JPH05116976A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPH05116976A
JPH05116976A JP30532791A JP30532791A JPH05116976A JP H05116976 A JPH05116976 A JP H05116976A JP 30532791 A JP30532791 A JP 30532791A JP 30532791 A JP30532791 A JP 30532791A JP H05116976 A JPH05116976 A JP H05116976A
Authority
JP
Japan
Prior art keywords
inert gas
base material
optical fiber
concentration
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30532791A
Other languages
Japanese (ja)
Inventor
Tadashi Takahashi
正 高橋
Akira Iino
顕 飯野
Junichi Tamura
順一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30532791A priority Critical patent/JPH05116976A/en
Publication of JPH05116976A publication Critical patent/JPH05116976A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a base material for an optical fiber having excellent transmission loss characteristics by introducing gaseous Cl2 under prescribed conditions into inert gas used at the time of converting a porous base material into transparent glass after dehydration. CONSTITUTION:When a core or a core-contg. porous base material is dehydrated and converted into transparent glass in inert gas such as He, gaseous Cl2 is introduced into the inert gas so as to reduce the number of residual OH groups and to reduce transmission loss due to OH groups. The gaseous Cl2 is introduced into the inert gas by <=1% of the amt. of the inert gas so that the concn. is made >=10 times as high as the concn. of water contained in the inert gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信等に使用される低
伝送損失特性の光ファイバを得るための光ファイバ母材
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform for obtaining an optical fiber having a low transmission loss characteristic used for optical communication and the like.

【0002】[0002]

【従来の技術】光ファイバ母材を製造するには既知の如
く脱水工程、透明ガラス化工程等を経て行われる。この
場合、脱水工程で十分に脱水された多孔質母材を使用し
ても、透明ガラス化時に不活性ガスと共に透明ガラス化
用炉内にCl2 を導入しないと、不活性ガス中に含まれ
る水分量以下には残留OH基を低減させることはできな
い。そこで従来より、低伝送損失特性の光ファイバ母材
を得るには不活性ガスにCl2 を添加して導入してい
た。
2. Description of the Related Art An optical fiber preform is manufactured by a known dehydration process, a transparent vitrification process, and the like. In this case, even if the porous base material sufficiently dehydrated in the dehydration step is used, if Cl 2 is not introduced into the transparent vitrification furnace together with the inert gas during the transparent vitrification, it is contained in the inert gas. Residual OH groups cannot be reduced below the water content. Therefore, conventionally, in order to obtain an optical fiber preform having a low transmission loss characteristic, Cl 2 is added to an inert gas for introduction.

【0003】[0003]

【発明が解決しようとする課題】前記のように多孔質母
材の透明ガラス化時にCl2 を添加すると、同母材中に
Cl2 が残留して同母材の構造欠陥が増加することが知
られている。この構造欠陥は、線引き工程で誘起される
欠陥と同じく、石英系ファイバの主成分であるSiO2
のSiがH原子と結合してSi−Hとなり、図3に示す
ように波長:λ=1.52μmにおいて吸収ピ−ク(水
素ロス)発生の原因となるものである。しかし他方にお
いては透明ガラス化工程で導入されるCl2 は、脱水工
程後も多孔質母材中に残留する微量の不純物(OH基
等)を除去する効果があり、光ファイバの伝送損失特性
を向上させる面もある。
As described above, when Cl 2 is added during the transparent vitrification of the porous base material, Cl 2 remains in the base material and the structural defects of the base material increase. Are known. This structural defect is the same as the defect induced in the drawing process, that is, SiO 2 which is the main component of the silica fiber.
Si is bonded to H atoms to form Si—H, which causes absorption peak (hydrogen loss) at a wavelength of λ = 1.52 μm as shown in FIG. On the other hand, on the other hand, Cl 2 introduced in the transparent vitrification step has an effect of removing a trace amount of impurities (OH group, etc.) remaining in the porous base material even after the dehydration step. There are aspects to improve.

【0004】そこで本発明は、構造欠陥の発生を抑え、
しかも脱水効果を生じさせるCl2の量を規定して伝送
損失特性の優れた光ファイバ母材の製造方法を提供する
ことである。
Therefore, the present invention suppresses the occurrence of structural defects,
Moreover, it is an object of the present invention to provide a method for producing an optical fiber preform having excellent transmission loss characteristics by defining the amount of Cl 2 that causes a dehydration effect.

【0005】[0005]

【課題を解決するための手段】本発明者は、多孔質母材
の透明ガラス化工程における不活性ガス(Heガス)中
のCl2 の流量を種々変えて実験をしたところ、図2に
示すようにHeガスに含まれる水の濃度の10倍以上の
濃度のCl2 ガスを添加すると、この条件のもとで作製
される光ファイバのλ=1.3μm及びλ=1.39μ
mの低損失化が顕著となることがわかった。これはス−
ト密度0.5g/cm3 以下にあるVADス−ト(VA
D法で製造した多孔質母材をいう)ではコア中心部への
Cl2 拡散が燒結速度に比べ速くなるためである。 た
だし、各々のファイバを室温1atm、100%H2
囲気に8時間保持し損失スペクトルを測定すると、He
の量に対してCl2 の量が1.0%を越えると図3に示
すようにλ=1.52μmの水素ロス増が発生した。
Means for Solving the Problems The present inventor has made various experiments by changing the flow rate of Cl 2 in an inert gas (He gas) in the transparent vitrification step of the porous base material, and it is shown in FIG. As described above, when Cl 2 gas having a concentration 10 times or more the concentration of water contained in He gas is added, λ = 1.3 μm and λ = 1.39 μm of the optical fiber manufactured under these conditions.
It was found that the loss of m was significantly reduced. This is
VAD soot with a density of 0.5 g / cm 3 or less (VA
This is because Cl 2 diffuses into the center of the core faster than the sintering rate in the porous base material produced by the method D). However, when each fiber was kept in a 100% H 2 atmosphere at room temperature of 1 atm for 8 hours and the loss spectrum was measured,
When the amount of Cl 2 exceeds 1.0% with respect to the amount of hydrogen, an increase in hydrogen loss of λ = 1.52 μm occurs as shown in FIG.

【0006】本発明の光ファイバ母材の製造方法は、コ
アまたはコアを含む多孔質母材を脱水後、透明ガラス化
する光ファイバ母材の製造方法において、この透明ガラ
ス化時にHe等の不活性ガスと共に、同不活性ガス中に
含まれる水の濃度の10倍以上の濃度で且つ同不活性ガ
スの量の1.0%以下の量のCl2ガスを導入するもの
である。
The method for producing an optical fiber preform according to the present invention is a method for producing an optical fiber preform in which a core or a porous preform containing the core is dehydrated and then vitrified into a transparent glass. Along with the active gas, Cl 2 gas having a concentration 10 times or more the concentration of water contained in the inert gas and 1.0% or less of the amount of the inert gas is introduced.

【0007】[0007]

【作用】本発明の光ファイバ母材の製造方法では、多孔
質母材の透明ガラス化工程で使用するHe等の不活性ガ
スに含有される水(H2 O)の濃度の10倍以上の濃度
のCl2 を導入するようにした。この不活性ガス中のC
2 濃度の増加は、He置換速度より下記化学反応式に
おける右方向への化学反応の方が速くなり、ファイバ母
材に残留するOH基をさらに低減することとなり、結果
として、このOH基による吸収に起因する伝送損失を低
減させることができる。 H2 O + Cl2 ←→ 2HCl + 1/2・O2
In the method for producing an optical fiber preform of the present invention, the concentration of water (H 2 O) contained in the inert gas such as He used in the transparent vitrification step of the porous preform is 10 times or more. A concentration of Cl 2 was introduced. C in this inert gas
The increase in the l 2 concentration makes the chemical reaction to the right in the following chemical reaction formula faster than the He substitution rate, further reducing the OH groups remaining in the fiber preform, and as a result, the OH groups The transmission loss due to absorption can be reduced. H 2 O + Cl 2 ← → 2HCl + 1/2 · O 2

【0008】さらに、本発明では前記不活性ガスに添加
するCl2 の量を不活性ガスの量の1.0%以下にした
ため、Cl2 添加による透明ガラス化後の欠陥が無視で
きるほど少なく抑えることができ、線引き後のファイバ
にH原子が拡散しても波長:λ=1.52μmでの水素
ロスの増加を防ぐことができる。
Further, in the present invention, the amount of Cl 2 added to the inert gas is set to 1.0% or less of the amount of the inert gas, so that the defects after the transparent vitrification due to the addition of Cl 2 are suppressed to a negligible amount. Even if H atoms are diffused in the drawn fiber, it is possible to prevent an increase in hydrogen loss at a wavelength of λ = 1.52 μm.

【0009】[0009]

【実施例】本発明の光ファイバ母材の製造方法の一実施
例を示す図1において、1は石英ガラス等によりなる多
孔質母材、2は透明ガラス化用炉の炉心管、3は同母材
1を支持する支持棒、4は加熱炉のヒータである。脱水
工程では、多孔質母材1が燒結しない温度に保たれた炉
心管2内に、不活性ガス(例えばHeガス)及びCl2
ガスを導入し、その雰囲気中に同多孔質母材1を引き下
げて挿入する。温度分布は長手方向に勾配を有してお
り、多孔質母材1の全長が最高温度部を通過後、それを
脱水工程の開始位置まで高速で引き戻し、今度は炉心管
2内をヒータ4により加熱して燒結温度まで上昇させ、
再び多孔質母材1を引き下げ、光ファイバ母材を透明ガ
ラス化する。
1 shows an embodiment of a method for producing an optical fiber preform of the present invention, 1 is a porous preform made of quartz glass or the like, 2 is a transparent vitrification furnace core tube, and 3 is the same. Support rods 4 for supporting the base material 1 are heaters of a heating furnace. In the dehydration step, an inert gas (for example, He gas) and Cl 2 are introduced into the core tube 2 kept at a temperature at which the porous base material 1 is not sintered.
A gas is introduced, and the porous base material 1 is pulled down and inserted into the atmosphere. The temperature distribution has a gradient in the longitudinal direction, and after the entire length of the porous base material 1 has passed the highest temperature part, it is pulled back at high speed to the start position of the dehydration process, and this time the inside of the core tube 2 is heated by the heater 4. Heat it up to the sintering temperature,
The porous preform 1 is pulled down again to turn the optical fiber preform into transparent glass.

【0010】以上の作業を下記表1に示す条件下で行な
い、この条件で製造した光ファイバ母材を線引きして得
られた光ファイバの伝送損失を測定したところ、λ=
1.3μmで0.335dB/km、λ=1.39μm
のピ−ク0.05dB/kmが得られた。また同光ファ
イバを室温1atm、100%H2 雰囲気に8時間保持
し、再び損失スペクトルを測定したところλ=1.52
μmで図3に仮想線で示すようになり同波長での水素ロ
ス増は認められなかった。
The above operation was performed under the conditions shown in Table 1 below, and the transmission loss of the optical fiber obtained by drawing the optical fiber preform manufactured under these conditions was measured.
0.335 dB / km at 1.3 μm, λ = 1.39 μm
Peak of 0.05 dB / km was obtained. Also, the optical fiber was kept in a 100% H 2 atmosphere at room temperature of 1 atm for 8 hours, and the loss spectrum was measured again, where λ = 1.52.
As shown in phantom line in FIG. 3 at μm, no increase in hydrogen loss was observed at the same wavelength.

【0011】 ちなみに、この実施例で使用した不活性ガス(He)中
の水の濃度は2.5ppmであり、例えば添加するCl
2 の量が0.05(l/M)=50(cc/M)、即ち
Cl2 の濃度が5000ppmの場合、不活性ガスに含
有されるCl2の濃度は水の濃度の2000倍となる。
[0011] By the way, the concentration of water in the inert gas (He) used in this example is 2.5 ppm.
When the amount of 2 is 0.05 (l / M) = 50 (cc / M), that is, the concentration of Cl 2 is 5000 ppm, the concentration of Cl 2 contained in the inert gas is 2000 times the concentration of water. ..

【0012】[0012]

【比較例】表1の条件下で、Cl2 無添加にして、多孔
質母材を透明ガラス化し、この母材から得られた光ファ
イバの伝送損失を測定したところλ=1.3μmで0.
348dB/km、λ=1.39μmのピ−ク0.20
dB/kmであった。
[Comparative Example] Under the conditions shown in Table 1, the porous preform was made into a transparent glass without adding Cl 2 and the transmission loss of the optical fiber obtained from this preform was measured and found to be 0 at λ = 1.3 μm. .
Peak 0.20 with 348 dB / km and λ = 1.39 μm
It was dB / km.

【0013】[0013]

【発明の効果】このように本発明の光ファイバ母材の製
造方法によれば、構造欠陥(水素ロス増)の発生を抑え
た低損失光ファイバの製造が可能となる。
As described above, according to the method for producing an optical fiber preform of the present invention, it is possible to produce a low loss optical fiber in which the occurrence of structural defects (hydrogen loss increase) is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ母材の製造方法の一実施例
を示す概略図。
FIG. 1 is a schematic view showing an embodiment of a method for manufacturing an optical fiber preform according to the present invention.

【図2】不活性ガス中のCl2 濃度と伝送損失との関係
を示す説明図。
FIG. 2 is an explanatory diagram showing the relationship between Cl 2 concentration in an inert gas and transmission loss.

【図3】不活性ガスの量に対して1.0%以上の量のC
2 ガスを添加した場合のファイバの水素処理後のロス
スペクトルの説明図。
FIG. 3 shows an amount of C of 1.0% or more based on the amount of inert gas.
illustration of the loss spectrum after hydrogen treatment of the fiber in the case of adding l 2 gas.

【符号の説明】[Explanation of symbols]

1 多孔質母材 2 炉心管 3 支持棒 4 ヒータ 1 Porous base material 2 Core tube 3 Support rod 4 Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コアまたはコアを含む多孔質母材を脱水
後、透明ガラス化する光ファイバ母材の製造方法におい
て、この透明ガラス化時にHe等の不活性ガスと共に、
同不活性ガス中に含まれる水の濃度の10倍以上の濃度
で且つ同不活性ガスの量の1.0%以下の量のCl2
スを導入することを特徴とする光ファイバ母材の製造方
法。
1. A method for producing an optical fiber preform in which a core or a porous preform containing the core is dehydrated and then vitrified into a transparent vitrified glass, together with an inert gas such as He during the vitrification.
A Cl 2 gas having a concentration of 10 times or more the concentration of water contained in the inert gas and 1.0% or less of the amount of the inert gas is introduced. Production method.
JP30532791A 1991-10-24 1991-10-24 Production of base material for optical fiber Pending JPH05116976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30532791A JPH05116976A (en) 1991-10-24 1991-10-24 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30532791A JPH05116976A (en) 1991-10-24 1991-10-24 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPH05116976A true JPH05116976A (en) 1993-05-14

Family

ID=17943780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30532791A Pending JPH05116976A (en) 1991-10-24 1991-10-24 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH05116976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102725A1 (en) * 2001-06-13 2002-12-27 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102725A1 (en) * 2001-06-13 2002-12-27 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material
EP1405830A1 (en) * 2001-06-13 2004-04-07 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material
EP1405830A4 (en) * 2001-06-13 2011-06-08 Sumitomo Electric Industries Glass base material and method of manufacturing glass base material

Similar Documents

Publication Publication Date Title
CA2051104C (en) Quartz glass doped with rare earth element and production thereof
EP1663890B1 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US7546750B2 (en) Method for fabricating optical fiber using deuterium exposure
TW443994B (en) Heat treatment of silica based glasses
JPH0314789B2 (en)
JPH05116976A (en) Production of base material for optical fiber
KR20030094037A (en) Lower-loss base material for optical fibres and manufacturing method thereof
JP2021500292A (en) Method for producing halogen-doped silica
US20020197005A1 (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
US20040000171A1 (en) Manufacture of depressed index optical fibers
JPH06263468A (en) Production of glass base material
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JP5619397B2 (en) Optical fiber preform manufacturing method
JP4409481B2 (en) Optical fiber manufacturing method
EP1337484A2 (en) Method of manufacturing an optical fiber preform
JPS5816161B2 (en) Optical transmission line and its manufacturing method
JPS6183639A (en) Production of quartz pipe of high purity
JP4846175B2 (en) Erbium-doped optical fiber
Dorn et al. 0.27-dB/km attenuation achieved by MSP preform process (optical fibers)
JPS63315531A (en) Production of optical fiber preform
JPS63147839A (en) Doping method for porous glass base material
JPH0425212B2 (en)
JPH0818842B2 (en) Method for manufacturing base material for optical fiber
JPH0239457B2 (en)
JPH0369526A (en) Production of glass base material for optical fiber