JPH0345577B2 - - Google Patents

Info

Publication number
JPH0345577B2
JPH0345577B2 JP56138947A JP13894781A JPH0345577B2 JP H0345577 B2 JPH0345577 B2 JP H0345577B2 JP 56138947 A JP56138947 A JP 56138947A JP 13894781 A JP13894781 A JP 13894781A JP H0345577 B2 JPH0345577 B2 JP H0345577B2
Authority
JP
Japan
Prior art keywords
voltage
transistor
load
differential amplifier
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56138947A
Other languages
Japanese (ja)
Other versions
JPS5840919A (en
Inventor
Akira Yugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13894781A priority Critical patent/JPS5840919A/en
Publication of JPS5840919A publication Critical patent/JPS5840919A/en
Publication of JPH0345577B2 publication Critical patent/JPH0345577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356017Bistable circuits using additional transistors in the input circuit
    • H03K3/356034Bistable circuits using additional transistors in the input circuit the input circuit having a differential configuration

Description

【発明の詳細な説明】 本発明は、主として相補型絶縁ゲート構成を半
導体集積回路上に実現するA/D変換器等に用い
微小なる差のある2つの電圧を比較しその大小に
応じた論理電圧を出力させるのに適した電圧比較
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is mainly used in an A/D converter etc. that implements a complementary insulated gate configuration on a semiconductor integrated circuit, and compares two voltages with a slight difference, and generates logic according to the magnitude. The present invention relates to a voltage comparison circuit suitable for outputting voltage.

従来相補型絶縁ゲート構成の半導体集積回路に
用いる電圧比較回路としては、第1図に示すごと
くM1を定電流源とし、M2,M3を入力トラン
ジスタとし、M4,M5を電流ミラー型負荷とし
て構成した差動増幅回路により端子2,3に加え
られた電圧の差に比例した出力電圧を端子6から
とり出し、これをM6を定電流負荷とする反転増
幅器11により更に増幅する2段構成の増幅回路
を使用していた。
Conventionally, a voltage comparator circuit used in a semiconductor integrated circuit with a complementary insulated gate configuration has been configured with M1 as a constant current source, M2 and M3 as input transistors, and M4 and M5 as current mirror type loads, as shown in Figure 1. A two-stage amplifier circuit that extracts an output voltage from terminal 6 that is proportional to the difference between the voltages applied to terminals 2 and 3 by a differential amplifier circuit, and further amplifies this by an inverting amplifier 11 with M6 as a constant current load. was using.

第1図をはじめ本願において使用するシンボル
は、pチヤンネルトランジスタを第2図a、nチ
ヤンネルトランジスタを第2図bのように定め
る。共にGと示したのがゲート、Sと示したのが
ソース、Dと示したのがドレインである。この2
段構成の増幅回路によれば通常2000倍〜5000倍の
利得が得られるが、利得の余裕を得るため普通は
更に反転増幅器12を1段付加している。13は
前記M1とM6と定電流領域で動作させるための
バイアス電圧供給装置で、例えば第3図の回路で
実現される。第3図の回路はMOSトランジスタ
のゲート電極とドレイン電極とを接続したいわゆ
るダイオード接続されたトランジスタを3個直列
に接続し、端子1と9の間に加えられる電源電圧
を分圧するものである。
Symbols used in this application, including FIG. 1, define a p-channel transistor as shown in FIG. 2a, and an n-channel transistor as shown in FIG. 2b. The gate is denoted by G, the source is denoted by S, and the drain is denoted by D. This 2
A staged amplifier circuit usually provides a gain of 2,000 to 5,000 times, but one additional stage of inverting amplifier 12 is usually added to provide extra gain margin. Reference numeral 13 denotes a bias voltage supply device for operating M1 and M6 in a constant current region, which is realized, for example, by the circuit shown in FIG. The circuit shown in FIG. 3 divides the power supply voltage applied between terminals 1 and 9 by connecting three so-called diode-connected transistors in series, in which the gate and drain electrodes of MOS transistors are connected.

かかる電圧比較回路は入力電圧差が減少すると
それにかみあつて増幅段数を増加せねばならず、
集積回路の占有面積の増大、消費電力の増大を招
く。さらに初段の差動増幅器の同相電圧除去は万
全とは言えず、入力電圧の同相成分が変化すると
節点6の出力電圧が変化し、この電圧が反転増幅
器により増幅されるため、入力電圧として数mV
以下の電圧差の場合には同相電圧によつては最終
段の出力で論理“1”の状態と論理“0”の状態
が入れ替わることがある。また、電源電圧が変動
した場合にも同じ現象を発生する。そのため、か
かる電圧比較回路では入力電圧の同相成分が大き
い場合数mV以下の差を識別することは不可能で
ある欠点を有する。
When the input voltage difference decreases, such a voltage comparator circuit must increase the number of amplification stages to cope with the decrease.
This results in an increase in the area occupied by the integrated circuit and an increase in power consumption. Furthermore, the common-mode voltage rejection of the first-stage differential amplifier is not perfect, and if the common-mode component of the input voltage changes, the output voltage at node 6 changes, and this voltage is amplified by the inverting amplifier, so the input voltage is several mV.
In the case of the following voltage difference, depending on the common mode voltage, the logic "1" state and the logic "0" state may be switched at the output of the final stage. The same phenomenon also occurs when the power supply voltage fluctuates. Therefore, such a voltage comparison circuit has a drawback that it is impossible to distinguish between differences of several mV or less when the common mode component of the input voltage is large.

本発明はかかる欠点を除去し、非常に高感度な
電圧比較回路を少ない素子数により実現しようと
するものである。
The present invention aims to eliminate such drawbacks and realize a voltage comparator circuit with very high sensitivity using a small number of elements.

本発明は、信号入力トランジスタとは異極性の
ゲート電極とドレイン電極とを接続したトランジ
スタを負荷として持つ差動増幅器と、前記負荷ト
ランジスタと同極性のトランジスタ2個を交叉結
合してその共通ソース電極を前記負荷トランジス
タの接地電位まで間欠的に低下させる手段を有す
るフリツプフロツプ回路と、を相補型絶縁ゲート
トランジスタを用いて構成し、前記フリツプフロ
ツプの2つのドレイン電極をそれぞれ前記差動増
幅器負荷のドレイン電極に接続する特徴を有し、
前記間欠的に電位が低下するとき前記差動増幅器
の入力電圧の大小に対応して論理出力として充分
な出力電圧を前記差動増幅器の出力端に得るよう
にした電圧比較回路である。
The present invention provides a differential amplifier having as a load a transistor whose gate electrode and drain electrode are connected to each other with a different polarity from that of the signal input transistor, and two transistors having the same polarity as the load transistor, which are cross-coupled to have a common source electrode. a flip-flop circuit having means for intermittently lowering the voltage to the ground potential of the load transistor; a flip-flop circuit configured using complementary insulated gate transistors, and two drain electrodes of the flip-flop connected to the drain electrodes of the differential amplifier load, respectively; It has the characteristics of connecting,
The voltage comparator circuit is configured to obtain an output voltage sufficient as a logic output at the output end of the differential amplifier in response to the magnitude of the input voltage of the differential amplifier when the potential intermittently decreases.

以下本発明を、具体的回路例の一例を示す第4
図および端子17に加えるパルスのタイミングの
一例を示す第5図を用いて説明する。
Hereinafter, the present invention will be described in a fourth section showing an example of a specific circuit.
This will be explained using FIG. 5, which shows an example of the timing of pulses applied to the terminal 17.

第4図に示したのは本第1の発明の実施の一例
である。信号入力トランジスタM2,M3および
定電流源M11にpチヤンネルトランジスタを用
いM2とM3のソース電極に同じくpチヤンネル
トランジスタM1のドレイン電極を接続し、M1
のソース電極は正の電源に接続し、M1のゲート
電極には節点4を介してバイアス電圧供給装置1
3を接続して一定電圧を印加するようにして定電
流源を構成している。M2,M3のドレイン電極
にはそれぞれいわゆるダイオード接続されたnチ
ヤンネルトランジスタM13,M14が負荷とし
て接続されており、これらにより差動増幅器が構
成されている。M13,M14のドレイン電極は
出力端5,6として外部にとり出されると共に、
出力端5にnチヤンネトランジスタM10のゲー
ト電極およびnチヤンネルトランジスタM11の
ドレイン電源が接続され、出力端6にM10のド
レイン電極およびM11のゲート電極が接続され
て交叉結合を構成しており、M10およびM11
の共通ソース電極にはnチヤンネルトランジスタ
M12のドレイン電極と接続され、M12のソー
ス電極は負電源に接続され、M12のソース電極
は負電源に接続され、M12のゲートは端子17
を介して第5図のパルスイを発生する装置に接続
するようにし、間欠的にM10およびM11のソ
ース電圧を降下させる手段となしてある。
What is shown in FIG. 4 is an example of the implementation of the first invention. P-channel transistors are used as signal input transistors M2, M3 and constant current source M11, and the drain electrode of p-channel transistor M1 is similarly connected to the source electrodes of M2 and M3.
The source electrode of M1 is connected to a positive power supply, and the gate electrode of M1 is connected to a bias voltage supply device 1 via node 4.
3 are connected to apply a constant voltage to constitute a constant current source. So-called diode-connected n-channel transistors M13 and M14 are connected as loads to the drain electrodes of M2 and M3, respectively, and these constitute a differential amplifier. The drain electrodes of M13 and M14 are taken out to the outside as output ends 5 and 6, and
The gate electrode of the n-channel transistor M10 and the drain power supply of the n-channel transistor M11 are connected to the output terminal 5, and the drain electrode of M10 and the gate electrode of M11 are connected to the output terminal 6 to form a cross-coupling. and M11
The common source electrode of M12 is connected to the drain electrode of the n-channel transistor M12, the source electrode of M12 is connected to the negative power supply, the source electrode of M12 is connected to the negative power supply, and the gate of M12 is connected to the terminal 17.
It is connected to a device for generating a pulse wave shown in FIG. 5 via a .

第4図14のごときダイオード接続されたトラ
ンジタを負荷とし差動増幅回路は、第1図10の
ごとき電流ミラーを負荷とした差動増幅器に比し
て利得が数分の1以下であり、同相除去比も悪く
なる、という事実を欠点とし考えられていたため
に相補型絶縁ゲート構成の半導体集積回路では従
来顧みられることがなかつた回路構成である。
A differential amplifier circuit loaded with diode-connected transistors as shown in FIG. This circuit configuration has not been considered in the past in semiconductor integrated circuits with complementary insulated gate configurations because the fact that the removal ratio is also poor is considered to be a drawback.

しかし本発明である第4図15のフリツプフロ
ツプは、それ自体正帰還がかかるため利得は無限
大であり、同相除去作用も非常に大きいため、前
記の欠点は問題ではなくなるというのが本発明者
の発想であり、事実その結果、後に述べる様に電
圧比較を行つた後の差動増幅器への復帰が早くな
るという従来予想だにされていなかつた大きな利
点を得るに致つた。
However, the flip-flop of the present invention, shown in FIG. 4, has an infinite gain because it is subjected to positive feedback, and the common-mode rejection effect is also very large, so the inventor believes that the above-mentioned drawbacks are no longer a problem. This is an idea, and in fact, as a result, as will be described later, we have obtained a great advantage that had not been anticipated in the past: that the return to the differential amplifier after voltage comparison is faster.

いま第5図に示した時刻t0の状態から説明す
る。
The description will now be made starting from the state at time t0 shown in FIG.

時刻t0ではパルスイは零状態であり、第4図の
入力端2,3では2の電圧の方が3の電圧よりは
高いとする。すると、M3を流れる電流はM2よ
りは多くなる。したがつて出力端6の電圧が出力
端5の電圧より高くなる。
It is assumed that at time t0 , the pulse I is in a zero state, and the voltage at input terminals 2 and 3 in FIG. 4 is higher than the voltage at input terminal 3. Then, the current flowing through M3 becomes larger than that flowing through M2. Therefore, the voltage at the output end 6 becomes higher than the voltage at the output end 5.

この電圧差は普通、入力電圧差の数倍から10倍
程度である。このとき節点16の電圧は5,6の
電圧の差がnチヤンネルトランジスタの閾値電圧
より小さい場合は、高い方の出力端6の電圧に比
べてnチヤンネルトランジスタの閾値電圧分だけ
低い電圧になつている。この差が閾値電圧より大
きくなると、5,6のうち電圧の低い方の出力端
5の電圧と等しくなる。これはM10,M11が
お互いに出力端5,6の電圧のソースフオロア回
路となつているためである。次に時刻t1でパルス
イが立ち上がると、M12が導通し、節点16の
電圧が降下る。するとM10,M11で構成され
ているフリツプフロツプが活性化され、M11が
先に導通し、出力端6の電圧を降下させる。節点
16が降下するに従つて出力端6が降下するた
め、M10を流れる電流はM11を流れる電流に
比してずつと少ないので、出力端5はほぼパルス
イが印加される前の電圧を保持する。ここで低電
圧側の最終電圧をnチヤンネルトランジスタの閾
値電圧より充分低くするためM10およびM12
についてそのチヤンネル幅をチヤンネル長で除し
た商(W/L)をM4およびM5について同様に
して求めた値の5倍以上にとるのが望ましい。こ
の第4図に示した電圧比較回路ではパルスイを印
加する前には差動増幅器14が純粋の差動増幅器
であるかもしくは出力端5,6が等しい電位でな
ければならない。時刻t2でパルスイを立ち下げる
とM12がオフし、フリツプフロツプには電流は
流れなくなる。この時M14はオフであるため、
M3を流れる電流はすべて充電のため供される。
出力端5が閾値電圧を越えてM14が導通しても
M14は出力端5の電圧が上昇するほど抵抗が下
がる様な性質を持つているため、M14を負荷と
するより短時間に差動増幅器の状態に復帰させる
ことができる。入力電圧が逆の場合でもこの回路
は対称となつているため同様の動作をする。
This voltage difference is typically on the order of several to ten times the input voltage difference. At this time, if the difference between the voltages 5 and 6 is smaller than the threshold voltage of the n-channel transistor, the voltage at node 16 will be lower than the voltage at the higher output terminal 6 by the threshold voltage of the n-channel transistor. There is. When this difference becomes larger than the threshold voltage, it becomes equal to the voltage at the output terminal 5, which has the lower voltage among 5 and 6. This is because M10 and M11 each serve as a source follower circuit for the voltages at the output terminals 5 and 6. Next, when the pulse I rises at time t1 , M12 becomes conductive and the voltage at node 16 drops. Then, the flip-flop composed of M10 and M11 is activated, and M11 becomes conductive first, causing the voltage at the output terminal 6 to drop. As the node 16 falls, the output end 6 falls, so the current flowing through M10 is gradually smaller than the current flowing through M11, so the output end 5 maintains almost the voltage before the pulse I was applied. . Here, in order to make the final voltage on the low voltage side sufficiently lower than the threshold voltage of the n-channel transistor, M10 and M12
It is desirable that the quotient (W/L) obtained by dividing the channel width by the channel length for M4 and M5 is five times or more the value similarly obtained for M4 and M5. In the voltage comparison circuit shown in FIG. 4, the differential amplifier 14 must be a pure differential amplifier or the output terminals 5 and 6 must be at the same potential before applying the pulse I. When the pulse I falls at time t2 , M12 turns off and no current flows through the flip-flop. Since M14 is off at this time,
All current flowing through M3 is provided for charging.
Even if M14 becomes conductive when the output terminal 5 exceeds the threshold voltage, M14 has a property that its resistance decreases as the voltage at the output terminal 5 rises, so it can be assembled into a differential amplifier in a shorter time than using M14 as a load. can be restored to the state of Even if the input voltages are reversed, the circuit operates in the same way because it is symmetrical.

さて、こうした電圧比較回路の場合、電圧比較
後差動増幅器として動作する状態へ復帰が早いだ
けではなく、更に高速で動作させたい場合があ
る。本第1の発明による発想はかかる場合にも発
展的に適合させることが可能でる。第6図に示し
たのはこうして得た本第2の発明の実施の一例で
あり、第4図の回路中、出力端5,6へトランジ
スタM15のソースおよびドレインをそれぞれ接
続して構成されており、M15のゲート端子18
へは第5図のパルスハを印加するようにしてあ
る。第5図に示したように時刻t2のタイミングで
パルスイを立ち下げると共に、パルスハを立ち上
げM15を導通させると出力端5,6の電圧が等
しくなり、M15が導通す直前の端子5,6の電
圧のほぼ平均の電圧となる。次にパルスハを立ち
下げると、M2およびM3から端子5,6に流れ
込む電流の差は端子2,3に入力される電圧の差
に比例しているから、前記入力電圧の低い方のト
ランジスタに接続された出力端の方が先に電圧上
昇するので次の電圧比較をすぐに行うことができ
る。
Now, in the case of such a voltage comparison circuit, not only is it possible to quickly return to a state in which it operates as a differential amplifier after voltage comparison, but there are cases where it is desired to operate at even higher speed. The idea according to the first invention can be further adapted to such cases as well. What is shown in FIG. 6 is an example of the implementation of the second invention thus obtained, which is constructed by connecting the source and drain of the transistor M15 to the output terminals 5 and 6, respectively, in the circuit shown in FIG. Gate terminal 18 of M15
The pulse C shown in FIG. 5 is applied to . As shown in FIG. 5, at the timing of time t2 , when pulse I falls and pulse C rises to make M15 conductive, the voltages at output terminals 5 and 6 become equal, and the terminals 5 and 6 just before M15 becomes conductive. The voltage is approximately the average voltage. Next, when the pulse V falls, the difference between the currents flowing into terminals 5 and 6 from M2 and M3 is proportional to the difference between the voltages input to terminals 2 and 3, so connect it to the transistor with the lower input voltage. Since the voltage of the output terminal that has been changed increases first, the next voltage comparison can be performed immediately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いらている差動増幅器10と反
転増幅器11,12を用いた電圧比較回路で、1
3はバイアス電圧供給装置である。第2図a,b
はトランジスタのシンボルの説明図である。第3
図はバイアス電圧供給装置の回路例である。第4
図は本請求の範囲第1項に示した発明の実施例で
あり、第6図は本請求の範囲第2項に示した発明
の実施例である。第5図イ,ロ,ハ,ニの各図は
第4図および第6図に供給するパルスタイミング
および出力波形の一例を示した図である。 図中、MXXと示したのはトランジスタであり
数字のみを付したのは節点もしくは端子である。
Figure 1 shows a voltage comparison circuit using a conventionally used differential amplifier 10 and inverting amplifiers 11 and 12.
3 is a bias voltage supply device. Figure 2 a, b
is an explanatory diagram of the symbol of a transistor. Third
The figure shows a circuit example of a bias voltage supply device. Fourth
The figure shows an embodiment of the invention as set forth in claim 1, and FIG. 6 shows an embodiment of the invention as set forth in claim 2. 5A, 5B, 5C and 5D are diagrams showing examples of pulse timing and output waveforms supplied to FIGS. 4 and 6. In the figure, MXX indicates a transistor, and only numbers indicate nodes or terminals.

Claims (1)

【特許請求の範囲】 1 入力トランジスタとは異極性のゲート電極と
ドレイン電極とを接続したトランジスタを負荷に
持つ差動増幅器と、前記負荷トランジスタと同極
性のトランジスタを交叉結合してその共通ソース
電極を前記負荷トランジスタの接地電位まで間欠
的に低下させる手段を有するフリツプフロツプ回
路と、を相補型絶縁ゲートトランジスタを用いて
構成し、前記フリツプフロツプの2つのドレイン
電極をそれぞれ前記差動増幅器負荷のドレイン電
極に接続した、ことを特徴とする電圧比較回路。 2 入力トランジスタとは異極性のゲート電極と
ドレイン電極とを接続したトランジスタを負荷に
持つ差動増幅器と、前記負荷トランジスタと同極
性のトランジスタ2個を交叉結合してその共通ソ
ース電極を前記負荷トランジスタの接地電位まで
間欠的に低下させる手段を有するフリツプフロツ
プ回路と、を相補型絶縁ゲートトランジスタを用
いて構成し、前記フリツプフロツプの2のドレイ
ン電極をそれぞれ前記差動増幅器負荷のドレイン
電極に接続し、さらに前記間欠的に低下するフリ
ツプフロツプの共通ソース電極電位に同期させて
前記負荷トランジスタのドレイン電位を強制的に
等電位にする手段を具備した、ことを特徴とする
電圧比較回路。
[Claims] 1. A differential amplifier having as a load a transistor whose gate electrode and drain electrode are connected to each other with a different polarity from that of the input transistor, and a transistor whose polarity is the same as that of the load transistor, and whose common source electrode is cross-coupled. a flip-flop circuit having means for intermittently lowering the voltage to the ground potential of the load transistor; a flip-flop circuit configured using complementary insulated gate transistors, and two drain electrodes of the flip-flop connected to the drain electrodes of the differential amplifier load, respectively; A voltage comparison circuit characterized in that: 2 A differential amplifier having a transistor as a load whose gate electrode and drain electrode are connected to each other with a different polarity from the input transistor, and two transistors having the same polarity as the load transistor are cross-coupled and their common source electrode is connected to the load transistor. a flip-flop circuit having means for intermittently lowering the potential to the ground potential of the differential amplifier load, and comprising complementary insulated gate transistors, two drain electrodes of the flip-flop are connected to the drain electrodes of the differential amplifier load, and A voltage comparator circuit comprising means for forcing the drain potential of the load transistor to be equal to the potential in synchronization with the common source electrode potential of the flip-flop which intermittently decreases.
JP13894781A 1981-09-03 1981-09-03 Voltage comparator Granted JPS5840919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13894781A JPS5840919A (en) 1981-09-03 1981-09-03 Voltage comparator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13894781A JPS5840919A (en) 1981-09-03 1981-09-03 Voltage comparator

Publications (2)

Publication Number Publication Date
JPS5840919A JPS5840919A (en) 1983-03-10
JPH0345577B2 true JPH0345577B2 (en) 1991-07-11

Family

ID=15233868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13894781A Granted JPS5840919A (en) 1981-09-03 1981-09-03 Voltage comparator

Country Status (1)

Country Link
JP (1) JPS5840919A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190176A (en) * 1984-03-09 1985-09-27 Mitsubishi Electric Corp Power regenerative apparatus
JPS6312973A (en) * 1986-07-03 1988-01-20 Nec Corp Battery voltage detecting circuit
JP2579932B2 (en) * 1987-03-31 1997-02-12 株式会社東芝 Hysteresis comparator
JP2731057B2 (en) * 1991-11-12 1998-03-25 川崎製鉄株式会社 comparator
JP4856186B2 (en) * 2005-10-26 2012-01-18 エヌエックスピー ビー ヴィ High speed comparator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158138A (en) * 1978-06-05 1979-12-13 Nippon Precision Circuits Comparator
JPS55166342A (en) * 1979-06-12 1980-12-25 Nec Corp Minute potential difference comparing circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158138A (en) * 1978-06-05 1979-12-13 Nippon Precision Circuits Comparator
JPS55166342A (en) * 1979-06-12 1980-12-25 Nec Corp Minute potential difference comparing circuit

Also Published As

Publication number Publication date
JPS5840919A (en) 1983-03-10

Similar Documents

Publication Publication Date Title
JPH0345576B2 (en)
US7656199B2 (en) Fast, low offset ground sensing comparator
US6437645B1 (en) Slew rate boost circuitry and method
KR890011080A (en) Medium potential generating circuit
KR940001816B1 (en) Slew rate speed up circuit
US20040108879A1 (en) Comparison apparatus operated at a low voltage
US10855265B2 (en) Comparison circuit
US5955899A (en) Compact comparator
JPH0453039B2 (en)
US4573020A (en) Fully differential operational amplifier with D.C. common-mode feedback
JPH08195631A (en) Sense amplifier
US3961279A (en) CMOS differential amplifier circuit utilizing a CMOS current sinking transistor which tracks CMOS current sourcing transistors
JP2885177B2 (en) Power supply monitor circuit
US20230208369A1 (en) Slew boost circuit for an operational amplifier
US5712556A (en) Intermediate potential generating circuit having output stabilizing circuit
JPH0234490B2 (en)
JP2818974B2 (en) Reference voltage generator
US6317000B1 (en) Overload recovery circuit and method
JPH0345577B2 (en)
JP2968826B2 (en) Current mirror type amplifier circuit and driving method thereof
US4767942A (en) Current mirror amplifier circuit
JP4456737B2 (en) Input circuit
KR20060136137A (en) Operational Amplifier
KR100280492B1 (en) Integrator input circuit
US6703900B2 (en) Fast, stable overload recovery circuit and method