JPH05118877A - Device for detecting amount of traveling - Google Patents

Device for detecting amount of traveling

Info

Publication number
JPH05118877A
JPH05118877A JP3306555A JP30655591A JPH05118877A JP H05118877 A JPH05118877 A JP H05118877A JP 3306555 A JP3306555 A JP 3306555A JP 30655591 A JP30655591 A JP 30655591A JP H05118877 A JPH05118877 A JP H05118877A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
slider
moving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3306555A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆司 鈴木
Shigeru Kato
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP3306555A priority Critical patent/JPH05118877A/en
Publication of JPH05118877A publication Critical patent/JPH05118877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To enable traveling of a traveling member to be detected with a simple configuration. CONSTITUTION:A slider 5 which consists of acryl resin is provided between a light-projection element 3 and a light-reception element 4 so that it can travel. A groove part 6 with an inclined surface 6a is formed on a surface of the slider 5 at a constant interval. The groove part 6 has the inclined surface 6a and reflects light from the light-projection element 3 in horizontal direction when it is positioned at a detection region between the light-projection element 3 and the light-reception element 4 accompanying traveling of the slider 5. Therefore, since a light path from the light-projection element 3 to the light- reception element 4 is formed intermittently along with traveling of the groove part 6, the groove part 6 and further traveling of the slider 5 can be detected based on a light-reception state of the light-reception element 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投光素子及び受光素子
間を移動する移動部材の移動量を検出する移動量検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving amount detecting device for detecting a moving amount of a moving member which moves between a light emitting element and a light receiving element.

【0002】[0002]

【従来の技術】例えばロータリエンコーダでは、円形デ
ィスクの外周側に複数個のスリットを放射状に形成する
と共に、そのスリットの移動軌跡を挟むようにして対を
なす投光素子及び受光素子を配設するようにしている。
このような構成によれば、円形ディスクの回転に伴って
スリットが移動すると、投光素子から受光素子に至る光
路がスリットの移動に応じて間欠的に形成されるので、
受光素子からはパルス状の受光信号が出力される。従っ
て、受光素子からの検出信号の出力状態に基づいてスリ
ットの移動量ひいては円形ディスクの回転量を検出する
ことができる。
2. Description of the Related Art In a rotary encoder, for example, a plurality of slits are radially formed on the outer peripheral side of a circular disk, and a pair of a light emitting element and a light receiving element are arranged so as to sandwich a movement locus of the slits. ing.
According to such a configuration, when the slit moves along with the rotation of the circular disc, the optical path from the light projecting element to the light receiving element is intermittently formed according to the movement of the slit,
A pulsed light receiving signal is output from the light receiving element. Therefore, the amount of movement of the slit and thus the amount of rotation of the circular disk can be detected based on the output state of the detection signal from the light receiving element.

【0003】ここで、上述の円形ディスクのスリット
は、プレスにより打抜き加工して形成するか、或はエッ
チングにより化学処理して形成するのが一般的である。
Here, the slits of the above-mentioned circular disk are generally formed by punching with a press or by chemical treatment by etching.

【0004】[0004]

【発明が解決しようとする課題】ところで、スリットを
プレスにより打抜き加工するには、金型の加工精度とい
う観点からスリットの寸法を比較的大きく設定しなけれ
ばならず、検出分解能を高めることが困難であるという
欠点がある。また、スリットをエッチングにより形成し
た場合は、スリットの幅寸法を小さく設定して高い検出
分解能を得ることができるものの、コストが高くなると
いう欠点がある。
By the way, in order to punch a slit with a press, the size of the slit must be set relatively large from the viewpoint of the machining accuracy of the die, and it is difficult to increase the detection resolution. There is a drawback that Further, when the slits are formed by etching, although the width dimension of the slits can be set small and high detection resolution can be obtained, there is a drawback that the cost becomes high.

【0005】本発明は上記事情に鑑みてなされたもの
で、その目的は、コストを上昇させることなく検出分解
能を高めることができる移動量検出装置を提供するにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a movement amount detecting device capable of enhancing the detection resolution without increasing the cost.

【0006】[0006]

【課題を解決するための手段】本発明の移動量検出装置
は、投光素子及び受光素子を対向して設け、これらの投
光素子及び受光素子間の光軸と交差するように移動可能
であると共に前記投光素子からの光を通過させる樹脂性
の移動部材を設け、この移動部材の表面にこれの移動方
向に沿って一定間隔で前記投光素子から受光素子に至る
光を反射する傾斜面を有する溝部を形成したものであ
る。
A movement amount detecting device of the present invention is provided with a light projecting element and a light receiving element facing each other, and is movable so as to intersect with an optical axis between the light projecting element and the light receiving element. In addition, a resin-based moving member that allows the light from the light projecting element to pass therethrough is provided, and the surface of the moving member is inclined to reflect the light from the light projecting element to the light receiving element at regular intervals along the moving direction of the moving member. A groove having a surface is formed.

【0007】[0007]

【作用】投光素子からの光は樹脂性の移動部材を通じて
受光素子に到達する。そして、移動部材が移動すると、
移動部材に設けられた溝部も移動し、その溝部の傾斜面
が投光素子及び受光素子間の光軸に位置すると、投光素
子からの光は傾斜面で反射して受光素子に到達しなくな
る。これにより、移動部材の移動に応じて受光素子に入
光する光量が変化するので、受光素子の受光状態に基づ
いて移動部材の移動量を検出することができる。この場
合、上記溝部を移動部材と一体に形成することにより、
溝部を簡単に形成することができる。
The light from the light projecting element reaches the light receiving element through the moving member made of resin. Then, when the moving member moves,
When the groove provided on the moving member also moves and the inclined surface of the groove is located on the optical axis between the light projecting element and the light receiving element, the light from the light projecting element is reflected by the inclined surface and does not reach the light receiving element. .. As a result, the amount of light entering the light receiving element changes according to the movement of the moving member, so that the moving amount of the moving member can be detected based on the light receiving state of the light receiving element. In this case, by forming the groove portion integrally with the moving member,
The groove can be easily formed.

【0008】[0008]

【実施例】以下、本発明の第1実施例を図1乃至図12
を参照して説明する。装置の側面を示す図3において、
支持体1は中空に形成されており、その内周面2の上面
にLEDから成る投光素子3が配設され、下面にフォト
ダイオード或はフォトトランジスタから成る受光素子4
が配設されている。ここで、投光素子3からの光は図示
しないレンズにより平行光に変換されて受光素子4に照
射されるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.
Will be described. In FIG. 3 showing the side of the device,
The support 1 is formed in a hollow shape, a light emitting element 3 made of an LED is arranged on the upper surface of the inner peripheral surface 2, and a light receiving element 4 made of a photodiode or a phototransistor on the lower surface.
Are arranged. Here, the light from the light projecting element 3 is converted into parallel light by a lens (not shown) and applied to the light receiving element 4.

【0009】また、支持体1の内周面2には溝部2aが
形成されており、その溝部2aに長尺平板状の移動部材
たるスライダ5が直線移動可能に装着されている。この
スライダ5は透明なアクリル材から形成されており、そ
の下面にはV字状の溝部6が一定間隔で形成されている
(図1参照)。
A groove 2a is formed on the inner peripheral surface 2 of the support 1, and a slider 5 as a long flat plate-like moving member is linearly movable in the groove 2a. The slider 5 is formed of a transparent acrylic material, and V-shaped groove portions 6 are formed on the lower surface of the slider 5 at regular intervals (see FIG. 1).

【0010】装置の縦断面を示す図1において、スライ
ダ5に形成された溝部6は傾斜面6aを有し、その傾斜
面6aは投光素子3の光軸に対して45°傾斜して形成
されている。この場合、スライダ5は金型による樹脂成
形により形成されており、溝部6はその樹脂成形時に一
括して形成されている。尚、溝部6の幅寸法並びに溝部
6の端部から隣接する溝部6の端部までの間隔は、投光
素子3及び受光素子4間の検出領域幅を上回って設定さ
れている。
In FIG. 1 showing a longitudinal section of the apparatus, a groove 6 formed in a slider 5 has an inclined surface 6a, and the inclined surface 6a is formed at an angle of 45 ° with respect to the optical axis of the light projecting element 3. Has been done. In this case, the slider 5 is formed by resin molding using a mold, and the groove portion 6 is formed collectively at the time of resin molding. The width dimension of the groove portion 6 and the interval from the end portion of the groove portion 6 to the end portion of the adjacent groove portion 6 are set to exceed the detection region width between the light projecting element 3 and the light receiving element 4.

【0011】以下、上記溝部6に投光素子3からの光が
照射された光の様子を考察する。図4に示すように、光
が媒質Xと媒質Yとの境界面に入射するときは、その光
は境界面の法線に対して同一角度で反射する反射光とス
ネルの法則に基づいて屈折する透過光とに分割される。
ここで、媒質Xの屈折率をn1 ,媒質Yの屈折率をn2
,入射角をi,屈折角をrとすると、スネルの法則に
より次式が成立する。
Hereinafter, the state of light with which the groove 6 is irradiated with the light from the light projecting element 3 will be considered. As shown in FIG. 4, when light is incident on the boundary surface between the medium X and the medium Y, the light is refracted based on Snell's law and reflected light reflected at the same angle with respect to the normal line of the boundary surface. The transmitted light is divided into
Here, the refractive index of the medium X is n1, and the refractive index of the medium Y is n2.
, Where the incident angle is i and the refraction angle is r, the following equation is established according to Snell's law.

【0012】[0012]

【数1】 媒質Yが空気の場合、n2 は略1であるので、[Equation 1] When the medium Y is air, n2 is approximately 1, so

【0013】[0013]

【数2】 となる。[Equation 2] Becomes

【0014】さて、図4に示す入射角iが大きくなる
と、反射光の光量が増大すると共に、透過光の光量が減
少する。そして、屈折角rが90°となるように入射角
iを設定すると、透過光の強度が零となって境界面で全
反射するようになる。このときの、入射角is は、
As the incident angle i shown in FIG. 4 increases, the amount of reflected light increases and the amount of transmitted light decreases. When the incident angle i is set so that the refraction angle r becomes 90 °, the intensity of the transmitted light becomes zero and the light is totally reflected at the boundary surface. At this time, the incident angle is is

【0015】[0015]

【数3】 で示すことができる。ここで、媒質Xがアクリルの場
合、アクリルの屈折率は約1.5であるので、入射角i
s は
[Equation 3] Can be shown as Here, when the medium X is acrylic, since the refractive index of acrylic is about 1.5, the incident angle i
s is

【0016】[0016]

【数4】 となる。従って、媒質がアクリルの場合は、入射角i>
42°のときに入射光は全反射する。
[Equation 4] Becomes Therefore, when the medium is acrylic, the incident angle i>
The incident light is totally reflected at 42 °.

【0017】信号処理回路を示す図5において、受光素
子4からの受光信号はアンプ7により増幅された後にコ
ンパレータ8に出力される。コンパレータ8は受光信号
の信号レベルと電圧発生部9からの基準電圧と比較する
もので、受光信号の信号レベルが基準電圧を上回ったと
きはハイレベル信号を出力する。この場合、電圧発生部
9に設定された基準電圧としては、受光信号の最大信号
レベルの1/2に設定されている。
In FIG. 5 showing the signal processing circuit, a light receiving signal from the light receiving element 4 is amplified by the amplifier 7 and then output to the comparator 8. The comparator 8 compares the signal level of the received light signal with the reference voltage from the voltage generator 9, and outputs a high level signal when the signal level of the received light signal exceeds the reference voltage. In this case, the reference voltage set in the voltage generator 9 is set to 1/2 of the maximum signal level of the received light signal.

【0018】次に上記構成の作用について説明する。ス
ライダ5が移動して図7に示すように投光素子3及び受
光素子4間の検出領域が溝部6間に位置したときは、投
光素子3からの光はスライダ5を通過して受光素子4に
到達するので、受光素子4からの受光信号は最大レベル
となっている(図12においてAで示す期間)。
Next, the operation of the above configuration will be described. When the slider 5 moves and the detection area between the light projecting element 3 and the light receiving element 4 is located between the groove portions 6 as shown in FIG. 7, the light from the light projecting element 3 passes through the slider 5 and the light receiving element. 4, the light receiving signal from the light receiving element 4 is at the maximum level (period shown by A in FIG. 12).

【0019】スライダ5が移動して図8に示すように検
出領域の一部が溝部6に掛かると、投光素子3からの光
の一部が傾斜面6aにより横方向に反射されるようにな
る(図6参照)。このとき、傾斜面6aは光軸に対して
45°傾斜して設定されているので、傾斜面6aへの光
の入射角は45°となる。これにより、上述した入射光
と反射光との関係から、傾斜面6aに到達した投光素子
3からの光はスライダ5と空気との境界面で全反射され
る。従って、溝部6の移動に応じて投光素子3から受光
素子4に到達する光量が減少するので、スライダ5の移
動に応じて受光素子4からの受光信号の信号レベルが低
下する(図12においてBで示す期間)。
When the slider 5 moves and a part of the detection area is caught by the groove 6 as shown in FIG. 8, a part of the light from the light projecting element 3 is reflected in the lateral direction by the inclined surface 6a. (See FIG. 6). At this time, since the inclined surface 6a is set to be inclined by 45 ° with respect to the optical axis, the incident angle of light on the inclined surface 6a is 45 °. As a result, due to the relationship between the incident light and the reflected light described above, the light from the light projecting element 3 that reaches the inclined surface 6a is totally reflected at the boundary surface between the slider 5 and the air. Therefore, since the amount of light reaching the light receiving element 4 from the light projecting element 3 decreases in accordance with the movement of the groove portion 6, the signal level of the light receiving signal from the light receiving element 4 decreases in accordance with the movement of the slider 5 (in FIG. 12, (Period indicated by B).

【0020】スライダ5が移動して図9に示すように検
出領域の全てが溝部6に掛かると、投光素子3からの光
の全てが傾斜面6aで反射されるようになる。これによ
り、投光素子3からの光が溝部6により反射されて受光
素子4に到達しなくなるので、受光素子4からの受光信
号の信号レベルは零レベルとなる(図12においてCで
示す期間)。
When the slider 5 moves to cover the entire groove 6 with the detection area as shown in FIG. 9, all the light from the light projecting element 3 is reflected by the inclined surface 6a. As a result, the light from the light projecting element 3 is reflected by the groove 6 and does not reach the light receiving element 4, so that the signal level of the light receiving signal from the light receiving element 4 becomes zero level (period shown by C in FIG. 12). ..

【0021】スライダ5が移動して図10に示すように
検出領域の一部が溝部6から脱するようになると、投光
素子3からの光が受光素子4に入光するようになるの
で、受光素子4からの受光信号の信号レベルは上昇する
ようになる(図12においてDで示す期間)。
When the slider 5 moves and a part of the detection area comes out of the groove 6 as shown in FIG. 10, the light from the light projecting element 3 enters the light receiving element 4, so that The signal level of the light receiving signal from the light receiving element 4 is increased (the period indicated by D in FIG. 12).

【0022】スライダ5が移動して図11に示すように
検出領域が溝部6から全て脱出すると、投光素子3から
の光が全て受光素子4に入光するようになるので、受光
素子4からの受光信号の信号レベルは最大レベルとな
る。
When the slider 5 moves and the detection area is completely escaped from the groove portion 6 as shown in FIG. 11, all the light from the light projecting element 3 enters the light receiving element 4, so that the light receiving element 4 The signal level of the received light signal of is the maximum level.

【0023】そして、上述のようにして受光素子4から
出力された受光信号は、コンパレータ8により基準電圧
と比較されて二値化信号として出力される。従って、コ
ンパレータ8から出力された二値化信号に基づいて溝部
6ひいてはスライダ5の移動量を検出することができ
る。
The light receiving signal output from the light receiving element 4 as described above is compared with the reference voltage by the comparator 8 and output as a binarized signal. Therefore, it is possible to detect the movement amount of the groove portion 6 and thus the slider 5 based on the binarized signal output from the comparator 8.

【0024】要するに、上記実施例のものによれば、透
明なアクリル樹脂から成るスライダ5に傾斜面6aを有
する溝部6を金型により一体に形成し、スライダ5の移
動に伴う溝部6の移動により投光素子3から受光素子4
に至る光路を間欠的に形成するようにしたので、回転板
にスリットを形成している従来構成と違って、コストを
上昇させることなく溝部6の幅寸法を小さく設定して検
出分解能を高めることができる。
In short, according to the above embodiment, the slider 5 made of transparent acrylic resin is integrally formed with the groove portion 6 having the inclined surface 6a by a die, and the groove portion 6 is moved by the movement of the slider 5. Light emitting element 3 to light receiving element 4
Since the optical path leading up to is formed intermittently, unlike the conventional configuration in which the slit is formed on the rotary plate, the width of the groove portion 6 is set small without increasing the cost, and the detection resolution is increased. You can

【0025】図13及び図14は本発明の第2実施例を
示しており、受光信号を処理するための信号処理回路は
同一であるので省略する。即ち、回転軸10に移動部材
たる回転ディスク11が固定されている。この回転ディ
スク11は透明なアクリルから形成されている。ここ
で、回転ディスク11は金型による樹脂成形により形成
されており、その下面には図14に示すように傾斜面を
有する溝部12が放射状に一体に形成されている。ま
た、回転軸10を支持している支持体13の内周面に
は、溝部12の移動軌跡に対向して投光素子14及び受
光素子15が配設されている。
FIGS. 13 and 14 show a second embodiment of the present invention, and the signal processing circuit for processing the received light signal is the same and therefore omitted. That is, the rotating disk 11, which is a moving member, is fixed to the rotating shaft 10. The rotating disk 11 is made of transparent acrylic. Here, the rotary disk 11 is formed by resin molding using a metal mold, and a groove portion 12 having an inclined surface is radially integrally formed on the lower surface thereof as shown in FIG. Further, a light projecting element 14 and a light receiving element 15 are arranged on the inner peripheral surface of the support body 13 supporting the rotating shaft 10 so as to face the movement trajectory of the groove 12.

【0026】上記第2実施例の場合、回転ディスク11
の回転に伴って、溝部12が投光素子14及び受光素子
15間の検出領域に位置すると、その溝部12により投
光素子14から受光素子15に照射された光が横方向に
反射されるので、それに応じて受光素子15の受光量が
変化する。従って、受光素子15からの受光信号に基づ
いてコンパレータ8からパルス状の検出信号が出力され
るので、第1実施例と同様に、検出信号に基づいて溝部
12の移動量ひいては回転ディスク11の回転量を検出
することができる。
In the case of the second embodiment, the rotating disk 11
When the groove 12 is positioned in the detection area between the light projecting element 14 and the light receiving element 15 with the rotation of, the light emitted from the light projecting element 14 to the light receiving element 15 is reflected by the groove 12 in the lateral direction. The amount of light received by the light receiving element 15 changes accordingly. Therefore, since the pulsed detection signal is output from the comparator 8 based on the light receiving signal from the light receiving element 15, the movement amount of the groove portion 12 and the rotation of the rotary disk 11 based on the detection signal is output as in the first embodiment. The amount can be detected.

【0027】図15及び図16には本発明の第3実施例
が示されている。この図15及び図16において、回転
体16には移動部材たるリング17が固定されている。
このリング17は透明なアクリルを金型により樹脂成形
して成り、その外周面には傾斜面を有する溝部18が一
体に形成されている。また、リング16を挟んで設けら
れた支持体19には、投光素子20及び受光素子21が
配設されている。
FIG. 15 and FIG. 16 show a third embodiment of the present invention. 15 and 16, a ring 17 as a moving member is fixed to the rotating body 16.
The ring 17 is formed by molding a transparent acrylic resin with a mold, and a groove portion 18 having an inclined surface is integrally formed on the outer peripheral surface thereof. Further, a light projecting element 20 and a light receiving element 21 are arranged on a support 19 provided with the ring 16 sandwiched therebetween.

【0028】この第3実施例の場合、回転体16の回転
に伴ってリング17が回転すると、溝部18が移動して
投光素子20から受光素子21に到達する光路が間欠的
に形成されるので、受光素子21からは受光量に応じた
受光信号が出力される。従って、第1実施例と同様に、
受光素子21からの受光信号に基づいて溝部18の移動
量ひいては回転体16の回転量を検出することができ
る。
In the case of the third embodiment, when the ring 17 rotates with the rotation of the rotating body 16, the groove portion 18 moves and the optical path from the light projecting element 20 to the light receiving element 21 is intermittently formed. Therefore, the light receiving element 21 outputs a light receiving signal according to the amount of light received. Therefore, as in the first embodiment,
Based on the light receiving signal from the light receiving element 21, the amount of movement of the groove 18 and thus the amount of rotation of the rotating body 16 can be detected.

【0029】尚、上記各実施例では、溝部を2つの傾斜
面を有するV字状に形成したが、これに代えて、図17
に示すように溝部22を1つの傾斜面22aから形成す
るようにしてもよい。
In each of the above embodiments, the groove is formed in a V shape having two inclined surfaces, but instead of this, FIG.
The groove portion 22 may be formed from one inclined surface 22a as shown in FIG.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
の移動量検出装置によれば、投光素子及び受光素子を対
向して設け、これらの投光素子及び受光素子間の光軸と
交差するように移動可能であると共に前記投光素からの
光を反射する移動部材を設け、この移動部材の表面にこ
れの移動方向に沿って一定間隔で前記投光素子から受光
素子に至る光を反射する傾斜面を有する溝部を設けたの
で、コストを上昇させることなく検出分解能を高めるこ
とができるという優れた効果を奏する。
As is apparent from the above description, according to the movement amount detecting apparatus of the present invention, the light projecting element and the light receiving element are provided so as to face each other, and the optical axis between the light projecting element and the light receiving element is provided. A moving member that is movable so as to intersect and that reflects light from the light projecting element is provided, and light from the light projecting element to the light receiving element is provided on the surface of the moving member at regular intervals along the moving direction of the moving member. Since the groove portion having the inclined surface that reflects light is provided, the excellent effect that the detection resolution can be increased without increasing the cost is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す要部の縦断正面図FIG. 1 is a vertical cross-sectional front view of essential parts showing a first embodiment of the present invention.

【図2】要部の底面図FIG. 2 is a bottom view of the main part

【図3】要部の平面図FIG. 3 is a plan view of a main part

【図4】作用を説明するための模式図FIG. 4 is a schematic diagram for explaining the operation.

【図5】電気回路を示すブロック図FIG. 5 is a block diagram showing an electric circuit.

【図6】要部の拡大縦断面図FIG. 6 is an enlarged vertical sectional view of a main part.

【図7】作用を説明するための図1相当図FIG. 7 is a view corresponding to FIG. 1 for explaining the operation.

【図8】異なる作用状態で示す図1相当図FIG. 8 is a view corresponding to FIG. 1 in different operating states.

【図9】異なる作用状態で示す図1相当図FIG. 9 is a view corresponding to FIG. 1 showing different operating states.

【図10】異なる作用状態で示す図1相当図FIG. 10 is a view corresponding to FIG. 1 in different operating states.

【図11】異なる作用状態で示す図1相当図FIG. 11 is a view corresponding to FIG. 1 in different operating states.

【図12】受光信号及び二値化信号を示す信号波形図FIG. 12 is a signal waveform diagram showing a light receiving signal and a binarized signal.

【図13】本発明の第2実施例を示す要部の縦断面図FIG. 13 is a vertical cross-sectional view of a main part showing a second embodiment of the present invention.

【図14】要部の底面図FIG. 14 is a bottom view of the main part

【図15】本発明の第3実施例を示す要部の正面図FIG. 15 is a front view of the essential parts showing the third embodiment of the present invention.

【図16】要部の側面図FIG. 16 is a side view of the main part.

【図17】本発明のその他の実施例を示す図1相当図FIG. 17 is a view corresponding to FIG. 1 showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3は投光素子、4は受光素子、5はスライダ(移動部
材)、6は溝部、6aは傾斜面、11は回転ディスク
(移動部材)、14は投光素子、15は受光素子、17
はリング(移動部材)、20は投光素子、21は受光素
子である。
3 is a light emitting element, 4 is a light receiving element, 5 is a slider (moving member), 6 is a groove portion, 6a is an inclined surface, 11 is a rotating disk (moving member), 14 is a light emitting element, 15 is a light receiving element, 17
Is a ring (moving member), 20 is a light projecting element, and 21 is a light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対向して設けられた投光素子及び受光素
子と、これらの投光素子及び受光素子間の光軸と交差す
るように移動可能に設けられ前記投光素子からの光を通
過させる樹脂性の移動部材と、この移動部材の表面にこ
れの移動方向に沿って一定間隔で設けられ前記投光素子
から受光素子に至る光を反射する傾斜面を有する溝部と
を備えたことを特徴とする移動量検出装置。
1. A light projecting element and a light receiving element that are provided so as to face each other, and a light that passes from the light projecting element is movably provided so as to intersect with an optical axis between the light projecting element and the light receiving element. A moving member made of a resin, and a groove portion provided on the surface of the moving member at regular intervals along the moving direction of the moving member and having a sloped surface for reflecting light from the light projecting element to the light receiving element. Characteristic movement amount detection device.
JP3306555A 1991-10-25 1991-10-25 Device for detecting amount of traveling Pending JPH05118877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306555A JPH05118877A (en) 1991-10-25 1991-10-25 Device for detecting amount of traveling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306555A JPH05118877A (en) 1991-10-25 1991-10-25 Device for detecting amount of traveling

Publications (1)

Publication Number Publication Date
JPH05118877A true JPH05118877A (en) 1993-05-14

Family

ID=17958461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306555A Pending JPH05118877A (en) 1991-10-25 1991-10-25 Device for detecting amount of traveling

Country Status (1)

Country Link
JP (1) JPH05118877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232593B1 (en) 1998-04-01 2001-05-15 Fanuc Ltd. Optical encoder
JP2009002932A (en) * 2007-06-22 2009-01-08 Lite-On Semiconductor Corp Optical movement detecting device using at least one of partial total reflection light source and partial non-total reflection light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232593B1 (en) 1998-04-01 2001-05-15 Fanuc Ltd. Optical encoder
JP2009002932A (en) * 2007-06-22 2009-01-08 Lite-On Semiconductor Corp Optical movement detecting device using at least one of partial total reflection light source and partial non-total reflection light source

Similar Documents

Publication Publication Date Title
US6323954B1 (en) Process and device for the detection or determination of the position of edges
KR960032345A (en) Optical pick-up device
EP0348182A3 (en) Uneven-surface data detection apparatus
US5729024A (en) Original edge detecting system and optical sensor
KR940011981A (en) Optical encoder
WO1998052025A1 (en) Surface inspection instrument and surface inspection method
JPH05118877A (en) Device for detecting amount of traveling
JPS6412216A (en) Detection of position
US4157477A (en) Light detector particularly adapted for detecting the position of edges of moving strip
TWI722870B (en) Thin proximity sensing device
US20050269491A1 (en) Carrier with at least one transilluminated optical position mark
JPS5616806A (en) Surface roughness measuring unit
EP0837301A3 (en) Position detecting element and range sensor
JPH07167677A (en) Encoder
CN112130702B (en) Thin proximity sensing device
JPH0271118A (en) Apparatus for optically detecting position or speed of moving body
JP2005106719A (en) Light reflection type measuring apparatus using optical waveguide
JP3180019B2 (en) Document edge detection device
JPS58105668A (en) Line sensor
JPH03296881A (en) Optical reader
JPS5766411A (en) Focus detecting method
KR20090045933A (en) Information carrier, and system for reading such an information carrier
JPH06242015A (en) Microparticle detection system
JPH08159811A (en) Movement detection device
JP3595861B2 (en) Photoelectric detector