JPH0511759B2 - - Google Patents

Info

Publication number
JPH0511759B2
JPH0511759B2 JP62255384A JP25538487A JPH0511759B2 JP H0511759 B2 JPH0511759 B2 JP H0511759B2 JP 62255384 A JP62255384 A JP 62255384A JP 25538487 A JP25538487 A JP 25538487A JP H0511759 B2 JPH0511759 B2 JP H0511759B2
Authority
JP
Japan
Prior art keywords
weight
parts
resin liquid
glass cloth
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62255384A
Other languages
Japanese (ja)
Other versions
JPH0197634A (en
Inventor
Minoru Itsushiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62255384A priority Critical patent/JPH0197634A/en
Publication of JPH0197634A publication Critical patent/JPH0197634A/en
Publication of JPH0511759B2 publication Critical patent/JPH0511759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はガラス繊維強化電気用積層板の製造方
法に関する。ここで電気用積層板とは、各種電気
および電子部品の基板として用いられる絶縁積層
板や、印刷回路基板として用いる金属箔張り積層
板を意味する。 背景技術および課題 特開昭55−4838,同56−98136等には電気用積
層板の連続製造法が開示されている。該方法は複
数枚の基材を連続的に並行して搬送下、該基材へ
個別的に硬化性樹脂液を含浸し、含浸基材を積層
して合体し、カバーシートおよび/または金属箔
をラミネートし、連続的に硬化させた後切断する
等の連続工程よりなる。 プリプレグを複数枚重ね、熱プレスで成形して
つくるプレス法による電気用積層板において、外
側はガラスクロスを配し、内側にはガラスペーパ
ーを配し、内側のガラスペーパー基材には無機充
填材を多量に含む樹脂を使用することにより、コ
ンポジツト積層板の寸法安定性を改良することは
公知である。 これと同様な構造を有するコンポジツト積層板
を前記の連続法で製造しようとすれば、内側不織
布基材へのみ無機充填材を多量に含む樹脂液を供
給しなければならない。しかしながら同じライン
にある基材へ異なる組成の樹脂液を別々に供給す
るのは不便であるばかりでなく、上記二種類の回
収された樹脂液は混合物となるため、そのままで
は再使用できない等の欠点がある。外側のガラス
クロス基材へ内側のガラスペーパー基材と同じ組
成の高充填材含量の樹脂を供給することも考えら
れるが、ガラスクロスの目詰まりのためあまり充
填材含量を高くすることはできない。 そこで本発明は、このような支障、困難、欠点
を解消することを課題とする。 解決方法 本発明は、両外側にガラスクロスを、内側に不
織布を配した複数枚の基材を並行して連続的に搬
送下、該基材列へ個別的にそれ自身液状で硬化に
際し反応副生成物を発生しない硬化性樹脂液を含
浸し、含浸基材を積層合体し、カバーシートおよ
び/または金属箔をラミネートし、連続的に硬化
させた後所望の寸法に切断する工程を含む電気用
積層板の製造法において、該不織布基材へ有機バ
インダーを用いて無機充填材をあらがしめ付着さ
せ、かつあらかじめ該ガラスクロスをガラスクロ
スとの密着性が高いラジカル重合型硬化性樹脂液
で前処理することを特徴とするガラス繊維強化電
気用積層板の製造方法である。 このように、コア部分となる不織布基材へあら
かじめ無機充填材を付着させておくことにより、
同じ組成の硬化性樹脂液をすべての基材の含浸に
使用することができ、なおかつ寸法安定性を改善
するためにコア部分へ選択的に高充填量の無機充
填材を充填することが可能となる。本発明により
両面金属箔張り積層板を製造した場合、得られる
積層板のスルーホール信頼性が向上する。 同時に最外側に配されるガラスクロス基材を樹
脂液で前処理し、樹脂をガラスクロス表面に偏在
させることにより層間剥離強度を向上させること
ができる。またガラスクロスの織り目を前処理樹
脂でうめることにより、金属箔面の表面平滑性が
改善され、微細なプリント回路を形成するのに有
利になる。また、あらかじめガラスクロス基材へ
の硬化性樹脂液の含浸がなされ濡れ性が向上して
いるため未処理のガラスクロスへの含浸に比し、
無機充填材を高充填した硬化性樹脂液によるガラ
スクロス基材への目詰まりがなく良好に含浸また
は付着がなされるので、高充填した硬化性樹脂液
を使用することができる。 さらに前処理によりガラスクロスの織り目を強
固なものにすることにより、走行中の目曲がりが
防止され、積層板のそりやねじれが少なくなる等
の効果が達成される。 本発明は前処理樹脂液としてラジカル重合型硬
化性樹脂液を用いるため、反応時間が短く、連続
製造方法での生産性が高く、アミンや酸無水物等
の硬化剤を必要としないから、加熱による変色や
特性低下も避けられる。またラジカル重合型硬化
性樹脂液は溶剤の代わりに架橋用モノマー、例え
ばスチレンによつて粘度を調節することが可能で
あるから、溶剤の除去を必要とせず、また溶剤の
残留による積層硬化後の発泡等の不良品が発生し
ない。さらにガラスクロスの前処理に使用する樹
脂液も、その後本含浸に使用する樹脂液も、とも
にラジカル重合型樹脂液であるため、相互に架橋
し、特開昭59−209829号の方法のように硬化機構
の異なる樹脂を前処理および本含浸に使用した場
合よりも、層間剥離強度を始めとする機械的強度
がかなり改善される。 好ましい実施態様 本発明の実施にあたつては、両外側に配するガ
ラスクロス基材をここで述べる前処理をした後使
用し、かつ内側に無機充填材を付着させた不織布
基材を配してなる基材列を連続的に搬送しながら
処理することを除き、特開昭55−4838,同56−
98136等に開示された技術を適用することができ
る。なお、連続硬化させる場合実質無圧で硬化さ
せる場合には設備等が簡単である。 ガラスクロスとは、ガラスフイラメント(通常
例えば太さ9μm程度)を50〜800本集束したヤー
ンを、朱子織、平織、目抜平織、あや織などの各
種の織り方でタテ、ヨコに織り込んだ布の総称で
ある。本発明ではこのようなガラスクロスを両外
側に各1層づつ用いる。 前処理に用いる樹脂は、含浸用樹脂よりもガラ
ス繊維への密着性の高い樹脂が好ましいが、場合
によつては含浸用樹脂と同じでもよい。前処理に
用いる樹脂としては例えば不飽和ポリエステル樹
脂、エポキシアクリレート樹脂、ポリエステルア
クリレート樹脂、ウレタンアクリレート樹脂、ジ
アリルフタレート樹脂等のラジカル重合型硬化性
樹脂である。含浸用樹脂が不飽和ポリエステル樹
脂である場合には前処理用樹脂としては、エポキ
シアクリレート樹脂およびウレタンアクリレート
樹脂が特に好ましい。接着性を改善するためゴム
成分をポリマー骨格中に導入するか、またはブレ
ンドしてもよく、その量は2ないし50重量%が好
ましい。 ラジカル重合型樹脂の硬化には触媒ないし重合
開始剤を必要とする。重合開始剤としては有機過
酸化物が一般的であり、多数のものが公知である
が、本発明の目的に対しては、特開昭55−53013
号に開示されている脂肪族系のパーオキサイド類
が好ましく、特に脂肪族系のパーオキシエステル
類から選ばれたものを単独または併用して用いる
のが特に好ましい。 具体的には、例えばジ−t−ブチルパーオキサ
イド、2,5−ジメチル−2,5−ジ(t−ブチ
ルパーオキシ)ヘキサン、アセチルパーオキサイ
ド、イソブチリルパーオキサイド、t−ブチルパ
ーオキシ−2−エチルヘキサノエート等である。 脂肪族系のパーオキシエステル類とは、例えば
t−ブチルパーオキシアセテート、t−ブチルパ
ーオキシイソブチレート、t−ブチルパーオキシ
−2−エチルヘキサノエート、t−ブチルパーオ
キシラウレートなどをいう。 前処理樹脂液は溶剤または液状の重合性架橋モ
ノマーで適当な粘度に希釈して用いる。前処理樹
脂液の付着量は、ガラスクロス100重量部あたり
固形分として5〜40重量部、好ましくは10ないし
30重量部、さらに好ましくは15〜25重量部であ
る。あまり付着量が多いと含浸用樹脂の含浸性が
低下し、あまり少ないと目的とする効果が十分に
発揮されない。 ガラスクロスの前処理方法は任意であるが、例
えば前処理用樹脂を10ないし50%の溶剤をかねた
集束性モノマー、例えばスチレンで希釈して適当
な粘度の前処理液を調製し、ガラスクロスへ塗
布、浸漬などによつて付着させればよい。 また前処理用樹脂液に有機過酸化物等の硬化用
触媒が添加してあるので、付着後のガラスクロス
をあらかじめ半硬化させると、後で硬化性樹脂液
を含浸したとき付着させた前処理樹脂が後の含浸
樹脂液中に溶解することによる処理効果の低下を
防ぐことができるので、好ましい実施態様であ
る。前処理は積層板連続製造ライン中に組込んで
実施することもできるし、別のラインで実施し、
ロールに巻き取つて使用してもよい。 不織布としては、太さ1〜20μmのガラス繊維
を水中に分散し、バインダーにアクリル樹脂、ポ
リビニルアルコール、エポキシ樹脂、メラミン樹
脂などを用いて湿式で抄造した長尺のシート状の
ガラス不織布(ガラスペーパーともいう)や、紙
とガラス繊維からなるガラス混抄紙、ポリエステ
ルなどの合成繊維、レーヨン、石綿、岩綿などか
らなる不織布もある。不織布の一部を紙で代替す
ることもできる。不織布は内側に板厚に応じて1
層もしくは数層使用することができる。 無機充填材は水不溶性で、絶縁性のものが用い
られる。その例としては、シリカ,アルミナ,ジ
ルコニア,二酸化チタン,亜鉛華等の金属酸化
物、水酸化マグネシウム、水酸化アルミニウム等
の金属水酸化物、タルク、カオリン、雲母、ワラ
ストナイト、粘土鉱物等の天然鉱物、炭酸カルシ
ウム、炭酸マグネシウム、硫酸バリウム、リン酸
カルシウム等の不溶性塩類等がある。無機充填材
は比重が大きい場合や形状が大きいものは沈降し
易く、処理する時扱いにくい。また処理後の積層
板表面の凹凸が大きくなり、外観不良の原因とな
る。従つて形状としてはアスペクト比が小さく、
粒径が10μm以下のものが好ましい。 難燃助剤その他一般に積層板に添加されるもの
であつて先の無機充填材の定義に該当するものは
本発明の充填材に加えて添加してもよい。 有機バインダーとしては、エポキシ樹脂、メラ
ミン樹脂、ポリビニルアルコール、アクリル樹脂
などがある。 不織布基材への無機充填材の付着量は、不織布
100重量部あたり50ないし700重量部、好ましくは
100ないし600重量部、より好ましくは200ないし
500重量部である。この付着量は無機充填材によ
る寸法安定性向上効果と、含浸樹脂液の処理した
基材への含浸性との間のバランスを考慮したもの
である。 有機パインダーの使用量は、無機充填材100重
量部あたり1ないし60重量部、好ましくは2ない
し40重量部である。この量は無機充填材を不織布
基材へ粉落ちしない程度に過不足なく付着させる
量であればよい。 不織布基材への付着方法は任意であるが、無機
充填材とバインダーとを媒体、例えば水に分散し
て分散液をつくり、浸漬、塗布等によつて分散液
を基材へ供給し、乾燥して媒体を除去することに
よつて実施することができる。不織布、特にガラ
スペーパーは密度が小さく、引張り強さ等の機械
的強度が十分でないため連続製造法では切断など
のトラブルが発生し易いが、この処理において適
当なバインダーを選択することによつて引張り強
さを補強し、切断などのトラブルを避けることが
できる。 連続製造法の特徴の一つは、それ自身液状で硬
化に際し反応副生成物を発生しない硬化性樹脂液
を基材の含浸用に使用することである。このよう
な樹脂としては、不飽和ポリエステル樹脂、エポ
キシ樹脂、エポキシアクリレート樹脂、ポリエス
テルアクリレート樹脂、ウレタンアクリレート樹
脂、スピラン樹脂、ジアリルフタレート樹脂等が
ある。 本発明によれば、この含浸用樹脂100重量部あ
たり前述した無機充填材を100重量部以下,好ま
しくは10ないし50重量部添加することができる。
これにより厚み方向の寸法安定性がさらに改善さ
れ、スルーホール信頼性が向上する。 以下実施例により本発明を詳細に説明する。 実施例 基材層の両最外側層に厚さ180μm,坪量210
g/m2のガラスクロスを使用し、中間に坪量40
g/m2のガラスペーパーを3層用い、エポキシ系
接着剤を厚み40μmに塗布した厚み18μmの銅箔を
両面に張つた厚み1.6mmの両面銅箔張り不飽和ポ
リエステル積層板を連続法によつて製造した。 ガラスペーパーは、水100重量部、炭酸カルシ
ウム80重量部、エポキシバインダー4重量部をエ
マルジヨンとして分散させた処理液に含浸し、
150℃で5分間乾燥し、ペーパー100重量部に対し
炭酸カルシウムを400重量部付着させた。 含浸用樹脂液としては、難燃性不飽和ポリエス
テル樹脂100重量部(ブロム含量14重量%)、三酸
化アンチモン4重量部、過酸化ベンゾイル1重量
部、炭酸カルシウム30重量部を均一に混和した液
状樹脂を用いた。 ガラスクロスは、スチレン単量体を50%含むゴ
ム変性エポキシアクリレート樹脂液に含浸し、
160℃で5分間加熱して前処理した。この時の樹
脂付着量は固形分でガラスクロス100重量部あた
り20重量%であつた。 前処理したガラスクロスを両最外側に、ガラス
ペーパーを内側に配して連続的に搬送しながら、
個別的に前記樹脂液を含浸させた後合体し、両面
に銅箔をラミネートした後、トンネル型硬化炉を
連続的に通過させて、100℃で15分間、150℃で10
分間熱硬化させた。 比較例 1 ガラスペーパーを無機充填材付着処理すること
なく使用したほかは、実施例と同じ操作によつて
厚さ1.6mmの両面銅箔張り積層板を製造した。 比較例 2 ガラスクロスを前処理しないことを除いて実施
例と同じ操作によつて厚さ1.2mmの両面銅箔張り
積層板を製造した。 実施例および比較例の積層板の性能を下表に示
す。
TECHNICAL FIELD The present invention relates to a method of manufacturing a glass fiber reinforced electrical laminate. Here, the electrical laminate refers to an insulating laminate used as a substrate for various electrical and electronic components, and a metal foil-covered laminate used as a printed circuit board. BACKGROUND TECHNOLOGY AND PROBLEMS Japanese Patent Laid-open Nos. 55-4838 and 56-98136 disclose continuous manufacturing methods for electrical laminates. This method involves individually impregnating a plurality of base materials with a curable resin liquid while continuously conveying them in parallel, stacking and combining the impregnated base materials, and forming a cover sheet and/or metal foil. It consists of a continuous process such as laminating, curing continuously, and cutting. Electrical laminates are made by stacking multiple sheets of prepreg and forming them using a hot press. Glass cloth is placed on the outside, glass paper is placed on the inside, and an inorganic filler is placed on the inside glass paper base material. It is known to improve the dimensional stability of composite laminates by using resins containing high amounts of . If a composite laminate having a similar structure is to be manufactured by the continuous method described above, a resin liquid containing a large amount of inorganic filler must be supplied only to the inner nonwoven fabric substrate. However, it is not only inconvenient to separately supply resin liquids of different compositions to the substrates on the same line, but also has drawbacks such as the fact that the two types of recovered resin liquids are a mixture and cannot be reused as they are. There is. It is also possible to supply the outer glass cloth substrate with a high filler content resin having the same composition as the inner glass paper substrate, but it is not possible to increase the filler content too high because of clogging of the glass cloth. Therefore, it is an object of the present invention to solve these problems, difficulties, and drawbacks. Solution method In the present invention, a plurality of base materials each having a glass cloth on the outside and a non-woven fabric on the inside are continuously conveyed in parallel and are individually delivered to the row of base materials in a liquid state so that they react by reaction during curing. For electrical use, which includes the steps of impregnating a curable resin liquid that does not generate products, laminating and combining impregnated base materials, laminating a cover sheet and/or metal foil, curing continuously, and then cutting into desired dimensions. In the method of manufacturing a laminate, an inorganic filler is roughened and adhered to the nonwoven fabric base material using an organic binder, and the glass cloth is pretreated with a radical polymerizable curable resin liquid that has high adhesion to the glass cloth. This is a method for manufacturing a glass fiber reinforced electrical laminate, which is characterized by a process. In this way, by pre-adhering the inorganic filler to the nonwoven fabric base material that will become the core part,
The same composition of curable resin liquid can be used for impregnating all substrates, and it is also possible to selectively fill the core with a high amount of inorganic filler to improve dimensional stability. Become. When a double-sided metal foil-clad laminate is manufactured according to the present invention, the through-hole reliability of the resulting laminate is improved. At the same time, the glass cloth base material disposed on the outermost side is pretreated with a resin liquid to unevenly distribute the resin on the surface of the glass cloth, thereby improving the delamination strength. Furthermore, by filling the weave of the glass cloth with a pretreated resin, the surface smoothness of the metal foil surface is improved, which is advantageous for forming fine printed circuits. In addition, since the glass cloth base material is impregnated with the curable resin liquid in advance, its wettability is improved, compared to impregnating untreated glass cloth.
Since the curable resin liquid highly filled with an inorganic filler can satisfactorily impregnate or adhere to the glass cloth substrate without clogging, it is possible to use a curable resin liquid highly filled with the inorganic filler. Furthermore, by making the weave of the glass cloth stronger through pre-treatment, it is possible to prevent the weave from bending during running, thereby achieving effects such as reducing warping and twisting of the laminate. Since the present invention uses a radically polymerizable curable resin liquid as the pretreatment resin liquid, the reaction time is short, productivity is high in a continuous manufacturing method, and curing agents such as amines and acid anhydrides are not required. It also avoids discoloration and deterioration of properties due to In addition, the viscosity of the radical polymerizable curable resin liquid can be adjusted using a crosslinking monomer, such as styrene, instead of a solvent, so there is no need to remove the solvent, and the residual solvent can be used after lamination curing. No defects such as foaming occur. Furthermore, since both the resin liquid used for pre-treatment of glass cloth and the resin liquid used for the main impregnation are radical polymerization type resin liquids, they crosslink with each other, and as in the method of JP-A No. 59-209829, Mechanical strength, including delamination strength, is considerably improved compared to when resins with different curing mechanisms are used for pretreatment and main impregnation. Preferred Embodiment In carrying out the present invention, the glass cloth base materials placed on both outer sides are used after being pretreated as described here, and the nonwoven fabric base material to which an inorganic filler is attached is placed on the inside. JP-A No. 55-4838, No. 56-1, except that processing is carried out while continuously conveying a row of substrates consisting of
98136 etc. can be applied. Incidentally, in the case of continuous curing, the equipment etc. are simple when curing is carried out substantially without pressure. Glass cloth is a cloth in which 50 to 800 yarns of glass filaments (usually about 9 μm in thickness) are woven vertically and horizontally using various weaving methods such as satin weave, plain weave, open weave, and twill weave. It is a general term for In the present invention, one layer of such glass cloth is used on each outer side. The resin used for pretreatment is preferably a resin that has higher adhesion to glass fibers than the impregnating resin, but may be the same as the impregnating resin in some cases. Examples of the resin used in the pretreatment include radical polymerizable curable resins such as unsaturated polyester resins, epoxy acrylate resins, polyester acrylate resins, urethane acrylate resins, and diallyl phthalate resins. When the impregnation resin is an unsaturated polyester resin, epoxy acrylate resins and urethane acrylate resins are particularly preferred as pretreatment resins. Rubber components may be incorporated or blended into the polymer backbone to improve adhesion, the amount being preferably between 2 and 50% by weight. A catalyst or polymerization initiator is required for curing of radical polymerizable resins. Organic peroxides are common as polymerization initiators, and a large number of them are known.
The aliphatic peroxides disclosed in the above are preferred, and it is particularly preferred to use those selected from aliphatic peroxyesters alone or in combination. Specifically, for example, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, acetyl peroxide, isobutyryl peroxide, t-butylperoxy-2 -ethylhexanoate, etc. Aliphatic peroxyesters include, for example, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxy-2-ethylhexanoate, t-butylperoxylaurate, etc. say. The pretreated resin liquid is used after being diluted to an appropriate viscosity with a solvent or a liquid polymerizable crosslinking monomer. The adhesion amount of the pretreatment resin liquid is 5 to 40 parts by weight, preferably 10 to 40 parts by weight of solid content per 100 parts by weight of glass cloth.
The amount is 30 parts by weight, more preferably 15 to 25 parts by weight. If the amount is too large, the impregnating properties of the impregnating resin will be reduced, and if the amount is too small, the desired effect will not be fully exhibited. The pretreatment method for the glass cloth is arbitrary, but for example, the pretreatment resin is diluted with 10 to 50% of a focusing monomer that also serves as a solvent, such as styrene, to prepare a pretreatment liquid with an appropriate viscosity, and then the glass cloth is prepared. It may be applied by coating, dipping, etc. In addition, since a curing catalyst such as an organic peroxide is added to the pretreatment resin liquid, if the glass cloth is semi-cured after adhesion, the pretreatment applied when impregnated with the curable resin liquid This is a preferred embodiment since it is possible to prevent a decrease in the treatment effect due to the resin dissolving into the subsequent impregnating resin liquid. Pretreatment can be integrated into the continuous laminate production line, or it can be carried out on a separate line.
It may also be used by winding it into a roll. The nonwoven fabric is a long sheet-like glass nonwoven fabric (glass paper) made by wet-forming glass fibers with a thickness of 1 to 20 μm dispersed in water and using acrylic resin, polyvinyl alcohol, epoxy resin, melamine resin, etc. as a binder. There are also glass-mixed papers made of paper and glass fibers, synthetic fibers such as polyester, and non-woven fabrics made of rayon, asbestos, rock wool, etc. Part of the nonwoven fabric can also be replaced with paper. The non-woven fabric has 1 layer on the inside depending on the board thickness.
A layer or several layers can be used. The inorganic filler used is water-insoluble and insulating. Examples include metal oxides such as silica, alumina, zirconia, titanium dioxide, and zinc white, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, talc, kaolin, mica, wollastonite, and clay minerals. These include natural minerals, insoluble salts such as calcium carbonate, magnesium carbonate, barium sulfate, and calcium phosphate. Inorganic fillers that have a high specific gravity or a large shape tend to settle and are difficult to handle during processing. Moreover, the unevenness on the surface of the laminate after treatment becomes large, causing a poor appearance. Therefore, the aspect ratio of the shape is small,
Preferably, the particle size is 10 μm or less. Flame retardant aids and other substances that are generally added to laminates and that fall under the above definition of inorganic filler may be added in addition to the filler of the present invention. Examples of the organic binder include epoxy resin, melamine resin, polyvinyl alcohol, and acrylic resin. The amount of inorganic filler attached to the nonwoven fabric base material is
50 to 700 parts by weight per 100 parts by weight, preferably
100 to 600 parts by weight, more preferably 200 to 600 parts by weight
500 parts by weight. This amount of adhesion is determined in consideration of the balance between the dimensional stability improvement effect of the inorganic filler and the impregnating property of the impregnating resin liquid into the treated substrate. The amount of organic binder used is 1 to 60 parts by weight, preferably 2 to 40 parts by weight per 100 parts by weight of inorganic filler. This amount may be any amount that allows the inorganic filler to be adhered to the nonwoven fabric substrate in just the right amount and not enough to prevent powder from falling. The method of adhering to the nonwoven fabric substrate is arbitrary, but the inorganic filler and binder can be dispersed in a medium such as water to create a dispersion, the dispersion is supplied to the substrate by dipping, coating, etc., and then dried. This can be done by removing the medium. Nonwoven fabrics, especially glass paper, have a low density and do not have sufficient mechanical strength such as tensile strength, so problems such as cutting tend to occur in continuous manufacturing methods. However, by selecting an appropriate binder in this process, tensile strength It can reinforce the strength and avoid troubles such as cutting. One of the features of the continuous production method is that a curable resin liquid that is liquid itself and does not generate reaction by-products upon curing is used for impregnating the substrate. Such resins include unsaturated polyester resins, epoxy resins, epoxy acrylate resins, polyester acrylate resins, urethane acrylate resins, spiran resins, diallyl phthalate resins, and the like. According to the present invention, the above-mentioned inorganic filler can be added in an amount of 100 parts by weight or less, preferably 10 to 50 parts by weight, per 100 parts by weight of the impregnating resin.
This further improves dimensional stability in the thickness direction and improves through-hole reliability. The present invention will be explained in detail below with reference to Examples. Example: Both outermost layers of the base material layer have a thickness of 180 μm and a basis weight of 210
Use g/m 2 glass cloth, with a basis weight of 40 in the middle.
A 1.6 mm thick double-sided copper foil-covered unsaturated polyester laminate was prepared using three layers of glass paper of g/m 2 and 18 μm thick copper foil coated with 40 μm thick epoxy adhesive on both sides using a continuous method. It was manufactured using The glass paper is impregnated with a treatment liquid in which 100 parts by weight of water, 80 parts by weight of calcium carbonate, and 4 parts by weight of an epoxy binder are dispersed as an emulsion.
It was dried at 150° C. for 5 minutes, and 400 parts by weight of calcium carbonate was deposited on 100 parts by weight of the paper. The resin liquid for impregnation is a liquid uniformly mixed with 100 parts by weight of a flame-retardant unsaturated polyester resin (brome content: 14% by weight), 4 parts by weight of antimony trioxide, 1 part by weight of benzoyl peroxide, and 30 parts by weight of calcium carbonate. Using resin. The glass cloth is impregnated with a rubber-modified epoxy acrylate resin solution containing 50% styrene monomer.
Pretreatment was performed by heating at 160°C for 5 minutes. The amount of resin deposited at this time was 20% by weight in terms of solid content per 100 parts by weight of glass cloth. Pre-treated glass cloth is placed on the outermost sides of both sides, and glass paper is placed on the inside while being continuously conveyed.
After being individually impregnated with the resin liquid, they are combined and laminated with copper foil on both sides, and then continuously passed through a tunnel type curing furnace at 100°C for 15 minutes and at 150°C for 10 minutes.
Heat cured for minutes. Comparative Example 1 A double-sided copper foil-clad laminate with a thickness of 1.6 mm was manufactured by the same procedure as in the example except that glass paper was used without being treated with an inorganic filler. Comparative Example 2 A double-sided copper foil-clad laminate with a thickness of 1.2 mm was produced in the same manner as in the example except that the glass cloth was not pretreated. The performance of the laminates of Examples and Comparative Examples is shown in the table below.

【表】【table】

【表】 (1) スルーホール信頼性の評価方法: 両面銅スルーホール直径1mmφ×200穴を直
列に接続したサンプルを20℃で20秒、260℃で
10秒浸漬するサイクルをくり返し、高温中での
電気抵抗値の変化率が10%をこえるまでのサイ
クル回数で表す。 (2) 層間剥離強度は、幅1cmに切断した試験片を
用い、JIS S−5012の導体引きはがし強さの測
定方法に準じて行う。 (3) 目曲がりとはガラスクロス目の本来の直線か
らずれていることを言い、目曲がり量とはガラ
スクロスの平面で見て、1mあたり直線から直
交方向に移動した距離で表す。
[Table] (1) Evaluation method for through-hole reliability: A sample of 200 double-sided copper through-holes with a diameter of 1 mmφ connected in series was heated at 20°C for 20 seconds and then at 260°C.
The cycle of immersion for 10 seconds is repeated, and it is expressed as the number of cycles until the rate of change in electrical resistance value at high temperature exceeds 10%. (2) The interlayer peel strength is measured according to the JIS S-5012 method for measuring conductor peel strength using a test piece cut to a width of 1 cm. (3) Eye curvature refers to the deviation of the glass cloth from the original straight line, and the amount of eye curvature is expressed as the distance moved in the orthogonal direction from the straight line per meter when viewed from the plane of the glass cloth.

Claims (1)

【特許請求の範囲】 1 両外側にガラスクロスを、内側に不織布を配
した複数の基材列を並行して連続的に搬送下、該
基材列へ個別的にそれ自身液状で硬化に際し反応
副生成物を発生しない硬化性樹脂液を含浸し、含
浸基材を積層合体し、カバーシートおよび/また
は金属箔をラミネートとし、連続的に硬化させた
後所望の寸法に切断する工程を含む電気用積層板
の製造方法において、あらかじめ該ガラスクロス
を前記含浸用樹脂液よりガラスクロスとの密着性
が高いラジカル重合型硬化性樹脂液で前処理し、
かつ該不織布基材へ有機バインダーを用いて無機
充填材をあらかじめ付着させることを特徴とする
ガラス繊維強化電気用積層板の連続製造方法。 2 前処理に使用するラジカル重合型硬化性樹脂
が含浸用樹脂よりガラスクロスとの密着性が高い
第1項記載の方法。 3 前処理に使用するラジカル重合型硬化性樹脂
液がエポキシアクリレート樹脂液またはウレタン
アクリレート樹脂液である第1項記載の方法。 4 前処理に使用するエポキシアクリレート樹脂
液またはウレタンアクリレート樹脂液が2〜50重
量%のゴム成分を含んでいる第3項記載の方法。 5 前処理においてガラスクロスへの樹脂の付着
量が、ガラスクロス100重量部あたり5ないし40
重量部である第1項ないし第4項のいずれかに記
載の方法。 6 前処理用樹脂液がエポキシアクリレート樹脂
であり、含浸用樹脂液が不飽和ポリエステル樹脂
である第1項ないし第5項のいずれかに記載の方
法。 7 不織布基材への無機充填材の付着量が不織布
100重量部あたり50ないし700重量部であり、有機
バインダーの使用量が無機充填材100重量部あた
り1ないし60重量部である第1項ないし第6項の
いずれかに記載の方法。 8 基材へ含浸する硬化性樹脂100重量部あたり
無機充填材を1ないし50重量部含有する第1項な
いし第7項のいずれかに記載の方法。
[Claims] 1. While continuously conveying a plurality of base material rows in which glass cloth is arranged on both outer sides and non-woven fabric on the inner side in parallel, the base material rows are individually reacted in a liquid state themselves during curing. An electric method that includes the steps of impregnating a curable resin liquid that does not generate by-products, laminating and combining the impregnated base materials, laminating a cover sheet and/or metal foil, curing continuously, and then cutting into desired dimensions. In the method for manufacturing a laminate for use in glass cloth, the glass cloth is pretreated with a radically polymerizable curable resin liquid that has higher adhesion to the glass cloth than the impregnating resin liquid,
A continuous manufacturing method for a glass fiber reinforced electrical laminate, characterized in that an inorganic filler is preliminarily attached to the nonwoven fabric base material using an organic binder. 2. The method according to item 1, wherein the radically polymerizable curable resin used in the pretreatment has higher adhesion to the glass cloth than the impregnating resin. 3. The method according to item 1, wherein the radically polymerizable curable resin liquid used in the pretreatment is an epoxy acrylate resin liquid or a urethane acrylate resin liquid. 4. The method according to item 3, wherein the epoxy acrylate resin liquid or urethane acrylate resin liquid used in the pretreatment contains a rubber component of 2 to 50% by weight. 5 In the pretreatment, the amount of resin attached to the glass cloth is 5 to 40% per 100 parts by weight of the glass cloth.
The method according to any one of items 1 to 4, wherein the amount is parts by weight. 6. The method according to any one of items 1 to 5, wherein the pretreatment resin liquid is an epoxy acrylate resin, and the impregnation resin liquid is an unsaturated polyester resin. 7 The amount of inorganic filler adhered to the nonwoven fabric base material is
7. The method according to any one of items 1 to 6, wherein the organic binder is used in an amount of 50 to 700 parts by weight per 100 parts by weight, and the amount of organic binder used is 1 to 60 parts by weight per 100 parts by weight of the inorganic filler. 8. The method according to any one of items 1 to 7, wherein the inorganic filler is contained in an amount of 1 to 50 parts by weight per 100 parts by weight of the curable resin impregnated into the base material.
JP62255384A 1987-10-09 1987-10-09 Continuous manufacture of laminated plate for glass fiber reinforcing electricity Granted JPH0197634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255384A JPH0197634A (en) 1987-10-09 1987-10-09 Continuous manufacture of laminated plate for glass fiber reinforcing electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255384A JPH0197634A (en) 1987-10-09 1987-10-09 Continuous manufacture of laminated plate for glass fiber reinforcing electricity

Publications (2)

Publication Number Publication Date
JPH0197634A JPH0197634A (en) 1989-04-17
JPH0511759B2 true JPH0511759B2 (en) 1993-02-16

Family

ID=17278009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255384A Granted JPH0197634A (en) 1987-10-09 1987-10-09 Continuous manufacture of laminated plate for glass fiber reinforcing electricity

Country Status (1)

Country Link
JP (1) JPH0197634A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232844A (en) * 1983-06-15 1984-12-27 松下電工株式会社 Manufacture of laminated board
JPS607796A (en) * 1983-06-28 1985-01-16 住友ベークライト株式会社 Copper-lined laminated board for printed circuit and method of producing same
JPS62148257A (en) * 1985-12-23 1987-07-02 新神戸電機株式会社 Laminated board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232844A (en) * 1983-06-15 1984-12-27 松下電工株式会社 Manufacture of laminated board
JPS607796A (en) * 1983-06-28 1985-01-16 住友ベークライト株式会社 Copper-lined laminated board for printed circuit and method of producing same
JPS62148257A (en) * 1985-12-23 1987-07-02 新神戸電機株式会社 Laminated board

Also Published As

Publication number Publication date
JPH0197634A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US4587161A (en) Copper-clad polyester-epoxy-glass fiber laminates using zinc-coated copper
US4446173A (en) Copper-clad polyester-glass fiber laminates using zinc-coated copper
US4803022A (en) Method of continuously bonding and curing a zinc-coated metal-clad polyester-epoxy-glass fiber laminate
JPH06507758A (en) Printed wiring board and its manufacturing method
CA1175335A (en) Production of metal clad reinforced resin laminates
JPH0511759B2 (en)
JPH04262321A (en) Manufacture of glass cloth reinforced electrical laminated plate
JPH0568344B2 (en)
JPH01139629A (en) Production of thermosetting resin laminated board having low dielectric constant
JPS62268631A (en) Manufacture of glass-fiber reinforced electrical laminate
JPH03218831A (en) Manufacture of glass cloth reinforced electric laminated sheet
JPH0197635A (en) Continuous manufacture of glass fiber reinforced laminated plate for electrical use
JPH0590719A (en) Manufacture of glass fiber reinforced laminate plate for electrical use
JPH06248572A (en) Glass cloth for fiber-reinforced composite material
JPS60230312A (en) Flexible printed circuit board
JPH04262322A (en) Manufacture of glass cloth reinforced electrical laminated plate
JPS6335422B2 (en)
JP2001170953A (en) Method for manufacturing laminated sheet
TW202342280A (en) Polymer matrix composite and printed circuit board
JPH07314607A (en) Laminated sheet
JP2003041486A (en) Glass cloth having low permittivity
JPH0197636A (en) Manufacture of glass fiber reinforced laminated plate for electrical use
JP3239716B2 (en) Manufacturing method of laminated board
JPH09143837A (en) Glass fiber woven fabric for printed circuit board
JPS6338297B2 (en)