JPH05118507A - Tube, internal surface of which has multiple screw type fin, and steam generator using said tube - Google Patents

Tube, internal surface of which has multiple screw type fin, and steam generator using said tube

Info

Publication number
JPH05118507A
JPH05118507A JP4086495A JP8649592A JPH05118507A JP H05118507 A JPH05118507 A JP H05118507A JP 4086495 A JP4086495 A JP 4086495A JP 8649592 A JP8649592 A JP 8649592A JP H05118507 A JPH05118507 A JP H05118507A
Authority
JP
Japan
Prior art keywords
tube
fin
tubes
steam generator
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4086495A
Other languages
Japanese (ja)
Inventor
Wolfgang Kastner
カストナー ウオルフガング
Wolfgang Koehler
ケーラー ウオルフガング
Eberhard Wittchow
ウイトコウ エバーハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8206513&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05118507(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH05118507A publication Critical patent/JPH05118507A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • F22B37/103Internally ribbed tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins

Abstract

PURPOSE: To improve a shape of a tube with inner surface fins and to use a tube irrespective of a mass flow density by specifying a lead of the fins. CONSTITUTION: A lead h of fins is equal to 0.9 times as large as a square root of a mean inner diameter d at a maximum. That is, a radial height of the fin is arrived at 0.04 times as large as the mean inner diameter d of the tube at a minimum, and the diameter d of the tube is larger than 27 mm. A side of the fin is formed at 80 to 90 deg. to a tube axis in a radial direction. A transfer part of a side of the fin to a tube wall is rounded, an edge of the fin freely placed in the space of the tube is angularly formed. The tube is made of a ferrite material. Accordingly, a low axial flow speed is obtained without generating harmful film boiling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、内面上に多重ねじを
形成するフィンを備えた管並びに蒸気発生器及び伝熱装
置でのこの管の使用に関する。
FIELD OF THE INVENTION This invention relates to a tube with fins forming multiple threads on its inner surface and its use in steam generators and heat transfer devices.

【0002】[0002]

【従来の技術】内面フィン付き管は高い燃焼室熱負荷を
克服するために数年来蒸気発生器において用いられてい
る。ユーツィ(H. Juzi )、ザレム(A. Salem)及びシ
ュトッケル(W. Stocker)の論文「垂直な燃焼室管配置
を備えた変圧運転用貫流ボイラ(Zwangdurchlaufkessel
fuer Gleitdruckbetrieb mit vertikaler Brennkammer
berohrung )」ドイツ発電会社連盟・発電所技術(VGB
Kraftwerkstechnik )第64巻、第292〜302ペー
ジ特に第294ページには、高い燃焼室熱負荷の領域で
平滑な蒸気発生器管の場合に亜臨界圧力の広い領域にお
いて膜沸騰を考慮しなければならず、しかしながら他方
では内面フィン付き管の場合に膜沸騰が約206bar
ないし臨界圧力の圧力範囲に制限されることが詳述され
ている。
Internal finned tubes have been used in steam generators for several years to overcome high combustion chamber heat loads. Articles by H. Juzi, A. Salem and W. Stocker "Transforming once-through boiler with vertical combustion chamber tube arrangement (Zwangdurchlaufkessel)
fuer Gleitdruckbetrieb mit vertikaler Brennkammer
berohrung) ”German Federation of Power Companies / Power Plant Technology (VGB
Kraftwerkstechnik) Vol. 64, pp. 292-302, in particular page 294, film boiling should be considered in the wide subcritical pressure range for smooth steam generator tubes in the region of high combustion chamber heat load. However, on the other hand, the film boiling is about 206 bar in the case of tubes with internal fins.
To the critical pressure range.

【0003】膜沸騰は金属の管壁と熱吸収媒体の液相と
の間の蒸気膜により熱伝達を妨げるので、膜沸騰の領域
では管壁温度が著しく上昇する。膜沸騰は冷却媒体の強
制貫流を行う蒸気発生器の場合に実際上、冷却媒体の液
相と蒸気相とが同時に生じる領域においてだけ現れる。
実験により、壁の滑らかな管の場合に既に低い蒸気含有
量で膜沸騰を考慮しなければならず、また膜沸騰は内面
フィン付き管を使用する場合に一層高い蒸気含有量の方
へ移動することが確かめられた。この移動により同時に
金属の管壁の望ましくない温度上昇の範囲が減少する。
Since film boiling impedes heat transfer due to a vapor film between the metal tube wall and the liquid phase of the heat absorbing medium, the tube wall temperature rises significantly in the film boiling region. In the case of a steam generator with forced flow through of the cooling medium, film boiling practically only occurs in the regions where the liquid and vapor phases of the cooling medium occur simultaneously.
Experiments have already taken into account film boiling at low vapor contents in the case of smooth-walled tubes, and film boiling moves towards higher vapor contents when using inner finned tubes. It was confirmed. This movement simultaneously reduces the extent of undesired temperature rise of the metal tube wall.

【0004】前記文献ばかりでなく「国際熱伝達会議、
東京、1974年9月の議事録」論文PGTP73−5
4、第14〜21ページにも記載のように、市販の内面
フィン付き管の場合には膜沸騰の望ましい移動が比較的
大きいマスフロー密度及び高い冷却媒体速度の場合にだ
け起こる。
In addition to the documents mentioned above, "International Heat Transfer Conference,
Minutes of Tokyo, September 1974 "Paper PGTP73-5
4, also on pages 14-21, in the case of commercially available inner finned tubes, the desired migration of film boiling only occurs at relatively high mass flow densities and high coolant velocities.

【0005】[0005]

【発明が解決しようとする課題】この発明は、内面フィ
ン付き管の形状を改善し、この管の使用をマスフロー密
度と無関係に可能であるようにすることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the shape of the inner finned tube so that its use is possible independent of the mass flow density.

【0006】[0006]

【課題を解決するための手段】この課題は内面上に多重
ねじを形成するフィンを備えた管においてこの発明に基
づき、フィンのリードが最大で平均の管内径の平方根の
0.9倍に等しいことにより解決される。
This problem is based on the invention in a tube with fins forming multiple threads on its inner surface, the lead of the fin being at most equal to 0.9 times the square root of the average tube inner diameter. Will be solved.

【0007】この発明に基づく管の合目的的な実施態様
によれば、フィンの半径方向高さが最小で平均の管内径
の0.04倍に達し、平均の管内径が27mmより大き
く、フィンの側面が半径方向において管軸線と80〜9
0°の角度を成し、フィンの側面から管壁への移行部が
それぞれ丸められ、また管の内部空間中に自由に置かれ
たフィンの縁が角張っており、また管がフェライト系材
料から成る。
According to a purposeful embodiment of the pipe according to the invention, the radial height of the fins reaches a minimum of 0.04 times the average pipe inner diameter and the average pipe inner diameter is larger than 27 mm, The side surface of the tube is 80 to 9 with the tube axis in the radial direction.
It forms an angle of 0 °, the transitions from the sides of the fins to the tube wall are each rounded, the edges of the fins placed freely in the internal space of the tube are angular, and the tube is made of ferritic material. Become.

【0008】この発明の別な有利な実施態様によれば、
管がフィンを除いて断面で円形の空間を囲み、同時に管
外面が断面で楕円形又は多角形であるか、あるいは管外
面が少なくとも一つの長手方向リブを支持し、この長手
方向リブが隣接管又は隣接管の長手方向リブ又は他の部
材と溶接される。この発明の別の有利な実施態様によれ
ば、管軸線に対し垂直な平面とフィンの側面との間のリ
ード角が60°より小さいか、又は30〜40mmの平
均内径特に40mmの平均内径の場合にリード角が55
°である。
According to another advantageous embodiment of the invention,
The tube encloses a circular space in cross section, excluding fins, and at the same time the outer surface of the tube is elliptical or polygonal in cross section, or the outer surface of the tube supports at least one longitudinal rib, which longitudinal rib is adjacent to the adjacent tube. Alternatively, it is welded to the longitudinal ribs or other member of the adjacent tube. According to another advantageous embodiment of the invention, the lead angle between the plane perpendicular to the tube axis and the sides of the fins is less than 60 ° or has an average inner diameter of 30-40 mm, in particular of 40 mm. If the lead angle is 55
°.

【0009】この発明に基づき構成された管を化石燃料
だき蒸気発生器に使用するためには、同様に働く多数の
管が燃焼室の壁となるように溶接されて蒸気発生器の一
部を形成し、その際管が垂直に配置される。
In order to use a tube constructed according to the present invention in a fossil fuel fired steam generator, a number of similarly working tubes are welded together to form the walls of the combustion chamber and a portion of the steam generator is used. Formed, the tubes being arranged vertically.

【0010】太陽熱蒸気発生器にこの発明に基づく管を
使用する場合には、管が水平に又は傾けて配置されるの
が有利である。
When using tubes according to the invention in a solar steam generator, it is advantageous for the tubes to be arranged horizontally or at an angle.

【0011】この発明に基づく管の別の用途は請求項1
4に記載されている。
Another application of the tube according to the invention is claim 1.
4 are described.

【0012】[0012]

【作用効果】この発明に基づき構成され組み込まれた管
は、有害な膜沸騰の発生無しに低い軸線方向流速を可能
にし、その結果形状による圧力損失がほぼ不変であって
摩擦による管中の冷却媒体の圧力損失が非常に小さいの
で非常に有利である。それにより同時に意外にも有利
に、空間的に並列な管の間で不可避の不均一な熱入力の
ために生じる管端部での温度差の低下が起こる。実験結
果によればこの効果は、1m/sの軸線方向流速の場合
にフィン形状に理想的に追従する冷却媒体が、この媒体
に強制された旋回運動により媒体の外面で重力加速度の
2.5倍の大きさの計算上の遠心力加速度を受けると
き、満足な程度に現れる。
The tube constructed and incorporated according to the invention allows a low axial flow velocity without the occurrence of harmful film boiling, so that the pressure loss due to the shape is almost unchanged and the cooling in the tube due to friction occurs. This is very advantageous because the pressure loss of the medium is very small. At the same time, it is surprisingly advantageous that the temperature difference at the ends of the tubes is reduced due to the inevitable non-uniform heat input between the spatially parallel tubes. According to the experimental results, this effect is obtained when the cooling medium that ideally follows the fin shape in the case of the axial velocity of 1 m / s has a gravitational acceleration of 2.5 on the outer surface of the medium due to the swirling motion forced on this medium. It appears satisfactorily when subjected to double the magnitude of the calculated centrifugal acceleration.

【0013】[0013]

【実施例】次にこの発明に基づく内面フィン付き管の複
数の実施例を示す図面により、この発明を詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the drawings showing a plurality of embodiments of tubes with inner fins according to the present invention.

【0014】図1の管軸線方向断面図に示すように、望
ましくはフェライト系の鋼から成る管がその内面上にフ
ィンを備え、各フィンが螺旋上に配置されている。フィ
ンは管の長手軸線に垂直な平面と角度αを成す。更にフ
ィンは半径方向に管の平均内径dの少なくとも0.04
倍に等しい高さHを有し、その際平均直径dはフィンの
半径方向高さの約半分の位置を通る。フィンがたどる螺
旋はリードhを有する。
As shown in the tube axial cross-section of FIG. 1, a tube, preferably of ferritic steel, is provided with fins on its inner surface, each fin being arranged spirally. The fins form an angle α with a plane perpendicular to the longitudinal axis of the tube. Further, the fins are arranged in a radial direction of at least 0.04 of the mean inner diameter d
It has a height H equal to double, with the mean diameter d passing through approximately half the radial height of the fin. The helix follows a helix h.

【0015】図2に示す実施例の場合には、管内壁から
フィンの側面への移行部ばかりでなくフィンの側面から
自由な管内部空間に向かう面への移行部もほぼ角張って
いる。管外面はこの実施例の場合には断面が内壁と同様
に円形であるので、管は断面で円リングとなる。
In the case of the embodiment shown in FIG. 2, not only the transition portion from the inner wall of the tube to the side surface of the fin but also the transition portion from the side surface of the fin to the surface toward the free pipe inner space is substantially angular. In the case of this embodiment, the outer surface of the tube is circular in cross section like the inner wall, so that the tube is a circular ring in cross section.

【0016】図3に示す実施例は、管内壁からフィンの
側面への移行部がそれぞれ丸められているということだ
けが図2に示すものと異なっている。
The embodiment shown in FIG. 3 differs from that shown in FIG. 2 only in that the transitions from the inner wall of the tube to the sides of the fins are each rounded.

【0017】図4ないし図6に示す実施例は、図2に示
す実施例と同様にフィンの角張った形状を有する。しか
しながら図4に示す実施例の外面は断面で楕円形であ
り、図5に示す外面は断面で七角形である。外面が円形
と異なることは、隣接して垂直又は水平に並ぶ管がその
全長にわたり密に相互に溶接されるような二、三の用途
において有利である。図6に示す実施例の場合には、外
面がこの理由から少なくとも一つの長手方向リブを支持
し、この長手方向リブが隣接管又は隣接管の長手方向リ
ブ又は他の部材と溶接可能である。
The embodiment shown in FIGS. 4 to 6 has an angular shape of fins as in the embodiment shown in FIG. However, the outer surface of the embodiment shown in FIG. 4 is elliptical in cross section and the outer surface shown in FIG. 5 is heptagonal in cross section. The non-circular outer surface is advantageous in a few applications where adjacent vertically or horizontally aligned tubes are closely welded together over their entire length. In the case of the embodiment shown in FIG. 6, the outer surface carries for this reason at least one longitudinal rib, which can be welded to the adjacent pipe or to the longitudinal ribs of the adjacent pipe or to other parts.

【0018】この発明に基づき構成された管の実際例は
直径d>27mmを有し、フィンの側面が半径方向にお
いて望ましくは管軸線と80〜90°の角度を成す。ま
た角度αはこの発明に基づく管の場合に60°より小さ
く、40mmの平均内径dの場合に望ましくは約55°
である。
A practical example of a tube constructed according to the invention has a diameter d> 27 mm, the sides of the fins forming a radial angle of preferably 80-90 ° with the tube axis. Also, the angle α is less than 60 ° in the case of the tube according to the invention and is preferably about 55 ° for an average inner diameter d of 40 mm.
Is.

【0019】多数の同一作用の管が燃焼室の壁となるよ
うに溶接され蒸気発生器の一部を形成するような貫流ボ
イラの構築のためにこの発明に基づく管を用いる場合に
は、管は垂直に隣接して並びその全長にわたり気密に相
互に溶接される。燃焼室中で生じた熱の大部分を吸収す
るために管は冷却媒体としての水により貫流される。こ
の水は規定のように蒸発させるべきであるので、強制的
に管の内部に同一温度及び同一圧力の水及び水蒸気が併
存するような領域が作り出される。その際この混合体中
の蒸気含有量は0%から100%まで上昇する。
When a tube according to the invention is used for the construction of a once-through boiler in which a number of identical-action tubes are welded to form the wall of the combustion chamber and form part of the steam generator, Are arranged vertically adjacent to each other and are hermetically welded to each other over their entire length. In order to absorb most of the heat generated in the combustion chamber, the tubes are flowed through with water as a cooling medium. This water should be allowed to evaporate as specified, thus creating a region within the tube in which water and steam of the same temperature and pressure coexist. The vapor content in this mixture then rises from 0% to 100%.

【0020】管の内面上に設けられたフィンにより流水
が角運動量を与えられ、それにより固有の軸線を中心と
する水柱の回転が軸線方向の流れに重畳される。従来の
通常の使用法の場合には冷却媒体の軸線方向流速が数m
/sに調節され、それにより管内壁と水柱との間の蒸気
膜の形成が混合体の蒸気含有量の高い方向へ移動させら
れる。この高い軸線方向流速の場合に、膜沸騰とも呼ば
れるこの種の蒸気膜は例えば冷却媒体混合体が80%だ
け蒸気から成り20%だけ水から成るような領域で発生
する。しかしながら高い軸線方向流速のために、管壁で
の冷却媒体の相応に高い摩擦による高い圧力損失が、管
への冷却媒体の供給個所と管からの蒸気の出口との間で
発生する。このことは非常に不利であることが判明して
いる。なぜならば摩擦のために生じる圧力損失により、
個々の管から流出する蒸気流の温度差が増大するからで
ある。
The fins provided on the inner surface of the tube impart the angular momentum to the running water, whereby the rotation of the water column about its own axis is superimposed on the axial flow. In the case of conventional normal usage, the axial velocity of the cooling medium is several meters.
/ S, which causes the formation of a vapor film between the inner wall of the tube and the water column to be displaced towards the higher vapor content of the mixture. With this high axial flow velocity, a vapor film of this kind, also called film boiling, occurs, for example, in the region where the cooling medium mixture consists of 80% steam and 20% water. However, due to the high axial flow velocity, a high pressure drop due to a correspondingly high friction of the cooling medium on the tube wall occurs between the point of supply of the cooling medium to the tube and the outlet of the steam from the tube. This proves to be a great disadvantage. Because of the pressure loss caused by friction,
This is because the temperature difference between the vapor streams flowing out from the individual tubes increases.

【0021】意外にも、比較的低い軸線方向流速の場合
に、また1m/sの計算上の流速の場合に生じる重力加
速度の2.5倍程度の流体の計算上の遠心力加速度の場
合に、管中で摩擦により引き起こされる圧力損失が小さ
く、その結果形状により引き起こされる圧力損失がほぼ
不変であって個々の管から流出する蒸気流の温度差が予
想外に小さいということが判明した。
Surprisingly, in the case of a relatively low axial velocity, and in the case of a calculated centrifugal acceleration of a fluid of about 2.5 times the gravitational acceleration that occurs in the case of a calculated flow velocity of 1 m / s. , It was found that the pressure loss caused by friction in the tubes is small, so that the pressure loss caused by the shape is almost invariant and the temperature difference of the vapor flow exiting the individual tubes is unexpectedly small.

【0022】ここで、 v〔m/s〕=軸線方向流速 h〔m〕=フィンのリード U〔1/s〕=流れる冷却媒体の回転速度 ω〔1/s〕=流れる冷却媒体の角速度 d〔m〕=平均内径 az 〔m/s2 〕=遠心力加速度 g〔m/s2 〕=重力加速度 とすれば、v=1m/sの速度及び約2.5gの遠心力
加速度az を想定して、リードhに対する所定の関係領
域を関数f(d)として求めることができる。
Where v [m / s] = axial flow velocity h [m] = fin lead U [1 / s] = rotating speed of flowing cooling medium ω [1 / s] = angular velocity of flowing cooling medium d [ M ] = average inner diameter a z [m / s 2 ] = centrifugal force acceleration g [m / s 2 ] = gravitational acceleration, v = 1 m / s velocity and approximately 2.5 g centrifugal force a z Assuming that, a predetermined relational area for the lead h can be obtained as a function f (d).

【0023】滑りを無視して、 v=h・U ここでU=ω/(2π) 従って、 v=h・ω/(2π) ω=2πv/h az =dω2 /2 =d(2πv)2 /(2h2 ) であるので、az ≧2.5g及びv=1〔m/s〕なら
ば、 2.5g≦d(2π・1)2 /(2h2 )=4dπ2
(2h2 ) h2 ≦4dπ2 /(2・2.5g) h≦2πd0.5 (5g)-0.5=0.897d0.5 ≒0.
9d0.5
[0023] to ignore the slip, v = h · U where U = ω / (2π) Therefore, v = h · ω / ( 2π) ω = 2πv / h a z = dω 2/2 = d (2πv ) 2 / (2h 2 ), so if a z ≧ 2.5 g and v = 1 [m / s], then 2.5 g ≦ d (2π · 1) 2 / (2h 2 ) = 4dπ 2 /
(2h 2 ) h 2 ≦ 4dπ 2 /(2·2.5g) h ≦ 2πd 0.5 (5g) -0.5 = 0.897d 0.5 ≈0.
9d 0.5

【0024】従ってフィンのリードhが最大で平均の管
内径dの平方根の0.9倍に等しいような管を用いる場
合に、1m/sの軸線方向流速のとき25m/s2 の程
度の計算上の遠心力加速度az を期待することができ、
それによりリード及び管直径により与えられるこの関係
を維持する場合に前記の有利な効果が生じる。
Therefore, when using a tube in which the lead h of the fin is at most equal to 0.9 times the square root of the average tube inner diameter d, a calculation of the order of 25 m / s 2 at an axial velocity of 1 m / s. You can expect the centrifugal acceleration a z above,
This has the above-mentioned beneficial effect in maintaining this relationship given by the lead and tube diameters.

【0025】管のこの形状により、蒸気発生器中の冷却
媒体の低い流速を有する化石燃料だき蒸気発生器にこの
管を使用することもできる。
This shape of the tube also allows it to be used in fossil fuel fired steam generators having a low flow rate of the cooling medium in the steam generator.

【0026】更にこの発明に基づく管の有利な特性は太
陽熱蒸気発生器にも利用することができ、その際管は特
に通常水平に又は傾けて配置される。
Furthermore, the advantageous properties of the tubes according to the invention can also be used in solar steam generators, the tubes being arranged generally horizontally or at an angle.

【0027】廃熱蒸気発生器又は熱交換器又は原子力発
電所での残留崩壊熱の吸収のための蒸気発生器に、この
発明に基づく管を用いることもしばしば有利である。
It is also often advantageous to use the tubes according to the invention in waste heat steam generators or heat exchangers or steam generators for absorption of residual decay heat in nuclear power plants.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に基づく管の一実施例の長手方向断面
図である。
1 is a longitudinal sectional view of an embodiment of a tube according to the invention.

【図2】図1に示す管の横断面図である。2 is a cross-sectional view of the tube shown in FIG.

【図3】管の異なる実施例の横断面図である。FIG. 3 is a cross sectional view of a different embodiment of the tube.

【図4】管の異なる実施例の横断面図である。FIG. 4 is a cross sectional view of a different embodiment of the tube.

【図5】管の異なる実施例の横断面図である。FIG. 5 is a cross sectional view of a different embodiment of the tube.

【図6】管の異なる実施例の横断面図である。FIG. 6 is a cross sectional view of a different embodiment of the tube.

【符号の説明】[Explanation of symbols]

d 管内径 h フィンのリード H フィンの半径方向高さ α リード角 d Pipe inner diameter h Fin lead H Fin radial height α Lead angle

フロントページの続き (72)発明者 ウオルフガング ケーラー ドイツ連邦共和国 8501 カルクロイト レツケンホーフアー ハウプトシユトラー セ 22 (72)発明者 エバーハルト ウイトコウ ドイツ連邦共和国 8520 エルランゲン シユローンフエルト 96Front Page Continuation (72) Inventor Wolfgang Köhler Germany 8501 Kalkroit Leckenhofer Hauptschütlerse 22 (72) Inventor Everhard Uitkow Germany 8520 Erlangen Scheulone Felt 96

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 内面上に多重ねじを形成するフィンを備
えた管において、フィンのリード(h〔m〕)が最大で
平均の管内径(d〔m〕)の平方根の0.9倍に等しい
ことを特徴とする内面に多重ねじ形フィンを備えた管。
1. In a tube having fins forming multiple threads on the inner surface, the fin lead (h [m]) is at most 0.9 times the square root of the average tube inner diameter (d [m]). A tube with multiple threaded fins on the inner surface characterized by equality.
【請求項2】 フィンの半径方向高さ(H)が最小で平
均の管内径(d)の0.04倍に達することを特徴とす
る請求項1記載の管。
2. A tube according to claim 1, characterized in that the radial height (H) of the fin reaches a minimum of 0.04 times the average tube inner diameter (d).
【請求項3】 平均の管内径(d)が27mmより大き
いことを特徴とする請求項1又は2記載の管。
3. Pipe according to claim 1 or 2, characterized in that the average pipe inner diameter (d) is larger than 27 mm.
【請求項4】 フィンの側面が半径方向において管軸線
と80〜90°の角度を成すことを特徴とする請求項1
ないし3の一つに記載の管。
4. The side surface of the fin makes an angle of 80 to 90 ° with the tube axis in the radial direction.
A tube according to any one of 1 to 3.
【請求項5】 フィンの側面から管壁への移行部がそれ
ぞれ丸められ、また管の内部空間中に自由に置かれたフ
ィンの縁が角張っていることを特徴とする請求項1ない
し4の一つに記載の管。
5. The invention according to claim 1, wherein the transitions from the sides of the fins to the wall of the tube are each rounded and the edges of the fin which are freely placed in the internal space of the tube are angular. The tube described in one.
【請求項6】 管がフィンを除いて断面で円形の空間を
囲み、管外面が断面で楕円形又は多角形であるか、ある
いは管外面が少なくとも一つの長手方向リブを支持し、
この長手方向リブが隣接管又は隣接管の長手方向リブ又
は他の部材と溶接されることを特徴とする請求項1ない
し5の一つに記載の管。
6. The tube encloses a circular space in cross section, excluding fins, and the outer tube surface is elliptical or polygonal in cross section, or the outer tube surface supports at least one longitudinal rib,
6. Tube according to one of the preceding claims, characterized in that the longitudinal ribs are welded to adjacent tubes or longitudinal ribs of adjacent tubes or other parts.
【請求項7】 管がフェライト系材料から成ることを特
徴とする請求項1ないし6の一つに記載の管。
7. The tube according to claim 1, wherein the tube is made of a ferrite material.
【請求項8】 管軸線に対し垂直な平面とフィンの側面
との間のリード角(α)が60°より小さいことを特徴
とする請求項1ないし7の一つに記載の管。
8. The tube according to claim 1, wherein the lead angle (α) between the plane perpendicular to the tube axis and the side surface of the fin is smaller than 60 °.
【請求項9】 平均の管内径(d)が30〜40mmで
あることを特徴とする請求項1ないし8の一つに記載の
管。
9. The tube according to claim 1, wherein the average tube inner diameter (d) is 30 to 40 mm.
【請求項10】 40mmの平均内径の場合にリード角
(α)が55°であることを特徴とする請求項1ないし
9の一つに記載の管。
10. The tube according to claim 1, wherein the lead angle (α) is 55 ° for an average inner diameter of 40 mm.
【請求項11】 同様に働く多数の管が燃焼室の壁とな
るように溶接されて蒸気発生器の一部を形成することを
特徴とする請求項1ないし10の一つに記載の内面フィ
ン付き管を備えた化石燃料だき蒸気発生器。
11. Inner fin according to one of the preceding claims, characterized in that a number of like-working tubes are welded to form the wall of the combustion chamber and form part of the steam generator. Fossil fuel fired steam generator with attached tube.
【請求項12】 管が垂直に配置されていることを特徴
とする請求項11記載の化石燃料だき蒸気発生器。
12. A fossil fuel fired steam generator according to claim 11, wherein the tubes are arranged vertically.
【請求項13】 管が水平に又は傾いて配置されている
ことを特徴とする請求項1ないし10の一つに記載の内
面フィン付き管を備えた太陽熱蒸気発生器。
13. A solar steam generator with internal finned tubes according to claim 1, wherein the tubes are arranged horizontally or inclined.
【請求項14】 蒸気発生器が廃熱蒸気発生器又は熱交
換器として働くか、又は残留崩壊熱の吸収のために原子
力発電所に設けられることを特徴とする内面フィン付き
管を備えた蒸気発生器。
14. Steam with internal finned tubes, characterized in that the steam generator acts as a waste heat steam generator or heat exchanger or is provided in a nuclear power plant for absorption of residual decay heat. Generator.
JP4086495A 1991-03-13 1992-03-09 Tube, internal surface of which has multiple screw type fin, and steam generator using said tube Pending JPH05118507A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT91103866.9 1991-03-13
EP91103866A EP0503116B2 (en) 1991-03-13 1991-03-13 Tube with a plurality of spiral ribs on his internal wall and steam generator using the same

Publications (1)

Publication Number Publication Date
JPH05118507A true JPH05118507A (en) 1993-05-14

Family

ID=8206513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086495A Pending JPH05118507A (en) 1991-03-13 1992-03-09 Tube, internal surface of which has multiple screw type fin, and steam generator using said tube

Country Status (4)

Country Link
EP (1) EP0503116B2 (en)
JP (1) JPH05118507A (en)
DE (1) DE59105729D1 (en)
DK (1) DK0503116T4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535587A (en) * 1999-01-18 2002-10-22 シーメンス アクチエンゲゼルシヤフト Fossil fuel boiler
JP5720916B1 (en) * 2014-11-07 2015-05-20 三菱日立パワーシステムズ株式会社 Heat transfer tubes, boilers and steam turbine equipment
WO2015099009A1 (en) 2013-12-27 2015-07-02 三菱日立パワーシステムズ株式会社 Heat transfer tube, boiler, and steam turbine facility

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333404A1 (en) * 1993-09-30 1995-04-06 Siemens Ag Continuous steam generator with vertically arranged evaporator tubes
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
DE4427859A1 (en) * 1994-08-05 1995-10-26 Siemens Ag Tube with inner ribbing forming multi-hand thread
DE4431185A1 (en) * 1994-09-01 1996-03-07 Siemens Ag Continuous steam generator
FI102396B (en) * 1995-03-22 1998-11-30 Kvaerner Power Oy Method and arrangement in a recovery boiler cooling medium circuit
WO1997014930A2 (en) * 1995-10-17 1997-04-24 Siemens Aktiengesellschaft Method and device for producing solar steam
DE19600004C2 (en) * 1996-01-02 1998-11-19 Siemens Ag Continuous steam generator with spirally arranged evaporator tubes
DE19602680C2 (en) * 1996-01-25 1998-04-02 Siemens Ag Continuous steam generator
DE19644763A1 (en) 1996-10-28 1998-04-30 Siemens Ag Steam generator pipe
DE19645748C1 (en) 1996-11-06 1998-03-12 Siemens Ag Steam generator operating method
US6498827B1 (en) * 1999-11-01 2002-12-24 Babcock & Wilcox Canada, Ltd. Heat exchanger tube support structure
CN101144612B (en) * 2007-10-09 2010-05-19 西安交通大学 Skid-mounted type fuel oil supercritical pressure direct-flow gas injection boiler
DE102007053560A1 (en) * 2007-11-09 2008-10-23 Siemens Ag Aluminum-cooling plate for use in converter i.e. voltage intermediate circuit-converter, has cooling medium pipes with inner surfaces provided with circular bulge, which axially runs along cooling medium pipes related to thread turn
DE102011004266A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solar panel with internally ribbed pipes
CN102183167A (en) * 2011-03-24 2011-09-14 中色奥博特铜铝业有限公司 Inner threaded copper tube with diameter phi of 3

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432281A (en) * 1990-05-29 1992-02-04 Toshiba Corp Microwave excited gas laser apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH218194A (en) * 1940-03-16 1941-11-30 Const Babcock & Wilcox Soc Fr Tubular steam generator.
FR1157523A (en) * 1956-08-31 1958-05-30 Babcock & Wilcox France Improvements to heat exchangers
FR1288755A (en) * 1960-12-27 1962-03-30 Babcock & Wilcox Co Ribbed steam production tube
US4191133A (en) * 1977-11-07 1980-03-04 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
JPS6042361B2 (en) * 1981-06-04 1985-09-21 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン A variable pressure steam generator using a crossover circuit for the rifted internal fluid pipes that make up the furnace wall.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432281A (en) * 1990-05-29 1992-02-04 Toshiba Corp Microwave excited gas laser apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535587A (en) * 1999-01-18 2002-10-22 シーメンス アクチエンゲゼルシヤフト Fossil fuel boiler
WO2015099009A1 (en) 2013-12-27 2015-07-02 三菱日立パワーシステムズ株式会社 Heat transfer tube, boiler, and steam turbine facility
CN105849463A (en) * 2013-12-27 2016-08-10 三菱日立电力系统株式会社 Heat transfer tube, boiler, and steam turbine facility
KR20160102544A (en) 2013-12-27 2016-08-30 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Heat transfer tube, boiler, and steam turbine facility
CN105849463B (en) * 2013-12-27 2017-10-03 三菱日立电力系统株式会社 Heat conducting pipe, boiler and steam turbine plant
RU2641765C1 (en) * 2013-12-27 2018-01-22 Мицубиси Хитачи Пауэр Системз, Лтд. Heat exchange pipe, boiler and steam turbine device
US10132494B2 (en) 2013-12-27 2018-11-20 Mitsubishi Hitachi Power Systems, Ltd. Heat transfer tube including a groove portion having a spiral shape extending continuously and a rib portion extending continuously and protruding inward by the groove portion
JP5720916B1 (en) * 2014-11-07 2015-05-20 三菱日立パワーシステムズ株式会社 Heat transfer tubes, boilers and steam turbine equipment

Also Published As

Publication number Publication date
DE59105729D1 (en) 1995-07-20
EP0503116B1 (en) 1995-06-14
EP0503116B2 (en) 1997-11-19
EP0503116A1 (en) 1992-09-16
DK0503116T3 (en) 1995-11-13
DK0503116T4 (en) 1998-08-31

Similar Documents

Publication Publication Date Title
JPH05118507A (en) Tube, internal surface of which has multiple screw type fin, and steam generator using said tube
US3339631A (en) Heat exchanger utilizing vortex flow
RU2419029C2 (en) Steam generator pipe, forward-flow steam generator and method to manufacture steam generator pipe
Bergles The implications and challenges of enhanced heat transfer for the chemical process industries
US6302194B1 (en) Pipe with ribs on its inner surface forming a multiple thread and steam generator for using the pipe
Saysroy et al. Performance assessment of turbular heat exchanger tubes containing rectangular-cut twisted tapes with alternate axes
Jensen et al. Critical heat flux in helically coiled tubes
RU2123634C1 (en) Method of operation of flow-type steam generator and steam generator used for realization of this method
Bergles et al. Energy conservation via heat transfer enhancement
US3734140A (en) Cross-rifled vapor generating tube
US3378453A (en) High heat flux neutronic fuel element
US3116790A (en) Tube heat exchanger
US3138201A (en) Heat exchanger with grooved tubes
Bergles Heat transfer augmentation
RU2027969C1 (en) Heat exchange element
US3153444A (en) Heat exchanger
Bergles et al. Enhancement of heat transfer in swirled boiling flows
Ghogare et al. A review of passive technique used for heat transfer enhancement in heat exchanger
Lee et al. Experimental investigation of CHF on helical finned heater under the static inclination and rolling conditions
Mayinger Classification and applications of two-phase flow heat exchangers
JPH0432281B2 (en)
GB2037974A (en) Heat transfer tube
JPS60174496A (en) Steam generating pipe
SU1740956A1 (en) Method of thermal-hydraulic stabilization of steam- generating channel
KR19990023666A (en) Boiler with external rich fluidized bed

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980317