JPH05117763A - Manufacture of carbon steel wire rod for cold heading and cold forming excellent in mechanical descaling property - Google Patents

Manufacture of carbon steel wire rod for cold heading and cold forming excellent in mechanical descaling property

Info

Publication number
JPH05117763A
JPH05117763A JP27807291A JP27807291A JPH05117763A JP H05117763 A JPH05117763 A JP H05117763A JP 27807291 A JP27807291 A JP 27807291A JP 27807291 A JP27807291 A JP 27807291A JP H05117763 A JPH05117763 A JP H05117763A
Authority
JP
Japan
Prior art keywords
wire rod
mechanical descaling
carbon steel
cold
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27807291A
Other languages
Japanese (ja)
Other versions
JP2651761B2 (en
Inventor
Akifumi Kawana
章文 川名
Masaki Araki
正樹 荒木
Yoshio Sato
吉雄 佐藤
Nobutaka Nishikawa
宜孝 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3278072A priority Critical patent/JP2651761B2/en
Publication of JPH05117763A publication Critical patent/JPH05117763A/en
Application granted granted Critical
Publication of JP2651761B2 publication Critical patent/JP2651761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To provide the method for manufacturing carbon steel wire rod for cold heading and cold forming excellent in mechanical descaling properties and to form scales good in mechanical descaling properties by controlling the coiling temp. and cooling rate after the rolling of the wire rod. CONSTITUTION:This method is the method for manufacturing carbon steel wire rod for cold heading and cold forming excellent in mechanical descaling properties in which a slab having a compsn. contg., by weight, <=0.15% C, <=0.5% Mn, <=0.04% Si and 0.01 to 0.08% Al and the balance Fe with inevitable impurities is heated to the range of 900 to 1100 deg.C and is thereafter rolled at >=60m/sec finish rolling rate and 950 to 1100 deg.C finishing temp. into wire rod, and the obtd. wire rod is coiled in the range of 850 to 930 deg.C, is then cooled in such a manner that the primary cooling rate from 850 to 600 deg.C is regulated to the range of 0.5 to 2 deg.C/sec and the secondary cooling rate from 600 to 350 deg.C is regulated to 10 to 25 deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメカニカルデスケーリン
グ性に優れた冷間圧造用炭素鋼線材の製造法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon steel wire rod for cold heading having excellent mechanical descaling properties.

【0002】[0002]

【従来の技術】冷間圧造用炭素鋼線材はJISG350
7で規定された化学成分の鋼線材であり、線材熱間圧延
後空冷または衝風冷却をして線材とし、その後酸洗また
はメカニカルデスケーリングし、鋼表面に付着したスケ
ール除去を行い、冷間伸線加工によって鋼線とした後、
ダブルヘッダ或いは多段フォーマによる冷間鍛造加工に
よって、ボルト、部品等、その最終用途に応じた形状に
成形加工される。
2. Description of the Related Art Carbon steel wire rod for cold heading is JIS G350
It is a steel wire rod with the chemical composition specified in 7. After hot-rolling the wire rod, it is air-cooled or air-blast cooled to be a wire rod, and then pickled or mechanically descaled to remove scale adhering to the steel surface After drawing steel wire by wire drawing,
By cold forging with a double header or a multi-stage former, bolts, parts, etc. are formed into shapes according to their final use.

【0003】鋼線材のスケール除去は前記の通り、酸洗
法とメカニカルデスケーリング法とがある。酸洗法はス
ケール除去が十分に行えるために広く採用されている
が、酸を用いるために公害等の問題を生じる場合がある
ので、メカニカルデスケーリング法採用の要請がある。
As described above, the scale removal of the steel wire rod includes the pickling method and the mechanical descaling method. The pickling method is widely adopted because it can sufficiently remove the scale, but the use of acid may cause problems such as pollution. Therefore, there is a demand to adopt the mechanical descaling method.

【0004】メカニカルデスケーリングは多ロールで線
材に曲げ加工を加えてスケールを除去する方法で、メカ
ニカルデスケーリング性を支配する因子はスケールの組
織、密度、構造、スケール中の亀裂、スケールの厚さ等
である。メカニカルデスケーリング性の良い線材を製造
するには、圧延後高温で線材を捲取り、FeO組成のス
ケールの生成を促進させ、その後の冷却速度を上げてF
3 4 組成のスケールの発生を防止することが必要で
ある。
Mechanical descaling is a method of removing the scale by bending the wire rod with multiple rolls, and the factors that control the mechanical descaling are the texture of the scale, the density, the structure, the cracks in the scale, and the thickness of the scale. Etc. In order to produce a wire with good mechanical descaling, the wire is rolled up at a high temperature after rolling to promote the generation of FeO composition scale, and then the cooling rate is increased to increase the F
It is necessary to prevent the generation of scale of e 3 O 4 composition.

【0005】特開昭52−33818号公報記載の線材
の製造方法では、スケール剥離性の向上をねらって圧延
後のステルモアラインでの線材の冷却を6℃/secの
速度で行っている。しかし冷速を上げた場合、オーステ
ナイト−フェライト変態速度が上昇し、フェライト粒径
の微細化により線材の引張強度が上昇する。
In the method of manufacturing a wire rod disclosed in Japanese Patent Laid-Open No. 52-33818, the wire rod is cooled at a Stelmore line after rolling at a rate of 6 ° C./sec for the purpose of improving scale releasability. However, when the cooling rate is increased, the austenite-ferrite transformation rate increases, and the fineness of the ferrite grain size increases the tensile strength of the wire.

【0006】冷間圧造用炭素鋼線材では、引張強度が上
昇すると被加工材の変形抵抗が著しく増大して工具寿命
を短命化し、鍛造機の稼働率、ひいては生産能力が低下
することとなる。
When the tensile strength of the carbon steel wire rod for cold heading is increased, the deformation resistance of the workpiece is remarkably increased, the life of the tool is shortened, and the operating rate of the forging machine and eventually the production capacity are reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、線材圧延後
の捲取温度、および850〜600℃までの1次冷却速
度と600〜350℃までの2次冷却速度をコントロー
ルすることによって、メカニカルデスケーリング性のよ
いスケールを生成させ、なおかつ引張強度の低い冷間圧
造用炭素鋼線材の製造法を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, the mechanical temperature is controlled by controlling the winding temperature after wire rod rolling and the primary cooling rate up to 850 to 600 ° C and the secondary cooling rate up to 600 to 350 ° C. An object of the present invention is to provide a method for producing a carbon steel wire rod for cold heading, which produces a scale with good descaling property and has a low tensile strength.

【0008】つまり線材圧延後の捲取りを高温で行うこ
とにより、剥離性のよいFeO組成のスケールが生成
し、また850〜600℃までの1次冷却速度を低く抑
えることにより引張強度の低減がはかられ、600〜3
50℃までの2次冷却速度を上げることにより剥離性の
悪いスケールの発生を防ぐことができる。これによりメ
カニカルデスケーリング性に優れた引張強度の低い冷間
圧造用炭素鋼線材が得られる。
That is, by winding the wire after rolling at a high temperature, a scale having a good FeO composition is produced, and the primary cooling rate from 850 to 600 ° C. is kept low to reduce the tensile strength. Peel off, 600-3
By increasing the secondary cooling rate up to 50 ° C., it is possible to prevent the generation of scale with poor peelability. As a result, a carbon steel wire rod for cold heading having excellent mechanical descaling properties and low tensile strength can be obtained.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、C:0.15wt%以下、Mn:0.5wt%以
下、Si:0.04wt%以下、Al:0.01〜0.
08wt%を含有し、残部がFeおよび不可避的不純物
からなる組成の鋼片を900〜1100℃の範囲に加熱
した後、仕上圧延速度が60m/sec以上、仕上温度
が950〜1100℃の範囲で線材に圧延し、得られた
線材を850〜930℃の範囲で捲取り、次いで850
〜600℃までの1次冷却速度を0.5〜2℃/sec
の範囲、600〜350℃までの2次冷却速度を10〜
25℃/secの範囲として冷却することを特徴とする
メカニカルデスケーリング性に優れた冷間圧造用炭素鋼
線材の製造法にある。
The gist of the present invention is that C: 0.15 wt% or less, Mn: 0.5 wt% or less, Si: 0.04 wt% or less, Al: 0.01-0.
After heating a steel slab containing 08 wt% and the balance consisting of Fe and unavoidable impurities to a range of 900 to 1100 ° C, the finishing rolling speed is 60 m / sec or more, and the finishing temperature is 950 to 1100 ° C. Rolled into a wire rod, the obtained wire rod is wound in the range of 850 to 930 ° C., and then 850
Primary cooling rate up to ~ 600 ℃ 0.5 ~ 2 ℃ / sec
, The secondary cooling rate from 600 to 350 ° C is 10
It is a method for producing a carbon steel wire rod for cold heading having excellent mechanical descaling characteristics, which is characterized by cooling in the range of 25 ° C./sec.

【0010】[0010]

【作用】本発明における冷間圧造用炭素鋼線材の限定理
由について述べる。Cは鋼の強度と延性を支配する基本
的な元素であり、低炭素化するほど軟質化し、延性は向
上する。C量の上限は加工性を劣化させない限界である
0.15wt%とした。
The reason for limiting the carbon steel wire rod for cold heading in the present invention will be described. C is a basic element that controls the strength and ductility of steel, and the lower the carbon content, the softer it becomes and the more the ductility improves. The upper limit of the amount of C was set to 0.15 wt% which is the limit that does not deteriorate workability.

【0011】Siは鋼の強度を上昇させる元素であり、
また加工により延性を低下させる元素である他に、冷間
圧造用炭素鋼線材の様にSiが少量添加されている場
合、スケールの生成量とメカニカルデスケーリング性を
支配する成分である。Si量が増加するほどスケール生
成量は減少し、メカニカルデスケーリング性は悪くなる
傾向が見られる。したがってスケール厚さおよび剥離性
を均一状態とすることがメカニカルデスケーリング性の
向上に効果的である。そのためSi量の上限を0.04
wt%とした。
Si is an element that increases the strength of steel,
In addition to the element that reduces ductility by working, when a small amount of Si is added as in the carbon steel wire rod for cold heading, it is a component that controls the amount of scale formation and mechanical descaling property. As the amount of Si increases, the amount of scale formation decreases, and the mechanical descaling property tends to deteriorate. Therefore, making the scale thickness and peeling property uniform is effective for improving the mechanical descaling property. Therefore, the upper limit of the Si amount is 0.04
It was set to wt%.

【0012】Mnは脱酸元素であるとともに、鋼中に固
溶して鋼を強化する元素であり、加工硬化を低くするた
めには低い方が望ましい。Mn量の上限は加工性を劣化
させない限界として0.5wt%とした。Alは鋼の脱
酸元素として知られている他、鋼中のNと結合してオー
ステナイト結晶粒の粗大化を阻止する元素である。しか
し、Alを大量に添加すると鋼中のSi量を低く抑える
ことが困難となることと、さらにAlそのものもメカニ
カルデスケーリング性をやや悪くするため低い方が望ま
しい。したがってAl量の上限はメカニカルデスケーリ
ング性を悪くしない限界である0.08wt%とし、一
方下限は特に限定しないが、脱酸の限界として0.01
wt%とした。
[0012] Mn is a deoxidizing element and an element that forms a solid solution in steel to strengthen the steel, and its lower content is desirable for lowering work hardening. The upper limit of the amount of Mn was set to 0.5 wt% as a limit that does not deteriorate workability. Al is known as a deoxidizing element of steel, and is an element that combines with N in steel to prevent coarsening of austenite crystal grains. However, if a large amount of Al is added, it becomes difficult to keep the amount of Si in steel low, and further, Al itself deteriorates the mechanical descaling property a little, so a lower amount is desirable. Therefore, the upper limit of the amount of Al is 0.08 wt%, which is the limit that does not deteriorate the mechanical descaling property, while the lower limit is not particularly limited, but is 0.01 as the limit of deoxidation.
It was set to wt%.

【0013】線材圧延における加熱温度は鋼片の成分を
均一に固溶させるとともに圧延中の鋼材の温度に影響を
与える。加熱温度の下限はオーステナイト化温度以上で
鋼片が均一に固溶し、かつ圧延中の鋼材温度をA1 変態
点以上に確保するために900℃とし、上限は脱炭層の
量を低く抑えるために1100℃とした。線材圧延の仕
上温度は組織のオーステナイト結晶粒度に大きな影響を
与える。線材の仕上圧延工程においては、加工発熱によ
り鋼材温度が上昇する。仕上温度の下限は粗粒のオース
テナイト結晶粒を得るために950℃とし、上限は線材
圧延設備の制限により1100℃とした。
The heating temperature in the wire rod rolling causes the components of the steel slab to form a solid solution and affects the temperature of the steel material during rolling. The lower limit of the heating temperature is 900 ° C in order to ensure that the steel slab uniformly forms a solid solution above the austenitizing temperature, and the steel material temperature during rolling is kept above the A 1 transformation point, and the upper limit is to keep the decarburized layer low And 1100 ° C. The finishing temperature of wire rolling has a great influence on the austenite grain size of the structure. In the finish rolling process of the wire rod, the temperature of the steel rod rises due to the heat generated during processing. The lower limit of the finishing temperature was set to 950 ° C. to obtain coarse austenite crystal grains, and the upper limit was set to 1100 ° C. due to the restrictions on the wire rod rolling equipment.

【0014】線材圧延における捲取温度は生成するスケ
ール組成を決める重要な因子である。このことを本発明
者等は実験的に求めた。その内容は図1および図2に示
すように、捲取温度が上昇するにしたがい、スケール生
成量が増加し、メカニカルデスケーリング性が向上して
いることがわかる。剥離性のよいスケールを生成させる
ため捲取温度の下限は850℃とし、上限は冷却設備の
制約から930℃とした。
The winding temperature in the wire rolling is an important factor that determines the scale composition to be produced. The present inventors experimentally determined this. As shown in FIGS. 1 and 2, it can be seen that as the winding temperature rises, the amount of scale formation increases and the mechanical descaling property improves. The lower limit of the winding temperature was set to 850 ° C. and the upper limit was set to 930 ° C. due to the limitation of the cooling equipment in order to generate a scale having good peelability.

【0015】線材圧延における850〜600℃までの
1次冷却速度はオーステナイト−フェライト変態時のフ
ェライト粒径を決めるもので、低く抑えることにより粒
径を粗大にし、線材の引張強度を低減させることができ
る。1冷却速度の上限は加工性を得るフェライト粒組織
を得るために2℃/secとし、下限は圧延設備の制約
から0.5℃/secとした。
The primary cooling rate from 850 to 600 ° C. in the wire rolling determines the ferrite grain size during the austenite-ferrite transformation. By keeping it low, the grain size becomes coarse and the tensile strength of the wire can be reduced. it can. The upper limit of 1 cooling rate was set to 2 ° C./sec in order to obtain a ferrite grain structure for obtaining workability, and the lower limit was set to 0.5 ° C./sec due to restrictions of rolling equipment.

【0016】また600〜350℃までの2次冷却速度
はFeO→Fe+Fe3 4 反応の速度を決定するもの
で、下限はFe3 4 組成のメカニカルデスケーリング
性が悪いスケールの生成を防ぐことができる限界として
10℃/secとし、上限は冷却設備の制約から25℃
/secとした。
The secondary cooling rate from 600 to 350 ° C. determines the rate of the FeO → Fe + Fe 3 O 4 reaction, and the lower limit is to prevent the formation of a scale with poor mechanical descaling of the Fe 3 O 4 composition. The upper limit is 10 ° C / sec, and the upper limit is 25 ° C due to restrictions of cooling equipment.
/ Sec.

【0017】[0017]

【実施例】低炭素鋼を250トン転炉で溶製し、脱ガス
処理設備を用いて脱炭ならびに成分調整を行い、連続鋳
造設備により300×500mm鋳片とし、さらに122
mm角断面の鋼片を製造した。表1に供試鋼の化学成分を
示す。
Example: Low carbon steel was melted in a 250 ton converter, decarburized and components were adjusted using a degassing facility, and 300 × 500 mm ingots were cast by a continuous casting facility.
Steel pieces with mm square cross section were manufactured. Table 1 shows the chemical composition of the sample steel.

【0018】表1のA〜Dは本発明鋼の例、E〜Gは比
較鋼の例である。E鋼はC量が本発明の上限、F鋼はM
n量が本発明の上限、G鋼はSi量が本発明の上限をそ
れぞれ超え、H鋼はAl量が上限を超えた例である。こ
れらの供試鋼を連続鋳造設備により300×500mm鋳
片とし、さらに分塊圧延により122mm角断面の鋼片を
製造した。
In Table 1, A to D are examples of the steels of the present invention, and E to G are examples of comparative steels. The amount of C in E steel is the upper limit of the present invention, and that of F steel is M
The n amount is the upper limit of the present invention, the G steel is the Si amount exceeding the upper limit of the present invention, and the H steel is the example in which the Al amount is above the upper limit. These test steels were cast into 300 × 500 mm slabs by a continuous casting facility, and slab-rolling was performed to produce slabs with 122 mm square cross section.

【0019】これらの鋳片を分塊圧延でビレットに製造
後、表2に示す線材圧延条件で直径5.5mmの線材に圧
延し、ステルモア冷却を行った。冷間鍛造時における加
工性は冷間据え込み性試験により求めた。試験ダイスは
図3に示すように、工具面に溝の深さは0.4mm、ピッ
チは0.7mmの同心円溝を刻んだものである。これは試
料上下面の組成流動を完全に拘束することを目的とした
ものである。またこの接触面は超硬合金で作成した。
These slabs were manufactured into billets by slab-rolling, then rolled into wire rods having a diameter of 5.5 mm under the wire rod rolling conditions shown in Table 2 and subjected to Stelmore cooling. The workability during cold forging was determined by a cold upsetting test. As shown in FIG. 3, the test die had a concentric groove with a groove depth of 0.4 mm and a pitch of 0.7 mm formed on the tool surface. This is intended to completely restrain the composition flow on the upper and lower surfaces of the sample. The contact surface was made of cemented carbide.

【0020】試験片の高さ直径比h0 /D0 を1.5で
一定とした線材切断片に、その表面に沿って深さ0.4
mmの上仕上V字溝を溝底の丸み半径0.15mm、開先角
度120度に形成して試験片とし、これを軸線方向に圧
縮する試験用ダイスとして、外径60mm、長さ60mmの
円筒台よりなり、その試験片に接する端面直径40mmの
領域内に、半径方向ピッチ0.7mmの同心多重環状配列
で谷の開き角度120度のV字溝を刻んだ上下一対を用
いて、試験片に圧縮歪速度:3.3×10-3sec-1
圧縮荷重を加えて割れ発生を目視判定し、限界圧縮率
(%)として、 εhc=(h0 −hc )/h0 ×100 εhc:限界据え込み率 h0 :試験片の元の高さ hc :割れ発生時の試験片の高さの値を計算することに
よって求めた。
The height-diameter ratio h 0 / D 0 of the test piece was fixed at 1.5, and a depth of 0.4 was measured along the surface of the cut piece.
mm finishing V-groove with a rounded radius of 0.15 mm at the groove bottom and a groove angle of 120 degrees is used as a test piece, and this test die is compressed in the axial direction and has an outer diameter of 60 mm and a length of 60 mm. The test was performed by using a pair of upper and lower carved V-grooves with a valley opening angle of 120 degrees in a concentric multiple annular array with a radial pitch of 0.7 mm in a region of an end face diameter of 40 mm in contact with the test piece. A compressive load was applied to one piece at a compressive strain rate of 3.3 × 10 −3 sec −1 to visually determine the occurrence of cracks, and as a limit compression rate (%), ε hc = (h 0 −h c ) / h 0 × 100 ε hc : Limit upsetting rate h 0 : Original height of test piece h c : It was determined by calculating the value of the height of the test piece when cracking occurred.

【0021】引張試験はJISZ2201の2号試験片
を用い、JISZ2241記載の方法で行った。メカニ
カルデスケーリング性の評価はリバースベンディング法
でスケールを除去した後、試料重量に対するスケール量
の百分率で表示した。このようにして得られた特性値を
表2に併せて示す。
The tensile test was carried out by using the JISZ2201 No. 2 test piece according to the method described in JISZ2241. The mechanical descaling property was evaluated by removing the scale by the reverse bending method and then displaying the percentage of the scale amount with respect to the sample weight. The characteristic values thus obtained are also shown in Table 2.

【0022】No. 5〜No. 13は比較鋼である。No. 5
は加熱温度が低すぎたため仕上圧延温度が低下し、フェ
ライト結晶粒が微細となり強度が上昇し加工性が低下し
た。No. 6は仕上圧延温度が低すぎたためにフェライト
結晶粒が微細となり強度が上昇し加工性が低下した。
No. 5 to No. 13 are comparative steels. No. 5
Since the heating temperature was too low, the finish rolling temperature decreased, the ferrite crystal grains became finer, the strength increased, and the workability decreased. In No. 6, since the finish rolling temperature was too low, the ferrite crystal grains became fine and the strength increased and the workability deteriorated.

【0023】No. 7は捲取温度が低すぎたためにスケー
ル剥離が悪化し、メカニカルデスケーリング性が低下し
た。No. 8は1次冷却速度が速すぎたためにフェライト
結晶粒が微細化し、強度が上昇し、加工性が低下した。
No. 9は2次冷却速度が遅すぎたために剥離性の悪いF
3 4 が発生し、メカニカルデスケーリング性が劣化
した。
In No. 7, since the winding temperature was too low, the scale peeling deteriorated and the mechanical descaling property deteriorated. In No. 8, since the primary cooling rate was too fast, the ferrite crystal grains became finer, the strength increased, and the workability deteriorated.
No. 9 has a poor peeling property because the secondary cooling rate is too slow.
e 3 O 4 was generated, and the mechanical descaling property deteriorated.

【0024】No. 10はC量が高すぎたために加工性が
低下した。No. 11はMn量が高すぎたために引張強度
が増加した。No. 12はSi量が高すぎたためにスケー
ル生成量が減少し、メカニカルデスケーリング性の劣化
が生じた。No. 13はAl量が高すぎたためにメカニカ
ルデスケーリング性の劣化が生じた。
In No. 10, the workability was deteriorated because the C content was too high. In No. 11, the tensile strength increased because the Mn content was too high. In No. 12, since the amount of Si was too high, the amount of scale formation decreased, and the mechanical descaling property deteriorated. In No. 13, the mechanical descaling property was deteriorated because the Al content was too high.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】以上述べた如く本発明法にしたがって製
造された線材は、従来法にくらべてより一段とメカニカ
ルデスケーリング性が改善されており、これにより伸線
前処理に行うスケール除去を容易化することができ、か
つ安価な冷間圧造用炭素鋼線材の製造を可能にするもの
である。
As described above, the wire manufactured according to the method of the present invention has a mechanical descaling property further improved as compared with the conventional method, which facilitates the scale removal performed in the wire drawing pretreatment. It is possible to manufacture a carbon steel wire rod for cold heading, which can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】線材圧延後の捲取温度とスケール生成量の関係
を示す図である。
FIG. 1 is a diagram showing a relationship between a winding temperature after rolling a wire rod and an amount of scale formation.

【図2】線材圧延後の捲取温度とメカニカルデスケーリ
ング後の残留スケール量の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a winding temperature after wire rod rolling and a residual scale amount after mechanical descaling.

【図3】冷間鍛造時における加工性を判断するための冷
間据え込み性試験における圧縮工具の側断面図である。
FIG. 3 is a side sectional view of a compression tool in a cold upsetting test for determining workability during cold forging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 宜孝 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshitaka Nishikawa 1 Kimitsu, Kimitsu City, Chiba Shin Nippon Steel Co., Ltd. Inside the Kimitsu Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.15wt%以下、Mn:0.5
wt%以下、Si:0.04wt%以下、Al:0.0
1〜0.08wt%を含有し、残部がFeおよび不可避
的不純物からなる組成の鋼片を900〜1100℃の範
囲に加熱した後、仕上圧延速度が60m/sec以上、
仕上温度が950〜1100℃の範囲で線材に圧延し、
得られた線材を850〜930℃の範囲で捲取り、次い
で850〜600℃までの1次冷却速度を0.5〜2℃
/secの範囲、600〜350℃までの2次冷却速度
を10〜25℃/secの範囲として冷却することを特
徴とするメカニカルデスケーリング性に優れた冷間圧造
用炭素鋼線材の製造法。
1. C: 0.15 wt% or less, Mn: 0.5
wt% or less, Si: 0.04 wt% or less, Al: 0.0
After heating a steel slab containing 1 to 0.08 wt% and the balance being Fe and unavoidable impurities in the range of 900 to 1100 ° C., the finish rolling speed is 60 m / sec or more,
Roll to a wire at a finishing temperature of 950 to 1100 ° C,
The obtained wire is wound in the range of 850 to 930 ° C., and then the primary cooling rate from 850 to 600 ° C. is 0.5 to 2 ° C.
/ Sec, a secondary cooling rate from 600 to 350 ° C is cooled within a range of 10 to 25 ° C / sec, and a method for producing a carbon steel wire rod for cold heading having excellent mechanical descaling properties.
JP3278072A 1991-10-24 1991-10-24 Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading Expired - Lifetime JP2651761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3278072A JP2651761B2 (en) 1991-10-24 1991-10-24 Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3278072A JP2651761B2 (en) 1991-10-24 1991-10-24 Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading

Publications (2)

Publication Number Publication Date
JPH05117763A true JPH05117763A (en) 1993-05-14
JP2651761B2 JP2651761B2 (en) 1997-09-10

Family

ID=17592259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3278072A Expired - Lifetime JP2651761B2 (en) 1991-10-24 1991-10-24 Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading

Country Status (1)

Country Link
JP (1) JP2651761B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340642B1 (en) * 1997-06-04 2002-09-18 주식회사 포스코 Method for manufacturing the medium carbon steel rod with preventing scale scattering
KR100940658B1 (en) * 2002-09-26 2010-02-05 주식회사 포스코 A Manufacturing Method of Hot Rolled Wire Rod Having Excellent Ability of Descaling
CN113680814A (en) * 2021-08-24 2021-11-23 攀钢集团研究院有限公司 Method for controlling iron scale on surface of medium-carbon low-alloy wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665795B1 (en) * 2014-12-23 2016-10-13 주식회사 포스코 Method for manufacturing soft steel wire rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210829A (en) * 1975-07-17 1977-01-27 Kawasaki Steel Co Method of fabricating hot rolled wire rods formed with scale easily removable by mechanical descaling
JPS53147618A (en) * 1977-05-30 1978-12-22 Sumitomo Metal Ind Ltd Method of cooling hot rolled steel material
JPS5881928A (en) * 1981-11-12 1983-05-17 Nippon Steel Corp Manufacture of low-carbon steel wire material excellent in descaling property and processability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210829A (en) * 1975-07-17 1977-01-27 Kawasaki Steel Co Method of fabricating hot rolled wire rods formed with scale easily removable by mechanical descaling
JPS53147618A (en) * 1977-05-30 1978-12-22 Sumitomo Metal Ind Ltd Method of cooling hot rolled steel material
JPS5881928A (en) * 1981-11-12 1983-05-17 Nippon Steel Corp Manufacture of low-carbon steel wire material excellent in descaling property and processability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340642B1 (en) * 1997-06-04 2002-09-18 주식회사 포스코 Method for manufacturing the medium carbon steel rod with preventing scale scattering
KR100940658B1 (en) * 2002-09-26 2010-02-05 주식회사 포스코 A Manufacturing Method of Hot Rolled Wire Rod Having Excellent Ability of Descaling
CN113680814A (en) * 2021-08-24 2021-11-23 攀钢集团研究院有限公司 Method for controlling iron scale on surface of medium-carbon low-alloy wire

Also Published As

Publication number Publication date
JP2651761B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
EP1980635B1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
US20080236709A1 (en) Cold-worked steels with packet-lath martensite/austenite microstructure
JP7256383B2 (en) Method for manufacturing hot-rolled steel sheet
JP2969293B2 (en) Manufacturing method of mild steel wire rod with excellent mechanical descaling
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JP2651761B2 (en) Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading
JPH1036947A (en) Austenitic stainless hot rolled steel sheet excellent in deep drawability and its production
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP3888279B2 (en) Manufacturing method of low yield ratio electric resistance welded steel pipe and square column for construction
JP3434080B2 (en) Wire for descaling
JP2575544B2 (en) Manufacturing method of high-strength, high-carbon steel wire rod with excellent drawability
JP2579707B2 (en) Manufacturing method of wire rod for coated arc welding rod core wire with excellent mechanical descaling property
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP2000087185A (en) Hot rolled steel plate excellent in surface characteristic and scale adhesion, and its manufacture
JP3493153B2 (en) Wire or steel bars and machine parts with excellent cold workability
CN115053007B (en) Cold-rolled steel sheet for flux-cored wire and method for producing same
JP2791832B2 (en) Manufacturing method of mild steel wire rod with excellent workability during cold forging
JP7534603B2 (en) High carbon steel wire rod
JPH08337817A (en) Production of ultrahigh tensile strength electric resistance welded tube excellent in hydrogen delayed cracking resistance
KR20000031083A (en) Process for producing low carbon wire rod for cold rolling which has excellent scale property
JP3434079B2 (en) Wire for descaling
JP2009228137A (en) Steel of high strength and superior in cold heading characteristic and fastening parts such as screw and bolt or formed article such as shaft superior in strength
CN115404415A (en) Round steel for supporting shaft forge piece and rolling method thereof
JP4023224B2 (en) Hot-rolled steel sheet and automotive parts with excellent rotary ironing workability
JPH0530884B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311