMBOLS 1 Fuel reformer 2 Reaction tube 5 Fuel cell 10 Heat exchanger 20 Flow rate control valve 21 Bypass system 22 Temperature detector 23 Temperature controller 25 Flow rate control valve 26 Bypass system 27 Temperature controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 元一 神奈川県逗子市久木2−6,B9 (72)発明者 岩佐 信弘 大阪府岸和田市葛城町910−55 (72)発明者 吉田 弘正 愛知県名古屋市西区押切一丁目9番6号 (72)発明者 横山 尚伸 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoichi Ikeda 2-6, Hisagi, Zushi City, Kanagawa Prefecture (6) B9 (72) Nobuhiro Iwasa 910-55 Katsuragi Town, Kishiwada City, Osaka Prefecture (72) Hiromasa Yoshida Aichi Prefecture 1-9-6 Oshikiri, Nishi-ku, Nagoya (72) Inventor Naonobu Yokoyama 1-1, Shinden Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料電池と、この電池の燃料極からのオフ
ガスを燃焼空気により燃焼して生じる熱媒体により触媒
が充填された反応管を加熱して反応管を通流する改質原
料を水素に富むガスに改質する燃料改質器と、この改質
器から排出される燃焼排ガスによりオフガスと燃焼空気
との少なくとも一方を予熱する加熱器とを備え、加熱さ
れる反応管の温度を制御する燃料電池発電装置の温度制
御装置において、オフガス又は燃焼空気が加熱器をバイ
パスし、流量調整弁を備えるバイパス系と、反応管の温
度を検出する温度検出器と、この検出器での検出温度と
反応管の温度の目標値との偏差から流量調整弁を制御す
る制御手段とを備えたことを特徴とする燃料電池発電装
置の温度制御装置。
1. A fuel cell and a hydrogen-forming reforming material flowing through the reaction tube by heating a reaction tube filled with a catalyst by a heat medium generated by burning off-gas from the fuel electrode of the cell with combustion air. A fuel reformer for reforming into a rich gas and a heater for preheating at least one of off gas and combustion air by the combustion exhaust gas discharged from this reformer are provided, and the temperature of the heated reaction tube is controlled. In the temperature control device of the fuel cell power generation device, the off-gas or the combustion air bypasses the heater, the bypass system including the flow rate adjusting valve, the temperature detector that detects the temperature of the reaction tube, and the temperature detected by this detector And a control means for controlling the flow rate adjusting valve based on a deviation from a target value of the temperature of the reaction tube, the temperature control device of the fuel cell power generator.
JP3285229A 1991-10-31 1991-10-31 Temperature control device of fuel cell power generating device Pending JPH05121087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285229A JPH05121087A (en) 1991-10-31 1991-10-31 Temperature control device of fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285229A JPH05121087A (en) 1991-10-31 1991-10-31 Temperature control device of fuel cell power generating device

Publications (1)

Publication Number Publication Date
JPH05121087A true JPH05121087A (en) 1993-05-18

Family

ID=17688782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285229A Pending JPH05121087A (en) 1991-10-31 1991-10-31 Temperature control device of fuel cell power generating device

Country Status (1)

Country Link
JP (1) JPH05121087A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198076A (en) * 2000-12-22 2002-07-12 Honda Motor Co Ltd Fuel cell system
JP2008305690A (en) * 2007-06-08 2008-12-18 Honda Motor Co Ltd Reforming device for fuel cell
JP2009140733A (en) * 2007-12-06 2009-06-25 Nissan Motor Co Ltd Solid electrolyte fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198076A (en) * 2000-12-22 2002-07-12 Honda Motor Co Ltd Fuel cell system
JP2008305690A (en) * 2007-06-08 2008-12-18 Honda Motor Co Ltd Reforming device for fuel cell
JP2009140733A (en) * 2007-12-06 2009-06-25 Nissan Motor Co Ltd Solid electrolyte fuel cell system
US8815461B2 (en) 2007-12-06 2014-08-26 Nissan Motor Co., Ltd. Solid electrolyte fuel cell system

Similar Documents

Publication Publication Date Title
KR100623572B1 (en) Fuel reforming system and warmup method thereof
JP4854848B2 (en) Control method of heat treatment system
JP5323333B2 (en) Fuel cell system and operation method thereof
JP4147659B2 (en) Control device for reformer
JP2017117564A (en) Fuel cell device
JPH05121087A (en) Temperature control device of fuel cell power generating device
JP3947665B2 (en) Fuel cell power generation system
JPS6348774A (en) Combustion gas controller of fuel reformer
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JP2022031103A (en) Fuel cell system
JP2533616B2 (en) Combustion control device for catalytic combustor for fuel cell
JPH04284365A (en) Fuel cell power generating device
JP2860215B2 (en) Fuel cell generator
JP2992828B2 (en) Hybrid fuel cell
JPS60212971A (en) Fuel cell power generating system and its startng method
JP4135243B2 (en) Control device for reformer
JPH0547401A (en) Fuel changeover method of fuel cell and its apparatus
JPH02119061A (en) Methanol reformer of fuel cell
JP4278366B2 (en) Fuel processing apparatus, fuel processing method, and fuel cell power generation system
JPH0697618B2 (en) Fuel cell power generator
JP3924128B2 (en) Fuel cell system
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP3659276B2 (en) Fuel cell device
JP2004303442A (en) Humidifier of solid polymer fuel cell
JPH11339829A (en) Phosphoric acid fuel cell power generating device