JPH05115146A - Oil impregnated sintered bearing for small-size motor - Google Patents

Oil impregnated sintered bearing for small-size motor

Info

Publication number
JPH05115146A
JPH05115146A JP27366091A JP27366091A JPH05115146A JP H05115146 A JPH05115146 A JP H05115146A JP 27366091 A JP27366091 A JP 27366091A JP 27366091 A JP27366091 A JP 27366091A JP H05115146 A JPH05115146 A JP H05115146A
Authority
JP
Japan
Prior art keywords
bearing
stepped portion
oil
inner peripheral
bearing hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27366091A
Other languages
Japanese (ja)
Inventor
Hidehiro Yamamoto
英弘 山本
Akio Sato
彰雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mabuchi Motor Co Ltd
Original Assignee
Mabuchi Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mabuchi Motor Co Ltd filed Critical Mabuchi Motor Co Ltd
Priority to JP27366091A priority Critical patent/JPH05115146A/en
Publication of JPH05115146A publication Critical patent/JPH05115146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

PURPOSE:To allow an oil impregnated sintered bearing for small-size motor to have a dynamic pressure bearing function and a low abrasion function and to generate low noise. CONSTITUTION:On the inner surface of a bearing hole to face a rotating shaft 13, the plurality of rectangular staged parts 92 having a slidable surface which forms a concentric circle with the rotating shaft 13 are formed in the circumference direction of the rotary shaft 13. A space surrounded by the adjacent staged parts 92, the inner surface of the bearing hole between the adjacent staged parts 92 and the rate shaft 13 is practically formed in the rectangular shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型モータ用焼結含油
軸受に関し、特に、摺動面の油膜をくさび形状ではなく
実質的に矩形状に形成した小型モータ用焼結含油軸受に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered oil-impregnated bearing for a small motor, and more particularly to a sintered oil-impregnated bearing for a small motor in which an oil film on a sliding surface is formed into a substantially rectangular shape instead of a wedge shape.

【0002】[0002]

【従来の技術】焼結含油軸受においては、相対的に摺動
する2面間に定常的に粘性油膜を介在させ、この油膜の
圧力により軸に作用する荷重を支持する。この油は、焼
結体である軸受の細孔内に含浸された潤滑油が軸回転に
よる吸引力と軸受の温度上昇とにより、摺動面に浸出し
たものである。
2. Description of the Related Art In a sintered oil-impregnated bearing, a viscous oil film is constantly interposed between two relatively sliding surfaces to support the load acting on the shaft by the pressure of the oil film. This oil is the lubricating oil impregnated in the pores of the bearing, which is a sintered body, leaching on the sliding surface due to the suction force due to the shaft rotation and the temperature rise of the bearing.

【0003】図19は、従来の焼結含油軸受の構造を示
している。この軸受9は、回転軸と相対的に摺動する軸
受の軸受孔内周面にスパイラル状の溝20を設けること
によって、使用時に十分な油圧を得るようにして、動圧
軸受とした例である(特公昭63−60247号公
報)。
FIG. 19 shows the structure of a conventional sintered oil-impregnated bearing. This bearing 9 is an example in which a dynamic pressure bearing is obtained by providing a spiral groove 20 on the inner peripheral surface of the bearing hole of the bearing that slides relative to the rotary shaft so as to obtain sufficient hydraulic pressure during use. (Japanese Patent Publication No. 63-60247).

【0004】図20乃至図23は、他の従来の焼結含油
軸受の構造を示している。この軸受9は、回転軸13と
相対的に摺動する軸受の軸受孔内周面に突出部21を設
けることによって、くさび形状の空隙(即ち油膜)Sを
形成して、使用時に十分な油圧を得るようにして、動圧
軸受とした例である(特開平3−107612号公
報)。
20 to 23 show the structure of another conventional sintered oil-impregnated bearing. This bearing 9 has a wedge-shaped void (that is, an oil film) S formed by providing a protrusion 21 on the inner peripheral surface of the bearing hole of the bearing that slides relative to the rotary shaft 13, and a sufficient hydraulic pressure is obtained during use. Is an example of a dynamic pressure bearing (Japanese Patent Laid-Open No. 3-107612).

【0005】図24は、更に他の従来の焼結含油軸受の
構造であって、一般的な焼結含油軸受の構造を示してい
る。この軸受においては、回転軸13と、これと相対的
に摺動する軸受9の軸受孔内周とが、同心円状に形成さ
れる。
FIG. 24 shows the structure of still another conventional sintered oil-impregnated bearing, that is, the structure of a general sintered oil-impregnated bearing. In this bearing, the rotary shaft 13 and the inner circumference of the bearing hole of the bearing 9 that slides relative to the rotary shaft 13 are formed concentrically.

【0006】[0006]

【発明が解決しようとする課題】前述の図19に示した
例の場合、溝20の形状がスパイラルで特殊であるた
め、溝20の加工が難しく高度の技術を要する。このた
め、軸受9が高価なものとなるという問題がある。
In the case of the example shown in FIG. 19 described above, since the shape of the groove 20 is spiral and special, it is difficult to process the groove 20 and a high level technique is required. Therefore, there is a problem that the bearing 9 becomes expensive.

【0007】図20乃至図23に示した例の場合、回転
軸13と突出部21との間がくさび形状Sとなるように
突出部21を形成する必要があり、このため、以下の問
題を生じる。即ち、このくさび形状Sの先端の角度が大
きすぎると油膜の圧力(動圧)の発生が小さくなってし
まい、突出部21を設けた効果が少なくなる。また、突
出部21と回転軸13との間の間隔は狭い所で2乃至3
μm程度のクリアランスとなるようにする必要があるの
で、このクリアランス及びくさび形状の角度の値と公差
は高精度でなければならない。更に、突出部21の形状
が三角形、円弧、台形等の場合には、軸受9の軸受孔の
形状が複雑になってしまい、加工が難しく、軸受9が高
価なものとなる。更に、また、回転が低速の場合には、
回転軸13と突出部21とが局部接触の状態となり、こ
れらが摩耗し易い。
In the case of the examples shown in FIGS. 20 to 23, it is necessary to form the protrusion 21 so that the wedge shape S is formed between the rotary shaft 13 and the protrusion 21, and therefore the following problems occur. Occurs. That is, if the angle of the tip of the wedge shape S is too large, the pressure (dynamic pressure) of the oil film is reduced, and the effect of providing the protrusion 21 is reduced. In addition, the space between the protrusion 21 and the rotary shaft 13 is 2 to 3 in a narrow space.
Since the clearance needs to be about μm, the clearance and wedge-shaped angle values and tolerances must be highly accurate. Further, when the shape of the protrusion 21 is triangular, arcuate, trapezoidal, etc., the shape of the bearing hole of the bearing 9 becomes complicated, making it difficult to process and making the bearing 9 expensive. Furthermore, when the rotation speed is low,
The rotating shaft 13 and the protruding portion 21 are in local contact with each other, and are easily worn.

【0008】図24に示した例の場合、構造が簡単で加
工の点では問題はないが、回転軸13が軸受孔の内周の
全域に接触したりすると焼結体の細孔が内周面でつぶさ
れ、内周面への油の浸出が妨げられ、油膜切れによる焼
付きが発生するという問題がある。この対策として、固
体潤滑剤を回転軸13の表面及び/又は軸受孔内周面に
皮膜(又は付着)した場合でも、種々の原因により、焼
結体の細孔内に固体潤滑剤が入り込み細孔が封孔される
結果、油の浸出が妨げられ、焼付きが発生するという問
題を生じる。
In the case of the example shown in FIG. 24, the structure is simple and there is no problem in terms of processing, but if the rotating shaft 13 contacts the entire inner circumference of the bearing hole, the pores of the sintered body will become inner circumference. There is a problem that the surface is crushed, oil is prevented from leaching to the inner peripheral surface, and seizure occurs due to oil film breakage. As a measure against this, even when the surface of the rotary shaft 13 and / or the inner peripheral surface of the bearing hole is coated (or adhered) with the solid lubricant, the solid lubricant may get into the pores of the sintered body due to various causes and the fineness of As a result of the pores being sealed, oil leaching is hindered and seizure occurs.

【0009】本発明は、簡単な構造で動圧軸受機能と低
ノイズ、低磨耗機能とを実現した小型モータ用焼結含油
軸受を提供することを目的とする。
It is an object of the present invention to provide a sintered oil-impregnated bearing for a small motor which has a simple structure and has a dynamic pressure bearing function, a low noise and a low wear function.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明では、小型モータ用焼結含油軸受において、
回転軸と摺動する軸受孔内周面において、その円周方向
に、前記回転軸と同心円をなす摺動面を有する実質的に
矩形状の段付部を複数個設け、互いに隣接する前記段付
部とその間の前記軸受孔内周面と前記回転軸とで囲まれ
る空隙を実質的に矩形状とする。また、前記段付部の前
記摺動面に固体潤滑剤を皮膜する。
In order to achieve the above object, the present invention provides a sintered oil-impregnated bearing for a small motor,
On the inner peripheral surface of the bearing hole that slides on the rotary shaft, a plurality of substantially rectangular stepped portions having sliding surfaces that are concentric with the rotary shaft are provided in the circumferential direction, and the stepped portions that are adjacent to each other are provided. A gap surrounded by the attachment portion and the inner peripheral surface of the bearing hole between the attachment portion and the rotating shaft is substantially rectangular. Further, a solid lubricant is coated on the sliding surface of the stepped portion.

【0011】[0011]

【作用】前述の手段によれば、軸受に設けた段付部は、
回転軸と同心円をなす摺動面を有する実質的な矩形状と
いう簡単な構造であるので、簡単な加工によって得るこ
とができ、軸受が高価なものとなることはない。そし
て、互いに隣接する段付部とその間の軸受孔内周面とで
構成される溝部が常に確保されるので、これに焼結体で
ある軸受の細孔から油が浸出して集まる。これにより、
この溝部と回転軸とで囲まれる空隙において、十分な油
膜の圧力(動圧)を発生させることができ、大きな負荷
が回転軸に加わってもこれを支持できる。
According to the above-mentioned means, the stepped portion provided on the bearing is
Since it has a simple structure of a substantially rectangular shape having a sliding surface that is concentric with the rotary shaft, it can be obtained by simple processing, and the bearing does not become expensive. Further, the groove formed by the stepped portions adjacent to each other and the inner peripheral surface of the bearing hole between them is always ensured, so that the oil leaches and collects from the pores of the bearing which is the sintered body. This allows
A sufficient pressure (dynamic pressure) of the oil film can be generated in the space surrounded by the groove portion and the rotary shaft, and can be supported even when a large load is applied to the rotary shaft.

【0012】また、段付部の摺動面の固体潤滑剤は、回
転軸が当該段付部に接触した場合において、潤滑作用及
び緩衝作用をし、回転軸及び軸受で焼付きを発生するこ
とを防止でき、これらが摩耗することを防止でき、接触
によりノイズが生ずることを防止できる。
Further, the solid lubricant on the sliding surface of the stepped portion has a lubricating action and a buffering action when the rotating shaft comes into contact with the stepped portion, causing seizure on the rotating shaft and the bearing. Can be prevented, these can be prevented from being worn, and noise can be prevented from being generated by contact.

【0013】[0013]

【実施例】本発明の小型モータ用焼結含油軸受を用いた
小型モータを図1に示す。図1は小型モータの例を示す
要部断面図である。図1において、ハウジング1は、例
えば軟鉄のような金属材料により有底中空筒状に形成さ
れ、その内周面に例えばアークセグメント状の永久磁石
2が固着される。ハウジング1内には、永久磁石2に対
向する電機子3と整流子4とからなる回転子5が設けら
れる。エンドプレート6は、例えば前記ハウジング1と
同様の金属材料によって形成され、ハウジング1の開口
部に嵌め込まれる。ブラシアーム7は、整流子4と摺動
するように設けられ、このブラシアーム7と電気的に接
続される入力端子8と共にエンドプレート6に設けられ
る。焼結含油軸受9は、ハウジング1の底部とエンドプ
レート6とを突出させて形成した軸受保持部11内に固
着され、回転子5と一体とされた回転軸13を支持す
る。
EXAMPLE A small motor using the sintered oil-impregnated bearing for a small motor of the present invention is shown in FIG. FIG. 1 is a sectional view of an essential part showing an example of a small motor. In FIG. 1, a housing 1 is formed of a metal material such as soft iron into a hollow cylindrical shape with a bottom, and an arc segment-shaped permanent magnet 2 is fixed to the inner peripheral surface thereof. Inside the housing 1, a rotor 5 including an armature 3 facing the permanent magnet 2 and a commutator 4 is provided. The end plate 6 is made of, for example, a metal material similar to that of the housing 1, and is fitted into the opening of the housing 1. The brush arm 7 is provided so as to slide on the commutator 4, and is provided on the end plate 6 together with the input terminal 8 electrically connected to the brush arm 7. The sintered oil-impregnated bearing 9 is fixed in a bearing holding portion 11 formed by projecting the bottom portion of the housing 1 and the end plate 6, and supports the rotating shaft 13 integrated with the rotor 5.

【0014】以上の構成により、入力端子8からブラシ
アーム7及び整流子4を経由して電機子3に電流を供給
することにより、ハウジング1の内周面に固着された永
久磁石2によって形成されている磁界中に存在する電機
子3に回転力が付与され、回転子5を回転させ、回転軸
13を介して外部機器(図示せず)を駆動する。
With the above structure, by supplying a current from the input terminal 8 to the armature 3 via the brush arm 7 and the commutator 4, the permanent magnet 2 fixed to the inner peripheral surface of the housing 1 is formed. A rotating force is applied to the armature 3 existing in the existing magnetic field to rotate the rotor 5 and drive an external device (not shown) via the rotating shaft 13.

【0015】図2は、焼結含油軸受9の構造を示す。図
2に示す断面は、図1のX−X切断線に沿う断面の構造
を示しており、回転軸13を合わせて示す一方、軸受保
持部11は省略してある。
FIG. 2 shows the structure of the sintered oil-impregnated bearing 9. The cross section shown in FIG. 2 shows the structure of the cross section taken along the section line XX of FIG. 1, in which the rotary shaft 13 is also shown, while the bearing holding portion 11 is omitted.

【0016】焼結含油軸受9は、焼結体からなり、その
内部に十分に細孔が残りその大部分が外部に通じている
ように焼結され、これに潤滑油を含浸させている。焼結
含油軸受9の軸受孔90には、回転軸13が貫通してい
る。回転軸13と対向する軸受孔内周面91において、
その円周方向に、複数個(図では6個)の段付部92が
設けられる。段付部92は、回転軸13と同心円をなす
摺動面を有し、回転軸13との間で相対的に摺動する。
なお、軸受孔内周面91も、回転軸13と同心円をな
す。
The sintered oil-impregnated bearing 9 is made of a sintered body, and is sintered so that the inside thereof has a large number of pores and most of the pores communicate with the outside, and is impregnated with lubricating oil. The rotary shaft 13 penetrates through the bearing hole 90 of the sintered oil-impregnated bearing 9. In the bearing hole inner peripheral surface 91 facing the rotating shaft 13,
A plurality of (six in the figure) stepped portions 92 are provided in the circumferential direction. The stepped portion 92 has a sliding surface that is concentric with the rotary shaft 13, and slides relative to the rotary shaft 13.
The inner peripheral surface 91 of the bearing hole also forms a concentric circle with the rotary shaft 13.

【0017】このように、回転軸13と軸受孔内周面9
1及び段付部92とを同心円状としているので、回転軸
13と軸受孔内周面91との間の隙間をC2、回転軸1
3と段付部92との間の隙間をC1とすると、C2=C
1+hdが成立つ。ここで、hdは、段付部92の摺動
面の軸受孔内周面91からの高さである。高さhdは軸
受孔90の直径に比べ十分に小さいので、各段付部92
は実質的に矩形状となる。そして、互いに隣接する2つ
の段付部92と、その間の軸受孔内周面91とからなる
溝も、実質的に矩形状の一部をなすような溝部となる。
従って、この溝部と回転軸13とで囲まれる空隙は、実
質的に矩形状となる。
Thus, the rotary shaft 13 and the bearing hole inner peripheral surface 9
1 and the stepped portion 92 are concentric, the clearance between the rotary shaft 13 and the bearing hole inner peripheral surface 91 is C2, and the rotary shaft 1 is
If the gap between 3 and the stepped portion 92 is C1, C2 = C
1 + hd is established. Here, hd is the height of the sliding surface of the stepped portion 92 from the bearing hole inner peripheral surface 91. Since the height hd is sufficiently smaller than the diameter of the bearing hole 90, each stepped portion 92
Has a substantially rectangular shape. Further, the groove formed by the two stepped portions 92 adjacent to each other and the bearing hole inner peripheral surface 91 between them is also a groove portion that forms a part of a substantially rectangular shape.
Therefore, the space surrounded by the groove and the rotary shaft 13 has a substantially rectangular shape.

【0018】このように段付部92を矩形状とするの
は、使用時に、油膜の圧力として最大のピーク圧力(動
圧)を発生させ、大きな負荷を支持するためである。な
お、滑り軸受の形状としては、くさび状、ステップ状、
円弧状、以上の組合せ等の各種のものがあるが、矩形ス
テップ状のものが最大のピーク圧力を生じることが知ら
れている(例えば、近代科学社発行「トライボロジ」の
P277)。
The reason why the stepped portion 92 is formed in a rectangular shape in this way is to generate a maximum peak pressure (dynamic pressure) as the pressure of the oil film during use and support a large load. The shape of the plain bearings is wedge-shaped, step-shaped,
There are various types such as an arc shape and the above combination, but it is known that a rectangular step shape produces the maximum peak pressure (for example, P277 of "Tribology", published by Modern Science Co., Ltd.).

【0019】また、段付部92を回転軸13と同心円状
の矩形状とすることにより、この焼結含油軸受9の焼結
の時に、その型形状を同心円状にできる。この形状は、
くさび形状等に比べて簡単な構造であるので、この焼結
含油軸受9の製造コストの低減や量産化に有効である。
Further, by forming the stepped portion 92 into a rectangular shape which is concentric with the rotary shaft 13, the shape of the mold can be made concentric when the sintered oil-impregnated bearing 9 is sintered. This shape is
Since the structure is simpler than the wedge shape and the like, it is effective for reducing the manufacturing cost of the sintered oil-impregnated bearing 9 and for mass production.

【0020】更に、段付部92による溝部の底部即ち軸
受孔内周面91が回転軸13と接触することはないの
で、この軸受孔内周面91において常に一定の通気度φ
2 が得られる。このため、焼結含油軸受9の含油の吸込
み/吐出しの循環がスムーズに行なわれ、油の冷却及び
摺動面の潤滑性を向上でき、回転軸13の焼付きを防止
できる。
Further, since the bottom of the groove formed by the stepped portion 92, that is, the bearing hole inner peripheral surface 91 does not come into contact with the rotary shaft 13, the air permeability φ is always constant at the bearing hole inner peripheral surface 91.
You get 2 . Therefore, the suction / discharge of the oil of the sintered oil-impregnated bearing 9 is smoothly circulated, the cooling of the oil and the lubricity of the sliding surface can be improved, and the seizure of the rotary shaft 13 can be prevented.

【0021】段付部92を実質的に矩形状とした場合
に、油膜に発生する圧力の分布を図3に示す。図3は、
1つの段付部92について矩形状として示している。圧
力Pは、図示の矢印方向に相対的に回転軸13と段付部
92とが摺動する場合、段付部92の一端で最大とな
る。
FIG. 3 shows the distribution of pressure generated in the oil film when the stepped portion 92 has a substantially rectangular shape. Figure 3
One stepped portion 92 is shown as a rectangular shape. The pressure P becomes maximum at one end of the stepped portion 92 when the rotary shaft 13 and the stepped portion 92 relatively slide in the direction of the arrow in the figure.

【0022】図3に示すような圧力分布は、回転軸13
が軸受に対して偏心を持たない場合の例であり、実際の
使用時は、偏心を考慮する必要がある。例えば、図4に
示す如く、軸受に対して偏心のない場合の回転軸13の
位置は点線で示すようであるのに比べ、実際の回転軸1
3は偏心を有するため、その位置は実線で示すようであ
る。ここで、軸偏心量をe、半径すきまをC1で表す
と、偏心率は、e/C1で求められる。
The pressure distribution as shown in FIG.
Is an example in which the bearing has no eccentricity, and it is necessary to consider the eccentricity in actual use. For example, as shown in FIG. 4, the position of the rotary shaft 13 when there is no eccentricity with respect to the bearing is as shown by the dotted line, as compared with the actual rotary shaft 1
Since 3 has eccentricity, its position is shown by the solid line. Here, when the axial eccentricity amount is represented by e and the radial clearance is represented by C1, the eccentricity is obtained by e / C1.

【0023】図5乃至図7は、偏心を考慮した場合の回
転軸13と焼結含油軸受9との間の円周方向の隙間分布
H(μm)を示している。特に、図5は段付部92の数
(ステップ数)が0の場合、図6はステップ数が3の場
合、図7はステップ数が6の場合を示す。また、いずれ
の場合も、半径すきまC1は0.005mm、偏心率
0.9(e=4.5μm)である。更に、図6及び図7
において、段付部92の高さ(溝深さ)hdは20μm
である。なお、図6は、図4の場合に対応し、図4のθ
方向の隙間分布を示している。
FIGS. 5 to 7 show a circumferential clearance distribution H (μm) between the rotary shaft 13 and the sintered oil-impregnated bearing 9 when eccentricity is taken into consideration. In particular, FIG. 5 shows the case where the number of stepped portions 92 (step number) is 0, FIG. 6 shows the case where the step number is 3, and FIG. 7 shows the case where the step number is 6. In any case, the radius clearance C1 is 0.005 mm and the eccentricity is 0.9 (e = 4.5 μm). Furthermore, FIG. 6 and FIG.
In, the height (groove depth) hd of the stepped portion 92 is 20 μm.
Is. Note that FIG. 6 corresponds to the case of FIG.
The distribution of gaps in the direction is shown.

【0024】図8乃至図10は、偏心を考慮した場合の
油膜圧力P(kgf/cm2 )の円周方向の分布を示し
ている。特に、図8、図9及び図10は、各々、ステッ
プ数が0、3及び6の場合、即ち、図5、図6及び図7
の場合を示す。また、いずれの場合も、偏心率は0.9
(C1=5μm、e=4.5μm)、軸回転数は600
0rpm、段付部92での通気度φ1 は3×10-10
2 、軸受孔内周面91での通気度φ2 は30×10
-10 cm2 (従って、図8の場合はφ1 =φ2 =30×
10-10 cm2 である)、段付部92の高さhdは0.
02mm、半径すきまC1=0.005mm、軸受直径
は5mm、軸受長さは4.5mm、軸受厚さは4.25
mmである。
8 to 10 show the distribution of the oil film pressure P (kgf / cm 2 ) in the circumferential direction when eccentricity is taken into consideration. In particular, FIGS. 8, 9 and 10 show cases where the number of steps is 0, 3 and 6, respectively, that is, FIGS.
Shows the case. In any case, the eccentricity is 0.9
(C1 = 5 μm, e = 4.5 μm), shaft rotation speed is 600
0 rpm, the air permeability φ 1 at the stepped portion 92 is 3 × 10 -10 c
m 2 , the air permeability φ 2 at the inner peripheral surface 91 of the bearing hole is 30 × 10
-10 cm 2 (Thus, in the case of FIG. 8, φ 1 = φ 2 = 30 ×
10 -10 cm 2 at a), the height hd of the stepped portions 92 0.
02 mm, radius clearance C1 = 0.005 mm, bearing diameter 5 mm, bearing length 4.5 mm, bearing thickness 4.25.
mm.

【0025】図9及び図10において斜線を付して示す
ように、段付部92に対応して負圧部分(斜線部分)が
生じ、ここに油が流れ込む。即ち、軸回転による油の吸
引力が、負圧部分の発生により大きくなる。これによ
り、油膜による動圧を大きくでき、回転軸13をより大
きな力で支持できる。従って、より大きな軸負荷に耐え
ることができ、回転軸13と焼結含油軸受9との金属接
触が少なくなり、これらの摩耗を低減できる。また、回
転軸13と焼結含油軸受9とのすき間、即ち、図2に示
した隙間C1を大きくすることができるので、これらの
寸法精度や公差の管理、これらの組立等を容易なものに
できる。
As shown by hatching in FIGS. 9 and 10, a negative pressure portion (hatched portion) is generated corresponding to the stepped portion 92, and oil flows into this. That is, the oil suction force due to the shaft rotation increases due to the generation of the negative pressure portion. Thereby, the dynamic pressure due to the oil film can be increased, and the rotating shaft 13 can be supported with a larger force. Therefore, it is possible to withstand a larger axial load, the metal contact between the rotary shaft 13 and the sintered oil-impregnated bearing 9 is reduced, and the wear of these can be reduced. Further, since the gap between the rotary shaft 13 and the sintered oil-impregnated bearing 9, that is, the clearance C1 shown in FIG. 2 can be increased, the dimensional accuracy and tolerances of these can be easily controlled, and the assembling thereof can be facilitated. it can.

【0026】図11及び図12は、段付部92を複数段
差(図の場合は2段階差)として、更に大きな油膜によ
る動圧を発生させる例である。図示の如く、高さhdの
段付部92と軸受孔内周面91(高さ0)との中間の高
さhd/2を有する中間の段付部92′が設けられてい
る。中間の段付部92′は、図11においては軸受孔内
周面91の円周方向片側にのみ設けられ、図12におい
ては軸受孔内周面91の円周方向両側に設けられてい
る。従って、図11は片回転用(図の矢印方向)であ
り、図12は両回転用である。段付部92の各々、又
は、所定のものに中間の段付部92′を併設することに
より、より大きな動圧が得られる。
11 and 12 show an example in which the stepped portion 92 has a plurality of steps (two steps in the case of the figure) to generate a larger dynamic pressure by the oil film. As shown in the drawing, an intermediate stepped portion 92 'having an intermediate height hd / 2 between the stepped portion 92 having the height hd and the bearing hole inner peripheral surface 91 (height 0) is provided. The intermediate stepped portion 92 'is provided only on one side in the circumferential direction of the bearing hole inner circumferential surface 91 in FIG. 11, and is provided on both sides in the circumferential direction of the bearing hole inner circumferential surface 91 in FIG. Therefore, FIG. 11 is for one rotation (in the direction of the arrow in the figure), and FIG. 12 is for both rotations. A larger dynamic pressure can be obtained by providing an intermediate stepped portion 92 'along with each of the stepped portions 92 or a predetermined one.

【0027】図13は、段付部92の高さhd(μm)
と軸受負荷荷重FT(kgf)との関係を示している。
ここで、偏心率は0.9、軸回転数は30000rp
m、通気度φ1 は5×10-10 cm2 、通気度φ2 は7
0×10-10 cm2 、ステップ数は3、半径すきまは
0.005mm、軸受直径は5mm、軸受長さは4.5
mm、軸受厚さは4.25mmである。高さhdは、0
から180μmまで変化させている。
FIG. 13 shows the height hd (μm) of the stepped portion 92.
And bearing load FT (kgf) are shown.
Here, the eccentricity is 0.9 and the shaft rotation speed is 30,000 rp.
m, air permeability φ 1 is 5 × 10 −10 cm 2 , air permeability φ 2 is 7
0 × 10 -10 cm 2 , step number 3, radius clearance 0.005 mm, bearing diameter 5 mm, bearing length 4.5
mm, the bearing thickness is 4.25 mm. Height hd is 0
To 180 μm.

【0028】図13において、比較のために、点線a及
びbにより、従来の段付部92のない軸受における軸受
負荷荷重を示す。特に、点線aは通気度φ1=φ2 =5
0×10-10 cm2 の場合を示し、点線bは通気度φ1
=φ2 =70×10-10 cm 2 の場合を示す。
In FIG. 13, for comparison, a dotted line a and
And b in the conventional bearing without the stepped portion 92
Indicates the applied load. In particular, the dotted line a is the air permeability φ1= Φ2= 5
0x10-Tencm2And the dotted line b indicates the air permeability φ.1
= Φ2= 70 × 10-Tencm 2Shows the case.

【0029】図13から判るように、高さhdをある程
度以上の値とすると、発生する油膜圧力による軸を支持
する力は、破線aで示す段付部92のない場合よりも小
さくなってしまう。即ち、図13から、段付部92がな
い場合と同等の軸の支持力を得るための高さhdは、6
0乃至80μmであることが求まる。従って、段付部9
2がない場合よりも大きな軸の支持力を得るためには、
高さhdは、60乃至80μm以下であることが必要で
ある。
As can be seen from FIG. 13, when the height hd is a certain value or more, the force for supporting the shaft due to the generated oil film pressure becomes smaller than that without the stepped portion 92 shown by the broken line a. .. That is, from FIG. 13, the height hd for obtaining the supporting force of the shaft equivalent to the case where the stepped portion 92 is not provided is 6
It is required to be 0 to 80 μm. Therefore, the stepped portion 9
In order to obtain a larger bearing capacity of the shaft than without 2.
The height hd needs to be 60 to 80 μm or less.

【0030】なお、具体的には、高さhdは、段付部9
2の摩耗等を考慮して決定する必要があり、5μmから
80μmまでの範囲において選択することが望ましい。
図14は、段付部92の通気度φ1 と軸受負荷荷重FT
(kgf)との関係を示している。ここで、偏心率は
0.9、軸回転数は30000rpm、ステップ数は
3、通気度φ2 は50×10-10 cm2 、高さhdは
0.02mm、半径すきまは0.005mm、軸受直径
は5mm、軸受長さは4.5mm、軸受厚さは4.25
mmである。通気度φ1 は5×10-10 から50×10
-10cm2 まで変化させている。
Incidentally, specifically, the height hd is determined by the stepped portion 9
2 must be taken into consideration in consideration of wear and the like, and it is desirable to select in the range of 5 μm to 80 μm.
FIG. 14 shows the air permeability φ 1 of the stepped portion 92 and the bearing load FT.
The relationship with (kgf) is shown. Here, the eccentricity is 0.9, the shaft speed is 30,000 rpm, the number of steps is 3, the air permeability φ 2 is 50 × 10 −10 cm 2 , the height hd is 0.02 mm, the radial clearance is 0.005 mm, and the bearing is Diameter 5mm, bearing length 4.5mm, bearing thickness 4.25
mm. Air permeability φ 1 is 5 × 10 -10 to 50 × 10
It is changed to -10 cm 2 .

【0031】図14において、比較のために、点線c及
びdにより、従来の段付部92のない軸受における軸受
負荷荷重を示す。特に、点線cは通気度φ1=φ2 =5
0×10-10 cm2 の場合を示し、点線dは通気度φ1
=φ2 =70×10-10 cm 2 の場合を示す。
In FIG. 14, for comparison, a dotted line c and
And d in the conventional bearing without the stepped portion 92
Indicates the applied load. Especially, the dotted line c indicates the air permeability φ1= Φ2= 5
0x10-Tencm2The dotted line d indicates the air permeability φ.1
= Φ2= 70 × 10-Tencm 2Shows the case.

【0032】図14から判るように、通気度φ1 を通気
度φ2 よりも小さい値とすると、発生する油膜圧力によ
る軸を支持する力は、段付部92のない場合より大きく
なる。即ち、点線cとの比較から、φ1 =約23×10
-10 cm2 かつφ2 =50×10-10 cm2 のとき、φ
1 =φ2 =50×10-10 cm2 の場合より大きい軸の
支持力を得ることができる。また、点線dとの比較か
ら、φ1 =40×10-1 0 cm2 かつφ2 =50×10
-10 cm2 のとき、φ1 =φ2 =70×10-10 cm2
という大きな通気度の場合より更に大きい軸の支持力を
得ることができる。
As can be seen from FIG. 14, when the air permeability φ 1 is smaller than the air permeability φ 2, the force for supporting the shaft due to the generated oil film pressure is larger than that without the stepped portion 92. That is, from the comparison with the dotted line c, φ 1 = about 23 × 10
When -10 cm 2 and φ 2 = 50 × 10 -10 cm 2 , φ
When 1 = φ 2 = 50 × 10 −10 cm 2, a larger shaft supporting force can be obtained. Further, from the comparison between the dotted lines d, φ 1 = 40 × 10 -1 0 cm 2 cutlet φ 2 = 50 × 10
When -10 cm 2 , φ 1 = φ 2 = 70 × 10 -10 cm 2
It is possible to obtain a larger shaft supporting force than in the case of a large air permeability.

【0033】以上のことから、段付部92の特に摺動面
(回転軸13と対向する面)における通気度φ1 は、回
転軸13及び軸受孔内周面91における通気度φ2 より
も小さくされる。このように通気度φ1 及びφ2 を設定
した例を図16及び図17に示す。また、図15は、比
較のために通気度φ1 =φ2 の場合を示す。即ち、図1
5においてはφ1 =φ2 =30×10-10 cm2 であ
り、図16及び図17においてはφ1 =3×10-10
2 かつφ2 =30×10-10 cm2 である。図15、
図16及び図17は、各々、ステップ数が0、3及び6
の場合を示している。
From the above, the air permeability φ 1 particularly on the sliding surface (the surface facing the rotating shaft 13) of the stepped portion 92 is higher than the air permeability φ 2 on the rotating shaft 13 and the bearing hole inner peripheral surface 91. Made smaller. An example in which the air permeabilities φ 1 and φ 2 are set in this way is shown in FIGS. 16 and 17. Further, FIG. 15 shows a case where the air permeability is φ 1 = φ 2 for comparison. That is, FIG.
5 is φ 1 = φ 2 = 30 × 10 −10 cm 2 , and in FIGS. 16 and 17, φ 1 = 3 × 10 −10 c
m 2 and φ 2 = 30 × 10 −10 cm 2 . 15,
16 and 17, the number of steps is 0, 3 and 6, respectively.
Shows the case.

【0034】図16及び図17の場合、回転軸13は段
付部92の摺動面とは接触する可能性があるが、軸受孔
内周面91即ち溝部の底部とは接触することはない。そ
こで、通気度φ2 を大きくすることにより、その大きさ
に応じた一定の油の吸込み/吐出しが確保でき、また、
軸受孔90での油量も確保できる。
16 and 17, the rotary shaft 13 may come into contact with the sliding surface of the stepped portion 92, but does not come into contact with the bearing hole inner peripheral surface 91, that is, the bottom of the groove. .. Therefore, by increasing the air permeability φ 2 , it is possible to secure a certain amount of oil suction / discharge according to the size, and
The amount of oil in the bearing hole 90 can also be secured.

【0035】段付部92の特に摺動面においてその通気
度φ1 を小さくするためには、段付部92の摺動面の細
孔を目つぶしするか封孔することが必要となる。この手
段として、メッキ又はコーティングにより封孔する方法
が採られる。メッキとしては、例えば、硬質クロムメッ
キが用いられる。コーティングとしては、例えば、テフ
ロンや二硫化モリブデン等の固体潤滑剤が用いられる。
また、焼結時のサイジングあるいはスパロール加工等に
より目つぶしする方法がある。
In order to reduce the air permeability φ 1 particularly on the sliding surface of the stepped portion 92, it is necessary to close or seal the pores on the sliding surface of the stepped portion 92. As a means for this, a method of sealing by plating or coating is adopted. As the plating, for example, hard chrome plating is used. As the coating, for example, a solid lubricant such as Teflon or molybdenum disulfide is used.
In addition, there is a method of sizing at the time of sintering, superoll processing, etc.

【0036】図18は、段付部92の摺動面上に前述の
固体潤滑剤を皮膜又はコーティングして膜93を形成し
た例を示す。この膜93の厚さtは、3乃至15μmと
され、通常は、密着強度を得るために10μm程度とさ
れる。15μmより厚くなると膜93がはがれ易くな
り、一方、1回のスプレーで皮膜される厚さは約3μm
である。
FIG. 18 shows an example in which a film 93 is formed by coating or coating the above-mentioned solid lubricant on the sliding surface of the stepped portion 92. The thickness t of the film 93 is 3 to 15 μm, and usually about 10 μm in order to obtain the adhesion strength. When the thickness is more than 15 μm, the film 93 is easily peeled off, while the thickness of one spray is about 3 μm.
Is.

【0037】このように、段付部92に固体潤滑剤をコ
ーティング等した場合、この膜93が緩衝作用をもち、
回転軸13と焼結含油軸受9の接触による振動、ノイ
ズ、摩耗を防止することができる。また、膜93の一部
がはがれて回転軸13に付着したとしても、回転軸13
と軸受孔内周面91とが接触することはないので、回転
軸13に付着した膜93が軸受孔内周面91の細孔を封
孔することはない。これは、回転軸13に固体潤滑剤を
コーティング等した場合も同様である。
As described above, when the stepped portion 92 is coated with a solid lubricant, the film 93 has a buffering action,
Vibration, noise, and wear due to contact between the rotary shaft 13 and the sintered oil-impregnated bearing 9 can be prevented. Further, even if a part of the film 93 is peeled off and attached to the rotary shaft 13, the rotary shaft 13
Since there is no contact between the bearing hole inner peripheral surface 91 and the bearing hole inner peripheral surface 91, the film 93 attached to the rotating shaft 13 does not seal the pores of the bearing hole inner peripheral surface 91. This is the same when the rotary shaft 13 is coated with a solid lubricant or the like.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
小型モータ用焼結含油軸受において、軸受孔内周面に実
質的に矩形状の段付部を複数個設けることにより、十分
大きな油膜の圧力を得ることができるので大きな軸受負
荷荷重を支持することができ、また、回転軸が段付部に
接触した場合でも溝部の底部の細孔が封孔されることを
防止できるので常に一定の含油の吸込み/吐出しが確保
でき、焼付きの発生を防止できる。
As described above, according to the present invention,
In a sintered oil-impregnated bearing for small motors, by providing a plurality of substantially rectangular stepped portions on the inner peripheral surface of the bearing hole, a sufficiently large oil film pressure can be obtained, so that a large bearing load can be supported. Moreover, even if the rotating shaft contacts the stepped portion, it is possible to prevent the pores at the bottom of the groove from being sealed, so that a certain amount of oil suction / discharge can always be ensured and seizure can be prevented. It can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】小型モータを示す図である。FIG. 1 is a diagram showing a small motor.

【図2】焼結含油軸受の構造を示す図である。FIG. 2 is a diagram showing a structure of a sintered oil-impregnated bearing.

【図3】油膜圧力分布を示す図である。FIG. 3 is a diagram showing an oil film pressure distribution.

【図4】偏心の説明図である。FIG. 4 is an explanatory diagram of eccentricity.

【図5】隙間分布を示す図である。FIG. 5 is a diagram showing a gap distribution.

【図6】隙間分布を示す図である。FIG. 6 is a diagram showing a gap distribution.

【図7】隙間分布を示す図である。FIG. 7 is a diagram showing a gap distribution.

【図8】油膜圧力分布を示す図である。FIG. 8 is a diagram showing an oil film pressure distribution.

【図9】油膜圧力分布を示す図である。FIG. 9 is a diagram showing an oil film pressure distribution.

【図10】油膜圧力分布を示す図である。FIG. 10 is a diagram showing an oil film pressure distribution.

【図11】複数段差の例を示す図である。FIG. 11 is a diagram showing an example of a plurality of steps.

【図12】複数段差の例を示す図である。FIG. 12 is a diagram showing an example of a plurality of steps.

【図13】高さと軸受負荷荷重との関係図である。FIG. 13 is a diagram showing the relationship between height and bearing load.

【図14】通気度と軸受負荷荷重との関係図である。FIG. 14 is a relationship diagram between air permeability and bearing load.

【図15】通気度分布を示す図である。FIG. 15 is a diagram showing a ventilation distribution.

【図16】通気度分布を示す図である。FIG. 16 is a diagram showing a ventilation distribution.

【図17】通気度分布を示す図である。FIG. 17 is a diagram showing a ventilation distribution.

【図18】固体潤滑剤を皮膜した例を示す図である。FIG. 18 is a diagram showing an example in which a solid lubricant is coated.

【図19】従来技術説明図である。FIG. 19 is a diagram illustrating a conventional technique.

【図20】他の従来技術説明図である。FIG. 20 is a diagram illustrating another conventional technique.

【図21】他の従来技術説明図である。FIG. 21 is a diagram illustrating another conventional technique.

【図22】他の従来技術説明図である。FIG. 22 is an explanatory view of another conventional technique.

【図23】他の従来技術説明図である。FIG. 23 is another prior art explanatory diagram.

【図24】更に他の従来技術説明図である。FIG. 24 is a view for explaining still another conventional technique.

【符号の説明】[Explanation of symbols]

1 ハウジング 2 永久磁石 3 電機子 4 整流子 5 回転子 6 エンドプレート 7 ブラシアーム 8 入力端子 9 焼結含油軸受 11 軸受保持部 13 回転軸 90 軸受孔 91 軸受孔内周面 92 段付部 93 膜 DESCRIPTION OF SYMBOLS 1 Housing 2 Permanent magnet 3 Armature 4 Commutator 5 Rotor 6 End plate 7 Brush arm 8 Input terminal 9 Sintered oil-impregnated bearing 11 Bearing holding portion 13 Rotating shaft 90 Bearing hole 91 Bearing hole inner peripheral surface 92 Stepped portion 93 Membrane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 回転軸(13)と対向する軸受孔内周面
において、その円周方向に、前記回転軸(13)と同心
円をなす摺動面を有する実質的に矩形状の段付部(9
2)を複数個設け、互いに隣接する前記段付部(92)
とその間の前記軸受孔内周面と前記回転軸(13)とで
囲まれる空隙を実質的に矩形状とすることを特徴とする
小型モータ用焼結含油軸受。
1. A substantially rectangular stepped portion having a sliding surface that is concentric with the rotating shaft (13) in the inner peripheral surface of the bearing hole facing the rotating shaft (13) in the circumferential direction thereof. (9
The stepped portions (92) adjacent to each other are provided with a plurality of 2).
A sintered oil-impregnated bearing for a small motor, characterized in that a space surrounded by the inner peripheral surface of the bearing hole and the rotating shaft (13) therebetween is substantially rectangular.
【請求項2】 前記段付部(92)の前記摺動面に固体
潤滑剤を皮膜することを特徴とする請求項1に記載の小
型モータ用焼結含油軸受。
2. The sintered oil-impregnated bearing for a small motor according to claim 1, wherein the sliding surface of the stepped portion (92) is coated with a solid lubricant.
【請求項3】 前記段付部(92)の前記摺動面におけ
る通気度を前記軸受孔内周面における通気度より小さく
することを特徴とする請求項1又は請求項2に記載の小
型モータ用焼結含油軸受。
3. The small motor according to claim 1, wherein the air permeability of the sliding surface of the stepped portion (92) is smaller than the air permeability of the inner peripheral surface of the bearing hole. Sintered oil-impregnated bearing.
【請求項4】 前記段付部(92)の前記摺動面の前記
軸受孔内周面からの高さを5乃至80μm以下とするこ
とを特徴とする請求項1に記載の小型モータ用焼結含油
軸受。
4. The burner for a small motor according to claim 1, wherein the height of the sliding surface of the stepped portion (92) from the inner peripheral surface of the bearing hole is 5 to 80 μm or less. Oil-impregnated bearing.
【請求項5】 前記段付部(92)を複数段差とするこ
とを特徴とする請求項1に記載の小型モータ用焼結含油
軸受。
5. The sintered oil-impregnated bearing for a small motor according to claim 1, wherein the stepped portion (92) has a plurality of steps.
JP27366091A 1991-10-22 1991-10-22 Oil impregnated sintered bearing for small-size motor Pending JPH05115146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27366091A JPH05115146A (en) 1991-10-22 1991-10-22 Oil impregnated sintered bearing for small-size motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27366091A JPH05115146A (en) 1991-10-22 1991-10-22 Oil impregnated sintered bearing for small-size motor

Publications (1)

Publication Number Publication Date
JPH05115146A true JPH05115146A (en) 1993-05-07

Family

ID=17530781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27366091A Pending JPH05115146A (en) 1991-10-22 1991-10-22 Oil impregnated sintered bearing for small-size motor

Country Status (1)

Country Link
JP (1) JPH05115146A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654597A (en) * 1995-09-08 1997-08-05 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic disk drive motor
US5746516A (en) * 1995-08-11 1998-05-05 Hitachi Powdered Metals Co., Ltd. Porous bearing system having internal grooves and electric motor provided with the same
US6120188A (en) * 1997-06-19 2000-09-19 Matsushita Electric Industiral Co., Ltd. Bearing unit manufacturing method bearing unit and motor using the bearing unit
JP2002364646A (en) * 2001-06-04 2002-12-18 Asmo Co Ltd Oil retaining bearing and brushless motor
US20100003059A1 (en) * 2008-07-01 2010-01-07 Oki Data Corporation Bearing member, belt unit, and image forming device
WO2017110778A1 (en) * 2015-12-25 2017-06-29 三菱マテリアル株式会社 Sintered oil-retaining bearing and process for producing the same
WO2018117183A1 (en) 2016-12-22 2018-06-28 三菱マテリアル株式会社 Oil-impregnated sintered bearing and method for manufacturing same
WO2019098240A1 (en) 2017-11-15 2019-05-23 三菱マテリアル株式会社 Oil impregnated sintered bearing and production method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746516A (en) * 1995-08-11 1998-05-05 Hitachi Powdered Metals Co., Ltd. Porous bearing system having internal grooves and electric motor provided with the same
US5932946A (en) * 1995-08-11 1999-08-03 Hitachi Powdered Metals Co., Ltd Porous bearing system having internal grooves and electric motor provided with the same
US5654597A (en) * 1995-09-08 1997-08-05 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic disk drive motor
US6120188A (en) * 1997-06-19 2000-09-19 Matsushita Electric Industiral Co., Ltd. Bearing unit manufacturing method bearing unit and motor using the bearing unit
JP2002364646A (en) * 2001-06-04 2002-12-18 Asmo Co Ltd Oil retaining bearing and brushless motor
US8543050B2 (en) * 2008-07-01 2013-09-24 Oki Data Corporation Bearing member, belt unit, and image forming device
US20100003059A1 (en) * 2008-07-01 2010-01-07 Oki Data Corporation Bearing member, belt unit, and image forming device
WO2017110778A1 (en) * 2015-12-25 2017-06-29 三菱マテリアル株式会社 Sintered oil-retaining bearing and process for producing the same
US10570959B2 (en) 2015-12-25 2020-02-25 Mitsubishi Materials Corporation Oil-retaining sintered bearing and method of producing the same
WO2018117183A1 (en) 2016-12-22 2018-06-28 三菱マテリアル株式会社 Oil-impregnated sintered bearing and method for manufacturing same
US11073178B2 (en) 2016-12-22 2021-07-27 Diamet Corporation Oil-impregnated sintered bearing and method for manufacturing the same
WO2019098240A1 (en) 2017-11-15 2019-05-23 三菱マテリアル株式会社 Oil impregnated sintered bearing and production method thereof
US11248654B2 (en) 2017-11-15 2022-02-15 Mitsubishi Materials Corporation Oil impregnated sintered bearing and production method thereof

Similar Documents

Publication Publication Date Title
US7147376B2 (en) Dynamic bearing device
JP2000350408A (en) Motor for driving recovering disk
US8356938B2 (en) Fluid dynamic bearing apparatus
US20070274617A1 (en) Fluid Dynamic Bearing Device
EP0381336B1 (en) Ceramic bearing
WO2011024604A1 (en) Slide bearing, slide bearing unit with same, and motor with the bearing unit
US20050201864A1 (en) Centrifugal fan
JPH05115146A (en) Oil impregnated sintered bearing for small-size motor
JP4302463B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2624264B2 (en) Laser beam scanner motor
KR101244271B1 (en) Dynamic pressure bearing device
JP2010065843A (en) Dynamic pressure bearing device
JP2005192387A (en) Bearing-integrated spindle motor
US6274958B1 (en) Spindle motor
JP2008039104A (en) Fluid bearing device
JP2003314533A (en) Fluid bearing device
JP2006194383A (en) Dynamic pressure bearing device
JP2004011721A (en) Fluid bearing device
JPH11190340A (en) Dynamic pressure type bearing device
JP2001241431A (en) Fluid bearing device
JP2004197889A (en) Dynamic-pressure bearing device
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3997115B2 (en) Hydrodynamic bearing device
JP6502036B2 (en) Fluid dynamic bearing device and motor including the same
US20060192452A1 (en) Spindle motor