JPH05114826A - Differential amplifying circuit - Google Patents

Differential amplifying circuit

Info

Publication number
JPH05114826A
JPH05114826A JP3255835A JP25583591A JPH05114826A JP H05114826 A JPH05114826 A JP H05114826A JP 3255835 A JP3255835 A JP 3255835A JP 25583591 A JP25583591 A JP 25583591A JP H05114826 A JPH05114826 A JP H05114826A
Authority
JP
Japan
Prior art keywords
mosfets
drains
differential
input stage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3255835A
Other languages
Japanese (ja)
Inventor
Masahiro Taguchi
正弘 田口
Koichi Azuma
幸一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3255835A priority Critical patent/JPH05114826A/en
Publication of JPH05114826A publication Critical patent/JPH05114826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To obtain the MOS type transistor differential amplifying circuit which uses no source follower. CONSTITUTION:The differential amplifying circuit consists of load MOSFETs QL1 and QL2 which are connected to the drains of differential input stage MOSFETs QI1 and QI2 through diodes, load MOSFETs QL3 and QL4 which are connected to the drains of the differential input stage MOSFETs QI1 and QI2 and operate as a constant current source, and positive feedback MOSFETs QL5 and QL6 which are connected to the drains of the differential input stage MOSFETs QI1 and QI2 and have their gates and drains connected in crossing relation. This circuit is therefore fast and excellent in noise resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は差動型増幅回路に関し、
とくに二つの電圧を比較する差動型電圧比較器に用いら
れる差動型増幅回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential amplifier circuit,
In particular, the present invention relates to a differential amplifier circuit used in a differential voltage comparator that compares two voltages.

【0002】[0002]

【従来の技術】従来の差動型増幅回路、例えば ”Th
e Journal of Solid−State
Circuits,Vol.25, No.1,FEB
RUARY 1990; pp173−182”におい
て示された例を図3に示す。ここで、MOSFETQ
1、Q2は差動入力段、MOSFETQ3、Q4はダイ
オード接続された負荷回路、MOSFETQ7、Q8は
正帰還回路、MOSFETQ9は定電流回路、MOSF
ETQ30、Q31とQ40、Q41はソースホロワ回
路である。
2. Description of the Related Art A conventional differential amplifier circuit, for example, "Th
e Journal of Solid-State
Circuits, Vol. 25, No. 1, FEB
RUARY 1990; pp173-182 "shows an example shown in FIG.
1, Q2 are differential input stages, MOSFETs Q3 and Q4 are diode-connected load circuits, MOSFETs Q7 and Q8 are positive feedback circuits, MOSFET Q9 is a constant current circuit, and MOSF.
ETQ30, Q31 and Q40, Q41 are source follower circuits.

【0003】この回路の動作を説明する。IN+,IN
−端子にまず差動入力段Q1、Q2に一定のバイアス電
圧をある一定期間与えリセット状態にする。次に差動入
力段Q1、Q2に比較する2つの電圧を与えると、入力
された2つの電圧の差が負荷回路Q3、Q4、正帰還回
路Q7、Q8によって増幅される。この電圧は、Q3
0、Q31とQ40、Q41のソースホロワ回路によっ
てさらに増幅されOUT+,OUT−端子から出力され
る。通常電圧比較器は、このような差動型増幅回路を複
数個直列接続して構成される
The operation of this circuit will be described. IN +, IN
First, a constant bias voltage is applied to the negative input terminals to the differential input stages Q1 and Q2 for a certain period of time to bring them into a reset state. Next, when two voltages to be compared are applied to the differential input stages Q1 and Q2, the difference between the two input voltages is amplified by the load circuits Q3 and Q4 and the positive feedback circuits Q7 and Q8. This voltage is Q3
It is further amplified by the source follower circuits of 0, Q31 and Q40, Q41, and output from the OUT + and OUT- terminals. The normal voltage comparator is configured by connecting a plurality of such differential amplifier circuits in series.

【0004】[0004]

【発明が解決しようとする課題】しかし高速動作をさ
せ、さらに消費電力を小さくするためには、差動型増幅
回路1つあたりのゲインを大きくして、使用する回路数
を少なくする必要がある。しかしゲインを大きくするた
めに、この差動型増幅回路の正帰還を強くすると、回路
のリセットに時間がかかり、高速動作が不可能になる。
また、Q30、Q31とQ40、Q41のようなソース
ホロワ回路は、電源雑音の影響を大きく受ける。
However, in order to operate at high speed and further reduce power consumption, it is necessary to increase the gain per differential amplifier circuit and reduce the number of circuits to be used. .. However, if the positive feedback of this differential amplifier circuit is increased in order to increase the gain, it takes time to reset the circuit, and high-speed operation becomes impossible.
Further, source follower circuits such as Q30, Q31 and Q40, Q41 are greatly affected by power supply noise.

【0005】したがって本発明は、ゲインが大きく、高
速動作が可能で、さらに電源雑音の影響が小さい差動型
増幅回路を提供することを課題とする。
Therefore, it is an object of the present invention to provide a differential amplifier circuit which has a large gain, can operate at high speed, and is less affected by power supply noise.

【0006】[0006]

【課題を解決するための手段】そこで本発明は、電圧差
が増幅されるべき2つの電圧を差動入力段MOSFET
Q1、Q2に入力し増幅して比較する差動型増幅回路に
おいて、前記差動入力段MOSFETQI1、QI2の
それぞれのドレインにダイオード接続された負荷MOS
FETQL1、QL2と、前記差動入力段MOSFET
QI1、QI2のそれぞれのドレインに接続され、定電
流源として働く負荷MOSFETQL3、QL4と、前
記差動入力段MOSFETQI1、QI2のそれぞれの
ドレインに接続され、そのゲートとドレインが交差接続
されている正帰還MOSFETQL5、QL6とを有す
ることにより課題を解決する。
SUMMARY OF THE INVENTION Therefore, the present invention provides a differential input stage MOSFET with two voltages whose voltage difference is to be amplified.
In a differential amplifier circuit for inputting to Q1, Q2 for amplification and comparison, a load MOS diode-connected to each drain of the differential input stage MOSFETs QI1, QI2.
FETs QL1 and QL2 and the differential input stage MOSFET
Positive feedbacks connected to the drains of QI1 and QI2 and connected to the drains of the differential input stage MOSFETs QI1 and QI2, respectively, and load MOSFETs QL3 and QL4 that function as constant current sources, and the gates and drains of which are cross-connected. The problem is solved by including the MOSFETs QL5 and QL6.

【0007】[0007]

【作用】本発明においては、前記差動入力段MOSFE
TQI1、QI2のそれぞれのドレインにダイオード接
続されたMOSFETQL1、QL2の負荷によりゲイ
ンを得るとともにコモンモード・ノイズを除去し、前記
差動入力段MOSFETQI1、QI2のそれぞれのド
レインに接続され、MOSFETQL3、QL4の定電
流源として働く負荷により更にゲインを向上し、前記差
動入力段MOSFETQI1、QI2のそれぞれのドレ
インに接続され、そのゲートとドレインが交差接続され
ているMOSFETQL5、QL6により弱い正帰還
し、ゲインを大きくでき、MOSFETQL3、QL4
による定電流により、リセット時間を短くすることがで
きる。
In the present invention, the differential input stage MOSFE is provided.
Gains are obtained by removing loads of the MOSFETs QL1 and QL2 diode-connected to the drains of the TQI1 and QI2, respectively, and common mode noise is removed. The gains are connected to the drains of the differential input stage MOSFETs QI1 and QI2 and the MOSFETs QL3 and QL4 are connected. Gain is further improved by the load acting as a constant current source, and weak positive feedback is performed by the MOSFETs QL5 and QL6 connected to the drains of the differential input stage MOSFETs QI1 and QI2, and the gates and drains of the MOSFETs are cross-connected to obtain a gain. Larger size, MOSFET QL3, QL4
The constant current can reduce the reset time.

【0008】[0008]

【実施例】図1に本発明の実施例を示す。差動入力段N
チャンネルMOSFET(以下、単にNMOSと呼ぶ)
QI1、QI2はソースが短絡されている。Pチャンネ
ルMOSFET(以下、単にPMOSと呼ぶ)QL1、
QL2は、負荷回路であり、NMOSQI1、QI2の
それぞれのドレインにドレインとゲートが接続され、ソ
ースに電源電圧が与えられている。PMOSQL3、Q
L4は定電流源として働く負荷回路であり、NMOSQ
I1、QI2のそれぞれのドレインにドレインが接続さ
れ、ゲートはバイアス電圧Vpが与えられ、ソースに電
源電圧が与えられている。PMOSQL5、QL6は、
正帰還回路を構成し、NMOSQI1、QI2のそれぞ
れのドレインにドレインが接続され、そのゲートとドレ
インが交差接続され、ソースに電源電圧が与えられてい
る。NMOSQI1、QI2の短絡されたソースには定
電流回路としてNMOSQS9のドレインが接続され、
NMOSQS9のゲートにはバイアス電圧Vnが与えら
れ、ソースに基板電位が与えられている。
EXAMPLE FIG. 1 shows an example of the present invention. Differential input stage N
Channel MOSFET (hereinafter simply referred to as NMOS)
The sources of QI1 and QI2 are short-circuited. P-channel MOSFET (hereinafter simply referred to as PMOS) QL1,
QL2 is a load circuit in which the drain and the gate are connected to the drains of the NMOSs QI1 and QI2, respectively, and the power supply voltage is applied to the sources. PMOS QL3, Q
L4 is a load circuit that works as a constant current source, and NMOSQ
The drains of I1 and QI2 are connected to each other, the bias voltage Vp is applied to the gate, and the power supply voltage is applied to the source. PMOS QL5 and QL6 are
A positive feedback circuit is configured, and the drains of the NMOSs QI1 and QI2 are connected to their drains, their gates and drains are cross-connected, and the power supply voltage is applied to their sources. The short-circuited sources of the NMOS QI1 and QI2 are connected to the drain of the NMOS QS9 as a constant current circuit,
A bias voltage Vn is applied to the gate of the NMOS QS9, and the substrate potential is applied to the source.

【0009】NMOSQI1のドレインは、NMOSQ
F1とPMOSQF2からなるスイッチ回路を介してN
MOSQI1のゲートとコンデンサC1に接続される。
NMOSQI2のドレインは、NMOSQF4とPMO
SQF3からなるスイッチ回路を介してNMOSQI2
のゲートとコンデンサC2に接続される。また、コンデ
ンサC1の他の端子にはNMOSQT1からなるスイッ
チ回路を介してVrefが与えられ、さらに、NMOS
QT3とPMOSQT4からなるスイッチ回路を介して
Vinが与えられる。コンデンサC2の他の端子にはN
MOSQT2からなるスイッチ回路を介してVrefが
与えられ、さらに、NMOSQT6とPMOSQT5か
らなるスイッチ回路を介してVrefが与えられる。
The drain of the NMOSQI1 is an NMOSQ
N via a switch circuit consisting of F1 and PMOS QF2
It is connected to the gate of the MOSQI1 and the capacitor C1.
The drain of the NMOS QI2 is connected to the NMOS QF4 and the PMO.
NMOSQI2 via a switch circuit composed of SQF3
Is connected to the gate and the capacitor C2. Further, Vref is applied to the other terminal of the capacitor C1 through a switch circuit composed of an NMOS QT1,
Vin is applied through a switch circuit composed of QT3 and PMOS QT4. The other terminal of the capacitor C2 is N
Vref is applied via the switch circuit composed of MOSQT2, and further Vref is applied via the switch circuit composed of NMOSQT6 and PMOSQT5.

【0010】NMOSQT1、QT2、QF1、QF4
のゲートにはタイミングパルスPH1が与えられ、PM
OSQF2、QF3のゲートにはタイミングパルスPH
1の反転パルスであるPH1#が与えられている。この
ことによって、スイッチ回路NMOSQT1、QT2、
QF1、QF4、PMOSQF2、QF3はタイミング
パルスPH1がハイレベルである期間、オン状態とな
る。NMOSQT3とQT6のゲートにはタイミングパ
ルスPH2が与えられ、PMOSQT4とQT5のゲー
トにはタイミングパルスPH2反転パルスであるPH2
#が与えられている。このことによって、スイッチ回路
NMOSQT3、QT6、PMOSQT4、QT5はタ
イミングパルスPH2がハイレベルである期間、オン状
態となる。
NMOS QT1, QT2, QF1, QF4
Timing gate PH1 is applied to the gate of
Timing pulse PH is applied to the gates of OSQF2 and QF3.
PH1 # which is an inversion pulse of 1 is given. As a result, the switch circuits NMOSQT1, QT2,
The QF1, QF4, the PMOS QF2, and the QF3 are in the ON state while the timing pulse PH1 is at the high level. A timing pulse PH2 is applied to the gates of the NMOS QT3 and QT6, and a timing pulse PH2 inversion pulse PH2 is applied to the gates of the PMOS QT4 and QT5.
# Is given. As a result, the switch circuits NMOSQT3, QT6, PMOSQT4, QT5 are turned on while the timing pulse PH2 is at the high level.

【0011】この実施例の回路の動作を図2に示した入
出力波形図を使って説明する。タイミングパルスPH
1、PH2はノーオーバーラップのパルスになってい
る。タイミングパルスPH1がハイレベルのとき、スイ
ッチ回路NMOSQF1、QF4、PMOSQF2、Q
F3はオン状態であり、NMOSQI1、QI2のドレ
インはゲートと短絡され差動回路はリセット状態になっ
ている。また、NMOSQI1、QI2のゲートに接続
されているコンデンサC1、C2の端子には、NMOS
QI1、QI2のドレイン電圧が与えられる。さらに、
スイッチ回路NMOSQT1、QT2もオン状態である
ので、コンデンサC1、C2の他の端子にはVrefが
与えられる。このとき、コンデンサC1、C2には差動
回路のオフセットに応じた電位差が現れる。またこのと
き、PMOSQL3、QL4の定電流源としての働きに
より、速やかに、差動回路の出力はそれぞれ、差動回路
のオフセット応じた電位に落ち着く。
The operation of the circuit of this embodiment will be described with reference to the input / output waveform chart shown in FIG. Timing pulse PH
1 and PH2 have no overlap pulses. When the timing pulse PH1 is at high level, the switch circuits NMOSQF1, QF4, PMOSQF2, Q
F3 is in the ON state, the drains of the NMOS QI1 and QI2 are short-circuited with the gates, and the differential circuit is in the reset state. The terminals of the capacitors C1 and C2 connected to the gates of the NMOS QI1 and QI2 are connected to the NMOS.
The drain voltage of QI1 and QI2 is given. further,
Since the switch circuits NMOSQT1 and QT2 are also in the ON state, Vref is applied to the other terminals of the capacitors C1 and C2. At this time, a potential difference corresponding to the offset of the differential circuit appears in the capacitors C1 and C2. Further, at this time, the outputs of the differential circuits quickly settle to the potentials corresponding to the offsets of the differential circuits due to the functions of the PMOS QL3 and QL4 as constant current sources.

【0012】タイミングパルスPH2がハイレベルにな
ると、スイッチ回路NMOSQT3、QT6、PMOS
QT4、QT5がオン状態となり、コンデンサC1の端
子にはVrefに代わってVinが与えられる。またC
2には、さらにVrefが与えられる。このときNMO
SQI1、QI2のゲートにはコンデンサC1、C2を
介して、差動回路のオフセットと|Vref−Vin|
を加えた電位差が生じ、NMOSQI1、QI2のドレ
インにはNMOSQI1、QI2のゲートの電位差が、
PMOSQL1,QL2,QL3,QL4,QL5,Q
L6の働きにより増幅されて現れる。
When the timing pulse PH2 becomes high level, the switch circuits NMOSQT3, QT6, PMOS
QT4 and QT5 are turned on, and Vin is applied to the terminal of the capacitor C1 instead of Vref. Also C
Further, Vref is given to 2. At this time NMO
The offset of the differential circuit and | Vref-Vin | are connected to the gates of SQI1 and QI2 via capacitors C1 and C2.
And a potential difference between the gates of the NMOS QI1 and QI2 is generated at the drains of the NMOS QI1 and QI2.
PMOS QL1, QL2, QL3, QL4, QL5, Q
It appears after being amplified by the action of L6.

【0013】[0013]

【発明の効果】本発明によれば、高速動作しかつゲイン
の大きな差動型増幅回路を実現できる。
According to the present invention, a differential amplifier circuit which operates at high speed and has a large gain can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の回路図FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】動作の一例を示すための入出力波形図FIG. 2 is an input / output waveform diagram for showing an example of the operation.

【図3】従来の回路図FIG. 3 Conventional circuit diagram

【符号の説明】[Explanation of symbols]

Q1、Q2,QI1、QI2 …… 差動入
力段 Q3、Q4、QL1,QL2,QL3,QL4…… 負
荷回路 Q7、Q8,QL5,QL6 …… 正帰還
回路 Q9,QS9 …… 定電流
回路 QF1、QF2、QF3、QF4、QT1,QT2,Q
T3,QT4,QT5、QT6 …… スイッチ
回路 Q30、Q31、Q40、Q41 …… ソース
ホロワ回路を構成する MOSFET、Vi、Vref …… 入力電
圧 PH1、PH2 …… タイミ
ングパルス Vo1、Vo2 …… 出力電
Q1, Q2, QI1, QI2 ... Differential input stage Q3, Q4, QL1, QL2, QL3, QL4 ... Load circuit Q7, Q8, QL5, QL6 ... Positive feedback circuit Q9, QS9 ... Constant current circuit QF1, QF2, QF3, QF4, QT1, QT2, Q
T3, QT4, QT5, QT6 ...... Switch circuit Q30, Q31, Q40, Q41 ...... MOSFETs forming source follower circuit, Vi, Vref …… Input voltage PH1, PH2 …… Timing pulse Vo1, Vo2 …… Output voltage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電圧差が増幅されるべき2つの電圧を差動
入力段MOS型トランジスタ(以下「MOSFET」と
いう)QI1、QI2に入力し増幅して比較する差動型
増幅回路において、前記差動入力段MOSFETQI
1、QI2のそれぞれのドレインにダイオード接続され
た負荷MOSFETQL1、QL2と、前記差動入力段
MOSFETQI1、QI2のそれぞれのドレインに接
続され、定電流源として働く負荷MOSFETQL3、
QL4と、前記差動入力段MOSFETQI1、QI2
のそれぞれのドレインに接続され、そのゲートとドレイ
ンが交差接続されている正帰還MOSFETQL5、Q
L6とを有することを特徴とする差動型増幅回路。
1. A differential amplifier circuit in which two voltages whose voltage differences are to be amplified are input to differential input stage MOS transistors (hereinafter referred to as "MOSFETs") QI1 and QI2 for amplification and comparison. Dynamic input stage MOSFET QI
Load MOSFETs QL1 and QL2 diode-connected to the respective drains of the Q1 and QI2, and load MOSFETs QL3 connected to the respective drains of the differential input stage MOSFETs QI1 and QI2 and acting as a constant current source,
QL4 and the differential input stage MOSFETs QI1 and QI2
Of the positive feedback MOSFETs QL5 and Q, which are connected to the respective drains of the
A differential amplifier circuit comprising: L6.
JP3255835A 1991-09-06 1991-09-06 Differential amplifying circuit Pending JPH05114826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255835A JPH05114826A (en) 1991-09-06 1991-09-06 Differential amplifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255835A JPH05114826A (en) 1991-09-06 1991-09-06 Differential amplifying circuit

Publications (1)

Publication Number Publication Date
JPH05114826A true JPH05114826A (en) 1993-05-07

Family

ID=17284264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255835A Pending JPH05114826A (en) 1991-09-06 1991-09-06 Differential amplifying circuit

Country Status (1)

Country Link
JP (1) JPH05114826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498851B2 (en) * 2004-01-13 2009-03-03 Nxp B.V. High speed comparator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498851B2 (en) * 2004-01-13 2009-03-03 Nxp B.V. High speed comparator

Similar Documents

Publication Publication Date Title
US6052025A (en) CMOS operational amplifiers having reduced power consumption requirements and improved phase margin characteristics
US4100502A (en) Class B FET amplifier circuit
KR100377064B1 (en) Fully differential folded cascade cmos operational amplifier having adaptive biasing and common mode feedback circuits
EP0090349B1 (en) Voltage comparator circuit
US10855265B2 (en) Comparison circuit
JPH0345576B2 (en)
US4760287A (en) Voltage comparator circuit
US5798660A (en) Cascoded differential pair amplifier with current injection for gain enhancement
US6326846B1 (en) Low voltage fet differential amplifier and method
US5525920A (en) Comparator circuit and method thereof
JPH0691380B2 (en) amplifier
US5349305A (en) Fully differential current sample/hold circuit
JP2007329518A (en) Chopper type comparator
JPS5997220A (en) Voltage comparing circuit
US5541555A (en) High performance transconductance operational amplifier of the CMOS integrated type
EP0019279B1 (en) Voltage comparator circuit
US6525602B1 (en) Input stage for a buffer with negative feed-back
JPH05114826A (en) Differential amplifying circuit
US6496066B2 (en) Fully differential operational amplifier of the folded cascode type
US11658625B2 (en) Amplifier circuit, corresponding comparator device and method
JPH0269007A (en) Differential amplifier
US7078970B2 (en) CMOS class AB operational amplifier
US5391937A (en) Low power dissipation autozeroed comparator circuit
JP2002118427A (en) Operational amplifier
JPH0345577B2 (en)