JPH05114779A - Manufacture of copper polyimide board - Google Patents

Manufacture of copper polyimide board

Info

Publication number
JPH05114779A
JPH05114779A JP30251991A JP30251991A JPH05114779A JP H05114779 A JPH05114779 A JP H05114779A JP 30251991 A JP30251991 A JP 30251991A JP 30251991 A JP30251991 A JP 30251991A JP H05114779 A JPH05114779 A JP H05114779A
Authority
JP
Japan
Prior art keywords
copper
resin film
polyimide resin
nickel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30251991A
Other languages
Japanese (ja)
Inventor
Yukihiro Tamiya
幸広 田宮
Akihiro Miyake
明広 三宅
Noriyuki Saeki
典之 佐伯
Mikimata Takenaka
幹又 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP30251991A priority Critical patent/JPH05114779A/en
Priority to US07/963,739 priority patent/US5246564A/en
Publication of JPH05114779A publication Critical patent/JPH05114779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To prevent copper from diffusing when a board is kept high in temperature by a method wherein the surface of a polyimide resin film is subjected to a hydrophilic treatment with a specific hydrazine hydrate water solution, and an intermediate layer of nickel, its alloy, cobalt, or its allay is provided to an interface between copper and the polyimide resin film. CONSTITUTION:The surface of a polyimide resin film is subjected to hydrophilic treatment with a specific hydrazine hydrate water solution which contains 1-15mol/l of hydrazine hydrate and 0.5-5mol/l of metal hydroxide at a temperature of 10-50 deg.C, catalyst is added, an electroless plating film of nickel, cobalt, or either of their alloys is formed as thick as 0.01-0.1mum on the surface of the resin film, where the impurity content of the plating film is 10% or below. The resin film is thermally treated in an inert atmosphere as kept at a maximum temperature of 350-540 deg.C so as to keep a heat load coefficient D obtained by a formula in a range of 0.3-3.5. In a formula D, t0 denotes a treatment starting time and Ti indicates the temperature of a board itself at a certain time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フレキシブルプリント
配線板(EPC)、テープ自動ボンディング(TAB)
テープなどプリンド配線板(PWB)の素材となる銅ポ
リイミド基板の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a flexible printed wiring board (EPC) and automatic tape bonding (TAB).
The present invention relates to a method for manufacturing a copper-polyimide substrate that is a raw material for a printed wiring board (PWB) such as a tape.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、高速化により
プリント配線板においても高配線密度化、高機能化が要
請されている。そして、その基板材料にも誘電率が小さ
く、絶縁抵抗値が高く、且つ耐熱性が良好なことが要求
されている。この要求を満たす基板材料としてポリイミ
ド樹脂が注目されており、EPCやTABテープ用の素
材として頻繁に使用されてきており、通常はフィルム状
のポリイミド樹脂の表面に金属層として銅を被覆した銅
ポリイミド基板が多用されている。
2. Description of the Related Art In recent years, there has been a demand for higher wiring density and higher functionality in printed wiring boards as electronic equipment becomes smaller and faster. The substrate material is also required to have a low dielectric constant, a high insulation resistance value, and good heat resistance. Polyimide resin has attracted attention as a substrate material satisfying this requirement, and has been frequently used as a material for EPC and TAB tapes. Usually, a copper polyimide obtained by coating the surface of a film-shaped polyimide resin with copper as a metal layer. Substrates are often used.

【0003】ポリイミド樹脂フィルムに銅層を形成する
方法としては、従来はポリイミド樹脂フィルムと銅箔を
接着剤で貼り合わせるラミネート法が採られていたが、
接着剤の存在が基板の絶縁性、耐熱性などに対し悪影響
を及ぼすために最近ではポリイミド樹脂フィルム上にス
パッタリング法、イオンプレーティング法、蒸着法、無
電解めっき法などによって直接銅層を形成する方法が行
なわれている。
As a method for forming a copper layer on a polyimide resin film, a laminating method in which a polyimide resin film and a copper foil are bonded with an adhesive has been conventionally used.
Since the presence of adhesive adversely affects the insulation and heat resistance of the substrate, recently copper layers are directly formed on polyimide resin films by sputtering, ion plating, vapor deposition, electroless plating, etc. The way is done.

【0004】しかし、ポリイミド樹脂フィルムの表面に
直接銅層を形成して得た銅ポリイミド樹脂基板を高温環
境下に長時間放置した場合に、銅層とポリイミド樹脂フ
ィルムとの界面の密着強度が低下し、剥離等の問題を起
こす危険性があった。この問題について種々の検討を行
なったところ密着強度の低下は、銅のポリイミド側への
拡散に起因することが判かった。
However, when a copper-polyimide resin substrate obtained by directly forming a copper layer on the surface of a polyimide resin film is left in a high temperature environment for a long time, the adhesion strength at the interface between the copper layer and the polyimide resin film decreases. However, there was a risk of causing problems such as peeling. As a result of various studies on this problem, it was found that the decrease in adhesion strength was due to diffusion of copper to the polyimide side.

【0005】この銅の拡散を防止する方法としては、ポ
リイミド樹脂に銅層を形成するに際してその中間に拡散
を起こしにくい金属によるバリヤー層形成することが考
えられる。従来、既に基板のハンダ付け時の熱衝撃によ
る銅の密着度低下を防止する目的で、ポリイミド樹脂に
銅層を形成する際に樹脂と銅層との中間にニッケル等の
金属層を形成することが提案されているが(例えば、特
開昭63−286580号公報)、この目的のためには
中間金属層として必要とされる厚みは0.15μm以上
とすることが求められている。
As a method for preventing the diffusion of copper, it is conceivable to form a barrier layer made of a metal which hardly diffuses in the middle of forming a copper layer on a polyimide resin. Conventionally, a metal layer such as nickel is formed between the resin and the copper layer when the copper layer is formed on the polyimide resin in order to prevent the deterioration of the adhesion of the copper due to the thermal shock when the board is soldered. (For example, Japanese Patent Laid-Open No. 63-286580), the thickness required for the intermediate metal layer is required to be 0.15 μm or more for this purpose.

【0006】[0006]

【発明が解決しようとする課題】ところで、銅ポリイミ
ド基板をEPCやTABテープ用として使用する場合に
は、サブトラクティブ法、セミアディブ法、フルアディ
ティブ法等によって基板上に銅リードを形成する必要が
あり、例えば、銅リードの形成をザブトラクティブ法に
よって行なう場合には、ポリイミド樹脂フィルム表面に
無電解めっきにより銅層を設け、要すれば更にその上に
電気銅めっきを施し、この上にレジストを塗布し、所定
のマスクを密接させた後、露光、現像を行ない、次いで
エッチング処理を行なって銅リード部の形成を行なって
いる。
By the way, when a copper polyimide substrate is used for EPC or TAB tape, it is necessary to form a copper lead on the substrate by a subtractive method, a semi-additive method, a full-additive method or the like. , For example, when the copper lead is formed by the subtractive method, a copper layer is provided on the surface of the polyimide resin film by electroless plating, and if necessary, electrolytic copper plating is further applied thereon, and a resist is applied thereon. After coating and bringing a predetermined mask into close contact with each other, exposure and development are performed, and then etching processing is performed to form a copper lead portion.

【0007】この銅リード部の形成に際して、上記特開
昭63−286580号公報に見られるような方法によ
って下地にニッケル等の中間層を形成した銅ポリイミド
基板を用いると、銅と異種金属層とのエッチング速度が
異なるために、銅リード部の形状を所望の形状に形成さ
せようとすると、中間層の異種金属層がポリイミド樹脂
の表面に残留してリード間の絶縁抵抗を劣化させる原因
となり、また中間金属層を完全に溶解除去しようとする
と、銅層のオーバーエッチングのために銅リードは所望
の形状とはならない。また、銅リードの形成にセミアデ
ィティブ法を採用した場合においても、その製造法は上
記サブトラクティブ法とは若干異なるものの銅リードを
エッチングにより形成する手法は基本的に変わることが
ないので、上記と同様の理由により満足な結果が得られ
ない。
When forming the copper lead portion, if a copper polyimide substrate having an intermediate layer of nickel or the like formed on the underlayer by the method as disclosed in JP-A-63-286580 is used, copper and a dissimilar metal layer are formed. Because of the different etching rates, when trying to form the shape of the copper lead portion into a desired shape, the dissimilar metal layer of the intermediate layer remains on the surface of the polyimide resin and causes deterioration of the insulation resistance between the leads. Further, when the intermediate metal layer is completely dissolved and removed, the copper lead does not have a desired shape due to overetching of the copper layer. Further, even when the semi-additive method is used for forming the copper lead, the manufacturing method thereof is slightly different from the subtractive method, but the method of forming the copper lead by etching is basically the same as the above. For the same reason, satisfactory results cannot be obtained.

【0008】以上の問題点を排除するために、下地層と
してニッケル等の異種金属による中間を形成した銅ポリ
イミド基板を用いて、配線板等を作成する場合には、製
造工程中にニッケル等の異種金属層のみを選択的にエッ
チングする工程を付加することが必要となり、工程的に
繁雑になるばかりでなく経済的にも問題があった。
In order to eliminate the above problems, when a wiring board or the like is prepared by using a copper-polyimide substrate on which an intermediate layer of a different metal such as nickel is formed as an underlayer, nickel or the like is used during the manufacturing process. It is necessary to add a step of selectively etching only the dissimilar metal layer, which is not only complicated but also economically problematic.

【0009】本発明は、ポリイミド樹脂フィルム上に下
地金属層としてニッケル等の異種金属による中間層を形
成させた銅ポリイミド基板における上記したような問題
点を解決し、得られた基板を高温高湿下に長時間曝して
も殆ど銅とポリイミドの密着強度の低下をきたすことが
なく、該基板を利用してEPC、やTABテープを製造
するに際して、下地金属層の除去に特別なエッチング工
程を採用することなくして、リード部の形成が可能であ
るような銅ポリイミド基板の製造方法を提供することを
目的とするものである。
The present invention solves the above-mentioned problems in a copper polyimide substrate in which an intermediate layer of a different metal such as nickel is formed as a base metal layer on a polyimide resin film, and the obtained substrate is subjected to high temperature and high humidity. Adhesion strength between copper and polyimide hardly deteriorates even when exposed to a long time, and a special etching process is used to remove the underlying metal layer when manufacturing EPC or TAB tape using this substrate. It is an object of the present invention to provide a method for manufacturing a copper-polyimide substrate in which lead portions can be formed without doing so.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明は、ポリイミド樹脂フィルムの表面を親水性化
し、触媒を付与し、無電解めっきを施し、不活性雰囲気
中で熱処理を施し、その後、無電解銅めっき、もしくは
無電解銅めっきに引き続き無電解めっきを行なうことに
より銅ポリイミド基板を製造するに際し、ポリイミド樹
脂フィルム表面の親水化処理を、抱水ヒドラジンを1〜
15モル/l、アルカリ金属水酸化物を0.5〜5モル
/lの割合で含有する10〜50℃の水溶液を用いて行
ない、触媒付与後、該表面にニッケル、コバルトまたは
これら金属の合金のうちの何れか一種類の無電解めっき
皮膜を0.01〜0.1μmの厚みで、皮膜中の不純物
含有量が10重量%以下であるようにして施し、得られ
た基板を、該基板における最高到達温度が350〜54
0℃の温度範囲であって、且つ下記数式1によって求め
られる熱負荷係数Dが0.3〜3.5の範囲内になるよ
うにして不活性雰囲気中での熱処理を施すことを特徴と
するものである。
Means for Solving the Problems The present invention for solving the above-mentioned problems is to make the surface of a polyimide resin film hydrophilic, impart a catalyst, subject it to electroless plating, and subject it to heat treatment in an inert atmosphere, Thereafter, in producing a copper-polyimide substrate by performing electroless plating following electroless copper plating, or electroless copper plating, hydrophilic treatment of the polyimide resin film surface, hydrazine hydrate 1 ~
It is carried out using an aqueous solution of 15 mol / l and an alkali metal hydroxide of 0.5 to 5 mol / l at a temperature of 10 to 50 ° C. After applying a catalyst, nickel, cobalt or an alloy of these metals is applied to the surface. The electroless plating film of any one of the above is applied in a thickness of 0.01 to 0.1 μm so that the content of impurities in the film is 10 wt% or less. Maximum temperature reached at 350-54
It is characterized in that the heat treatment is performed in an inert atmosphere in a temperature range of 0 ° C. and a heat load coefficient D obtained by the following mathematical formula 1 is in a range of 0.3 to 3.5. It is a thing.

【0011】[0011]

【数2】 (但し、toは処理開始時間であり、tiは任意の時間
であり、Tiは任意の時間における基板自体の温度を示
す。) 本発明において親水性化処理の際に使用するアルカリ金
属はナトリウム、カリウム、リチウム等である。また、
ニッケル、コバルトまたはこれらの金属の合金の無電解
めっき皮膜中に含まれる不純物の種類は、この種の無電
解皮膜中に通常的に含まれる燐、ほう素の他特に限定は
ない。
[Equation 2] (However, to is a treatment start time, ti is an arbitrary time, and Ti is a temperature of the substrate itself at an arbitrary time.) In the present invention, the alkali metal used in the hydrophilization treatment is sodium, Examples include potassium and lithium. Also,
The type of impurities contained in the electroless plating film of nickel, cobalt or an alloy of these metals is not particularly limited, except for phosphorus and boron which are usually contained in the electroless film of this type.

【0012】[0012]

【作用】本発明において、銅とポリイミド樹脂フィルム
との界面にニッケルまたはその合金、またはコバルトま
たはその合金による中間層を設けたのは、該中間層が基
板高温加熱時における銅のポリイミド樹脂内部への拡散
を防止することができるからである。
In the present invention, the intermediate layer of nickel or its alloy, or cobalt or its alloy is provided at the interface between the copper and the polyimide resin film because the intermediate layer is inside the polyimide resin of copper when the substrate is heated at a high temperature. This is because it is possible to prevent the diffusion of

【0013】ポリイミド樹脂フィルムの親水性化処理液
として、抱水ヒドラジンとアルカリ金属水酸化物の混合
水溶液を使用するのは、抱水ヒドラジンによるイミド結
合の切断およびアルカリ金属水酸化物の加水分解によっ
て、ポリイミド樹脂フィルム表面が親水性化されやす
く、また無電解めっきの前処理として行なわれる触媒付
与に際しての触媒の吸収が容易になるからである。
The use of a mixed aqueous solution of hydrazine hydrate and alkali metal hydroxide as the hydrophilic treatment liquid for the polyimide resin film is carried out by cleavage of the imide bond by hydrazine hydrate and hydrolysis of the alkali metal hydroxide. This is because the surface of the polyimide resin film is easily hydrophilized, and the catalyst is easily absorbed when the catalyst is applied as a pretreatment for electroless plating.

【0014】抱水ヒドラジンの濃度が1モル/lより低
いとイミド結合の切断効果が十分でなく、また濃度が1
5モル/lより高くなると無電解めっき層とポリイミド
樹脂フィルムとの密着強度が低下するので1〜15モル
/lの範囲の濃度とするのがよい。また、アルカリ金属
水酸化物の濃度は、0.5モル/lより低いと加水分解
が不十分となり、5モル/lより高い場合には密着強度
を低下させるので0.5〜5モル/lの範囲とした。
When the concentration of hydrazine hydrate is lower than 1 mol / l, the effect of cleaving the imide bond is insufficient, and the concentration is 1
If it is higher than 5 mol / l, the adhesion strength between the electroless plating layer and the polyimide resin film will be lowered, so that the concentration is preferably in the range of 1 to 15 mol / l. When the concentration of the alkali metal hydroxide is lower than 0.5 mol / l, the hydrolysis is insufficient, and when it is higher than 5 mol / l, the adhesion strength is lowered. And the range.

【0015】親水性化の方法は通常のエッチング方法と
同様の方法でよく、必要とされる処理時間は、一概に特
定できないが通常は30秒〜5分程度で十分である。
The hydrophilization method may be the same as the ordinary etching method, and the required treatment time cannot be generally specified, but 30 seconds to 5 minutes is usually sufficient.

【0016】ニッケル、コバルト、またはこれらの金属
の合金による中間層の厚みを0.01〜0.1μmの範
囲に限定したのは、0.01μm以下では銅のポリイミ
ド樹脂中への拡散防止効果が不十分で、大気中などの酸
素を含有する雰囲気中で150℃以上の温度に長時間放
置した場合に銅の拡散により銅の密着強度が低下してし
まうからであり、0.1μm以上では基板をサブトラク
ティブ法、セミアディティブ法によってリード部形成を
行なう場合に、下地エッチング工程で中間層が残留し
て、配線間の絶縁抵抗が低下してしまうからである。
The thickness of the intermediate layer made of nickel, cobalt, or an alloy of these metals is limited to the range of 0.01 to 0.1 .mu.m because the effect of preventing copper from diffusing into the polyimide resin is 0.01 .mu.m or less. This is because the adhesion strength of copper is lowered due to the diffusion of copper when left for a long time at a temperature of 150 ° C. or higher in an atmosphere containing oxygen such as the air. This is because, when the lead portion is formed by the subtractive method or the semi-additive method, the intermediate layer remains in the base etching step and the insulation resistance between the wirings is reduced.

【0017】さらに、本発明ではニッケルまたはコバル
トまたはこれらの合金による中間層の不純物含有量を1
0重量%以下に抑制しているが、これはエッチング液工
程におけるニッケル、コバルト等の溶解性の低下を防止
するためであって、不純物含有量が10重量%を越える
と中間層の残留によって、配線間の絶縁抵抗が低下して
しまう問題を生ずる。
Further, according to the present invention, the impurity content of the intermediate layer made of nickel, cobalt or an alloy thereof is set to 1
The content is suppressed to 0% by weight or less, but this is to prevent the decrease in the solubility of nickel, cobalt, etc. in the etching solution process, and when the impurity content exceeds 10% by weight, the intermediate layer remains, This causes a problem that the insulation resistance between the wirings decreases.

【0018】ニッケル、またはコバルトまたはこれらの
合金による中間層を形成した後、熱処理を施すのは、エ
ッチング処理により親水性化されたポリイミド樹脂フィ
ルムを疎水性化し、高温高湿下中における密着強度の低
下を防止するためである。この際に基板の最高到達温度
を350℃以下に定めたのは後述するような熱負荷係数
設定のための経験則が成立せず、高温高湿下での密着強
度の低下を十分防止することが出来ないからである。
After forming the intermediate layer of nickel, cobalt, or an alloy thereof, heat treatment is performed to make the polyimide resin film hydrophilic by etching treatment hydrophobic so that the adhesion strength under high temperature and high humidity is increased. This is to prevent the decrease. At this time, the maximum attainable temperature of the substrate is set to 350 ° C. or less because the empirical rule for setting the heat load coefficient as described later does not hold, and the decrease of the adhesion strength under high temperature and high humidity is sufficiently prevented. Because you can't.

【0019】本発明における熱負荷係数は温度と時間の
係数であり、前記した数式1により求められるものであ
る。この式は熱処理装置が異なる場合でも適用できるよ
うに経験的に定式化したいわば経験式である。この熱負
荷係数が0.3よりも小さい値で熱処理を施した場合に
は、高温高湿下での密着強度が低下してしまい、またこ
の値が3.5以上になるとポリイミド樹脂フィルムの機
械的強度が著しく低下してしまうので何れの場合も好ま
しくない。
The heat load coefficient in the present invention is a coefficient of temperature and time, and is obtained by the above-mentioned formula 1. This formula is an empirical formula so that it can be empirically formulated so that it can be applied even when the heat treatment apparatus is different. When this heat load coefficient is less than 0.3, the heat treatment will reduce the adhesion strength under high temperature and high humidity. In any case, it is not preferable because the dynamic strength is remarkably lowered.

【0020】なお、本発明はリード形成金属として銅以
外の金属を用いる場合にも有効であり、その場合におけ
る諸条件は適宜選択すればよい。
The present invention is also effective when a metal other than copper is used as the lead forming metal, and the conditions in that case may be appropriately selected.

【0021】[0021]

【実施例】以下に本発明の実施例について説明する。 実施例1 30cm角の東レ・デュポン社製Kapton 200
H型のポリイミド樹脂フィルムを5モル/lの抱水ヒド
ラジンと3モル/lの水酸化ナトリウムを含有する25
℃の水溶液中に60秒間浸漬してポリイミド樹脂フィル
ム表面を親水性にした後、片側をマスキングして常法に
よる触媒活性化処理を施し、表1に示す条件でニッケル
の無電解めっき処理を行なった。
EXAMPLES Examples of the present invention will be described below. Example 1 30 cm square Kapton 200 manufactured by Toray DuPont
An H-type polyimide resin film containing 5 mol / l hydrazine hydrate and 3 mol / l sodium hydroxide 25
After dipping in a 60 ° C. aqueous solution for 60 seconds to make the surface of the polyimide resin film hydrophilic, masking one side and subjecting it to catalyst activation treatment by a conventional method, and performing electroless plating of nickel under the conditions shown in Table 1. It was

【0022】[0022]

【表1】 (めっき液組成) NiCl・6HO : 0.1モル/l NaHPO・HO : 0.1モル/l くえん酸ナトリウム : 0.2モル/l pH : 9 (めっき条件) 温 度 : 60℃ 時 間 : 30秒 得られた無電解ニッケルめっき皮膜の厚みは0.05μ
mであった。また不純物である燐の含有量は7重量%で
あった。
[Table 1] (Plating solution composition) NiCl 2 .6H 2 O: 0.1 mol / l NaH 2 PO 2 .H 2 O: 0.1 mol / l Sodium citrate: 0.2 mol / l pH: 9 (Plating conditions) Temperature: 60 ° C Time: 30 seconds The thickness of the obtained electroless nickel plating film is 0.05μ.
It was m. The content of phosphorus as an impurity was 7% by weight.

【0023】その後、光洋リンドバーク社製の熱風循環
式加熱炉を用い、窒素ガス雰囲気中で9℃/minの昇
温速度で400℃まで加熱し、その後1.5時間同温度
に保持した後、2.5℃/minの降温速度で冷却し
た。このときの、熱負荷係数は0.7であった。その
後、該基板を表2の条件で無電解銅めっき処理して、
0.4μmのめっき皮膜を得た後、更に表3に示す条件
で電解銅めっきを施した。
Then, using a hot-air circulation type heating furnace manufactured by Koyo Lindbergh, the temperature was raised to 400 ° C. at a temperature rising rate of 9 ° C./min in a nitrogen gas atmosphere, and then kept at the same temperature for 1.5 hours. It cooled at the temperature-fall rate of 2.5 degreeC / min. The heat load coefficient at this time was 0.7. Then, the substrate is subjected to electroless copper plating under the conditions shown in Table 2,
After obtaining a 0.4 μm plated film, electrolytic copper plating was further performed under the conditions shown in Table 3.

【0024】[0024]

【表2】 (めっき液組成) CuSO・5HO : 10g/l EDTA・2Na : 30g/l 37%HCHO : 5g/l ジピリジル : 20mg/l PEG#1000 : 0.5g/l (めっき条件) 温 度 : 65℃ 攪 拌 : 空気攪拌 時 間 : 10分[Table 2] (Plating solution composition) CuSO 4 .5H 2 O: 10 g / l EDTA.2Na: 30 g / l 37% HCHO: 5 g / l dipyridyl: 20 mg / l PEG # 1000: 0.5 g / l (plating conditions ) Temperature: 65 ° C Stirring: Air stirring time: 10 minutes

【0025】[0025]

【表3】 (めっき液組成) CuSO・5HO : 120g/l HSO : 150g/l (電解条件) 温 度 : 25℃ 陰極電流密度 : 2A/dm 攪 拌 : 空気攪拌 時 間 : 90分 得られた銅皮膜の厚みは35μmであった。このように
して得られたニッケル中間層を有する銅ポリイミド基板
の銅皮膜上にアルキル樹脂系のフォトレジストを10μ
mの厚さに均一に塗布し、70℃で30分間焼成した。
その後配線幅が200μmになるように基板上にマスキ
ングを施し、フォトレジスト層に300mj/cmの紫
外線を照射した後、レジストの現像を行なった。その
後、露出した銅面を表3の条件でエッチング処理を施し
銅の溶解を行なった。
[Table 3] (Plating solution composition) CuSO 4 .5H 2 O: 120 g / l H 2 SO 4 : 150 g / l (electrolysis conditions) Temperature: 25 ° C. Cathode current density: 2 A / dm 2 Stirring: When stirring air Interval: 90 minutes The thickness of the obtained copper film was 35 μm. On the copper film of the copper polyimide substrate having the nickel intermediate layer thus obtained, 10 μl of an alkyl resin type photoresist is applied.
It was evenly applied to a thickness of m and baked at 70 ° C. for 30 minutes.
After that, masking was performed on the substrate so that the wiring width was 200 μm, the photoresist layer was irradiated with ultraviolet rays of 300 mj / cm, and then the resist was developed. Then, the exposed copper surface was subjected to etching treatment under the conditions shown in Table 3 to dissolve the copper.

【0026】[0026]

【表4】 (エッチング液組成) 30%HO : 100g/l HSO : 150g/l (処理条件) 温 度 : 25℃ 時 間 : 4分 攪 拌 : 揺動攪拌 その後4wt%のナトリウム水溶液を用いて60℃でレ
ジスト層の剥離除去を行ない、配線間の残留ニッケル層
の有無の観察および絶縁抵抗値の測定を行なった。その
結果配線間にはニッケル層の残留は全く認められず、ま
た絶縁抵抗は1×1010Ω(IPC−TM−650
2.6.3.2.C−24/23/50法による)であ
り、良好な結果が得られた。また銅とポリイミド樹脂フ
ィルムとの間の密着強度を測定したところ、1400g
/cmと高い値が得られた。さらにこの基板を大気中で
150℃の雰囲気中に10000時間放置した後、再び
密着強度を測定したところ1200g/cmとその値は
殆ど低下していなかった。また、85℃、85%の高温
高湿雰囲気中で1000時間放置した後、測定を行なっ
たところ1000g/cmであり非常に高い値が得られ
た。
(Table 4) (Etching liquid composition) 30% H 2 O: 100 g / l H 2 SO 4 : 150 g / l (Treatment conditions) Temperature: 25 ° C. Time: 4 minutes Stirring: Shaking stirring After 4 wt% The resist layer was peeled off at 60 ° C. using an aqueous sodium solution, and the presence or absence of a residual nickel layer between wirings was observed and the insulation resistance value was measured. As a result, no nickel layer remained between the wirings, and the insulation resistance was 1 × 10 10 Ω (IPC-TM-650).
2.6.3.2. C-24 / 23/50 method), and good results were obtained. Moreover, when the adhesion strength between the copper and the polyimide resin film was measured, it was 1400 g.
A high value of / cm was obtained. Further, after this substrate was left in the atmosphere at 150 ° C. for 10,000 hours, the adhesion strength was measured again to 1200 g / cm, which was almost no decrease. Further, after leaving it for 1000 hours in a high-temperature and high-humidity atmosphere of 85 ° C. and 85%, measurement was carried out, and it was 1000 g / cm 2, which was a very high value.

【0027】この結果は、本発明の方法で得られた銅ポ
リイミド基板の、厚み0.05μmで不純物含有量7重
量%のニッケル中間層を持つ銅ポリイミド基板を熱負荷
係数0.7で400℃の温度に熱処理した場合には、中
間層溶解のための特別のエッチング処理を行なうことな
く、従来から行なわれているエッチング処理法を適用し
てエッチングを行なっても何等ニッケル層の残留がな
く、また、本発明によって得られた銅ポリイミド基板か
ら作られた配線板は高温環境、または高温高湿環境に長
時間放置下後でも高い密着強度を示しており、プリント
配線板として高い信頼度を有するものであることが判か
った。 実施例2 30cm角の東レ・デュポン社製Kapton 200
H型のポリイミド樹脂フィルムを5モル/lの抱水ヒド
ラジンと3モル/lの水酸化ナトリウムを含有する25
℃の水溶液中に60秒間浸漬してポリイミド樹脂フィル
ム表面を親水性にした後、片側をマスキングして常法に
よる触媒活性化処理を施し、表5に示す条件でコバルト
の無電解めっき処理を行なった。
This result shows that the copper polyimide substrate obtained by the method of the present invention is a copper polyimide substrate having a nickel intermediate layer having a thickness of 0.05 μm and an impurity content of 7% by weight and a thermal load coefficient of 0.7 at 400 ° C. When heat-treated at the temperature of, the nickel layer does not remain even if etching is performed by applying the conventional etching treatment method without performing a special etching treatment for melting the intermediate layer. Moreover, the wiring board made from the copper polyimide substrate obtained by the present invention shows high adhesion strength even after being left for a long time in a high temperature environment or a high temperature and high humidity environment, and has high reliability as a printed wiring board. It turned out to be a thing. Example 2 30 cm square Kapton 200 manufactured by Toray DuPont
An H-type polyimide resin film containing 5 mol / l hydrazine hydrate and 3 mol / l sodium hydroxide 25
After dipping in a 60 ° C. aqueous solution for 60 seconds to make the surface of the polyimide resin film hydrophilic, masking one side and subjecting it to catalyst activation treatment by a conventional method, and performing electroless plating of cobalt under the conditions shown in Table 5. It was

【0028】[0028]

【表5】 (めっき液組成) CoSO・5HO : 0.05モル/l NaHPO・HO : 0.2モル/l くえん酸ナトリウム : 0.2モル/l pH : 10 (めっき条件) 温 度 : 60℃ 時 間 : 2分 得られた無電解コバルトめっき皮膜の厚みは0.05μ
mであった。また不純物である燐の含有量は3重量%で
あった。
[Table 5] (Plating solution composition) CoSO 4 .5H 2 O: 0.05 mol / l NaH 2 PO 2 .H 2 O: 0.2 mol / l Sodium citrate: 0.2 mol / l pH: 10 (Plating conditions) Temperature: 60 ° C Time: 2 minutes Thickness of the obtained electroless cobalt plating film is 0.05μ
It was m. The content of phosphorus as an impurity was 3% by weight.

【0029】その後、光洋リンドバーク社製の熱風循環
式加熱炉を用い、窒素ガス雰囲気中で9℃/minの昇
温速度で420℃まで加熱し、その後1.5時間同温度
に保持した後、2.5℃/minの降温速度で冷却し
た。このときの、熱負荷係数は3.1であった。
Then, using a hot air circulation type heating furnace manufactured by Koyo Lindbergh, the mixture was heated to 420 ° C. at a temperature rising rate of 9 ° C./min in a nitrogen gas atmosphere, and then kept at the same temperature for 1.5 hours. It cooled at the temperature-fall rate of 2.5 degreeC / min. The heat load coefficient at this time was 3.1.

【0030】以後は実施例1と同様の手順で銅ポリイミ
ド基板を作成し、配線を形成し、得られた配線板につい
て、配線間の残留コバルト層の有無の観察および絶縁抵
抗値の測定を行なった。その結果、配線間にはコバルト
層の残留は全く認められず、また絶縁抵抗は1×10
10Ω(IPC−TM−650 2.6.3.2.C−
24/23/50法による)であり、良好な結果が得ら
れた。また、銅とポリイミド樹脂フィルムとの間の密着
強度を測定したところ、1250g/cmと高い値が得
られた。さらにこの基板を大気中で150℃の雰囲気中
に1000時間放置した後、再び密着強度を測定したと
ころ1050g/cmとその値は殆ど低下していなかっ
た。また、85℃、85%の高温高湿雰囲気中で100
0時間放置した後測定を行なったところ950g/cm
であり非常に高い値が得られた。
Thereafter, a copper-polyimide substrate was prepared in the same procedure as in Example 1, wirings were formed, and the obtained wiring board was observed for the presence or absence of a residual cobalt layer between the wirings and the insulation resistance value was measured. It was As a result, no cobalt layer remained between the wirings, and the insulation resistance was 1 × 10.
10 Ω (IPC-TM-650 2.6.3.2.C-
24/23/50 method), and good results were obtained. Further, when the adhesion strength between the copper and the polyimide resin film was measured, a high value of 1250 g / cm was obtained. Further, after the substrate was left in the atmosphere at 150 ° C. for 1000 hours, the adhesion strength was measured again and found to be 1050 g / cm, which was almost no decrease. In addition, in a high temperature and high humidity atmosphere of 85 ° C and 85%, 100
After standing for 0 hour, measurement was performed and found to be 950 g / cm
And a very high value was obtained.

【0031】この結果は、本発明の方法で得られた銅ポ
リイミド基板の、厚み0.05μmで不純物含有量3重
量%のコバルト中間層を持つ銅ポリイミド基板を熱負荷
係数3.1で420℃の温度に熱処理した場合には、コ
バルト中間層溶解のための特別のエッチング処理を行な
うことなく、従来から行なわれているエッチング処理法
を適用してエッチングを行なっても何等コバルト層の残
留がなく、また、本発明によって得られた銅ポリイミド
基板から作られた配線板は高温環境、または高温高湿環
境に長時間放置下後でも高い密着強度を示しており、プ
リント配線板として高い信頼度を有するものであること
が判かった。 実施例3 ポリイミド樹脂フィルムの両面にニッケルの無電解めっ
きを施した以外は実施例2と同様の手順で銅ポリイミド
基板を作成し、配線を形成し、得られた配線板につい
て、配線間の残留ニッケル層の有無の観察および絶縁抵
抗値の測定を行なった。その結果、両面とも配線間には
ニッケル層の残留は全く認められず、また絶縁抵抗は、
それぞれ1×1010Ωおよび2×1010Ω(IPC
−TM−650 2.6.3.2.C−24/23/5
0法による)であり、良好な結果が得られた。
This result shows that the copper polyimide substrate obtained by the method of the present invention is a copper polyimide substrate having a cobalt intermediate layer having a thickness of 0.05 μm and an impurity content of 3% by weight and a thermal load coefficient of 3.1 at 420 ° C. When the heat treatment is performed at the above temperature, no special etching treatment for melting the cobalt intermediate layer is performed, and even if etching is performed by applying the conventional etching treatment method, no cobalt layer remains. Further, the wiring board made from the copper polyimide substrate obtained by the present invention shows high adhesion strength even after being left in a high temperature environment or a high temperature and high humidity environment for a long time, and thus has high reliability as a printed wiring board. It was found to have. Example 3 A copper polyimide substrate was prepared and wiring was formed in the same procedure as in Example 2 except that both surfaces of the polyimide resin film were subjected to electroless plating of nickel, and wiring was formed. The presence or absence of the nickel layer was observed and the insulation resistance value was measured. As a result, no nickel layer remained between the wires on both sides, and the insulation resistance was
1 × 10 10 Ω and 2 × 10 10 Ω (IPC
-TM-650 2.6.3.2. C-24 / 23/5
According to method 0), good results were obtained.

【0032】また、銅とポリイミド樹脂フィルムとの間
の密着強度を測定したところ、それぞれ1300g/c
mおよび950g/cmであって、両面ともかなり高い
値であった。さらに、この基板を大気中で150℃の雰
囲気中に1000時間放置した後、再び密着強度を測定
したところ、その値はそれぞれ1050g/cmおよび
800g/cmであり、密着強度は殆ど低下していなか
った。また、85℃、85%の高温高湿雰囲気中で10
00時間放置した後測定を行なったところ、密着強度は
それぞれ1000g/cmおよび800g/cmであ
り、実用上全く問題のない値であった。
Further, the adhesion strength between the copper and the polyimide resin film was measured and found to be 1300 g / c, respectively.
m and 950 g / cm, which were considerably high values on both sides. Furthermore, when this substrate was left in the atmosphere at 150 ° C. for 1000 hours, the adhesion strength was measured again. The values were 1050 g / cm and 800 g / cm, respectively, and the adhesion strength did not decrease. It was In addition, at a high temperature and high humidity of 85 ° C and 85%, 10
When it was measured after being left for 00 hours, the adhesion strength was 1000 g / cm and 800 g / cm, respectively, which was a value having no problem in practical use.

【0033】この結果は、本発明の方法で得られた銅ポ
リイミド基板の、厚み0.05μmで不純物含有量3重
量%のニッケル中間層を持つ銅ポリイミド基板を熱負荷
係数3.1で420℃の温度に熱処理した場合には、ニ
ッケル中間層溶解のための特別のエッチング処理を行な
うことなく、従来から行なわれているエッチング処理法
を適用してエッチングを行なっても何等コバルト層の残
留がなく、また、本発明によって得られた銅ポリイミド
基板から作られた配線板は高温環境、または高温高湿環
境に長時間放置下した後でも高い密着強度を示してお
り、プリント配線板として高い信頼度を有するものであ
ることが判かった。 実施例4 ニッケルの無電解めっき後、遠赤外線放射炉を用い窒素
雰囲気中で熱負荷係数が0.7になるように、昇温速度
40℃/minで480℃まで加熱し、30秒間保持し
た後、降温速度160℃/minで冷却した以外は実施
例1と同様な手順で銅ポリイミド基盤を作成し、配線を
形成し、得られた配線板について配線間の残留ニッケル
層の有無の観察および絶縁抵抗値の測定を行なった。そ
の結果、配線間にはニッケル層の残留は全く認められ
ず、また、絶縁抵抗は1×1010Ω(IPC−TM−
650 2.6.3.2.C−24/23/50法によ
る)であり、良好な結果が得られた。また、銅とポリイ
ミド樹脂フィルムとの間の密着強度を測定したところ、
1400g/cmと非常に高い値が得られた。さらにこ
の基板を大気中で150℃の雰囲気中に1000時間放
置した後、再び密着強度を測定したところ1250g/
cmとその値は殆ど低下していなかった。また、85
℃、85%の高温高湿雰囲気中で1000時間放置した
後測定を行なったところ、密着強度は1100g/cm
であり、極めて良好な値が得られた。
This result shows that the copper polyimide substrate obtained by the method of the present invention is a copper polyimide substrate having a nickel intermediate layer having a thickness of 0.05 μm and an impurity content of 3% by weight, and a thermal load coefficient of 3.1 at 420 ° C. When the heat treatment is performed at the above temperature, no special etching treatment for melting the nickel intermediate layer is performed, and no cobalt layer remains even if etching is performed by applying the conventional etching treatment method. Further, the wiring board made from the copper polyimide substrate obtained by the present invention shows high adhesion strength even after being left in a high temperature environment or a high temperature and high humidity environment for a long time, and has high reliability as a printed wiring board. Was found to have. Example 4 After electroless plating of nickel, the temperature was raised to 480 ° C. at a temperature rising rate of 40 ° C./min in a nitrogen atmosphere using a far-infrared radiation furnace so that the heat load coefficient was 0.7, and held for 30 seconds. After that, a copper-polyimide substrate was prepared in the same procedure as in Example 1 except that the temperature was lowered at a rate of 160 ° C./min, wiring was formed, and the obtained wiring board was observed for the presence or absence of a residual nickel layer between the wiring and The insulation resistance value was measured. As a result, no nickel layer remained between the wirings, and the insulation resistance was 1 × 10 10 Ω (IPC-TM-
650 2.6.3.2. C-24 / 23/50 method), and good results were obtained. Also, when measuring the adhesion strength between the copper and the polyimide resin film,
A very high value of 1400 g / cm was obtained. Further, after the substrate was left in the atmosphere at 150 ° C. for 1000 hours, the adhesion strength was measured again and found to be 1250 g /
The cm and the value were hardly reduced. Also, 85
The adhesion strength was 1100 g / cm when measured after leaving it for 1000 hours in a high temperature and high humidity atmosphere of 85 ° C.
And an extremely good value was obtained.

【0034】この結果は、本発明の方法で得られた銅ポ
リイミド基板の、厚み0.05μmで不純物含有量7重
量%のニッケル中間層を持つ銅ポリイミド基板を熱負荷
係数0.7で480℃の温度に熱処理した場合には、ニ
ッケル中間層溶解のための特別のエッチング処理を行な
うことなく、従来から行なわれているエッチング処理法
を適用してエッチングを行なっても何等ニッケル層の残
留がなく、また、本発明によって得られた銅ポリイミド
基板から作られた配線板は高温環境、または高温高湿環
境に長時間放置下後でも高い密着強度を示しており、プ
リント配線板として高い信頼度を有するものであること
が判かった。 比較例1 30cm角の東レ・デュポン社製Kapton 200
H型のポリイミド樹脂フィルムを0.5モル/lの抱水
ヒドラジンと0.3モル/lの水酸化ナトリウムを含有
する25℃の水溶液中に2分間浸漬してポリイミド樹脂
フィルム表面を親水性にした後、片側をマスキングして
常法による触媒活性化処理を施し、実施例1と同様の条
件でニッケルの無電解めっき処理を行なった。その結
果、ニッケルの析出が不均一となり、爾後の工程を行な
うことができなかった。
This result shows that the copper polyimide substrate obtained by the method of the present invention is a copper polyimide substrate having a nickel intermediate layer with a thickness of 0.05 μm and an impurity content of 7% by weight at a thermal load coefficient of 0.7 at 480 ° C. When the heat treatment is performed at the above temperature, there is no residual nickel layer even if the conventional etching method is applied without performing any special etching treatment for melting the nickel intermediate layer. Further, the wiring board made from the copper polyimide substrate obtained by the present invention shows high adhesion strength even after being left in a high temperature environment or a high temperature and high humidity environment for a long time, and thus has high reliability as a printed wiring board. It was found to have. Comparative Example 1 30 cm square Kapton 200 manufactured by Toray DuPont
The H-type polyimide resin film is immersed in an aqueous solution containing 0.5 mol / l hydrazine hydrate and 0.3 mol / l sodium hydroxide at 25 ° C. for 2 minutes to make the surface of the polyimide resin film hydrophilic. After that, one side was masked and a catalyst activation treatment was carried out by a conventional method, and a nickel electroless plating treatment was carried out under the same conditions as in Example 1. As a result, the nickel deposition became non-uniform and the subsequent steps could not be performed.

【0035】この結果は、抱水ヒドラジンおよびアルカ
リ金属水酸化物濃度が本発明に定める範囲以下の場合、
無電解めっき皮膜の形成が不十分となることを示してい
る。 比較例2 30cm角の東レ・デュポン社製Kapton 200
H型のポリイミド樹脂フィルムを5モル/lの抱水ヒド
ラジンと3モル/lの水酸化ナトリウムを含有する25
℃の水溶液中に60秒間浸漬してポリイミド樹脂フィル
ム表面を親水性にした後、片側をマスキングして常法に
よる触媒活性化処理を施し、表6に示す条件でニッケル
の無電解めっき処理を行なった。
This result shows that when the hydrazine hydrate and alkali metal hydroxide concentrations are below the range specified in the present invention,
It shows that the formation of the electroless plating film becomes insufficient. Comparative Example 2 30 cm square Kapton 200 manufactured by Toray DuPont
An H-type polyimide resin film containing 5 mol / l hydrazine hydrate and 3 mol / l sodium hydroxide 25
After dipping in a 60 ° C. aqueous solution for 60 seconds to make the surface of the polyimide resin film hydrophilic, masking one side and subjecting it to catalytic activation treatment by a conventional method, and performing electroless plating of nickel under the conditions shown in Table 6. It was

【0036】[0036]

【表6】 (めっき液組成) NiCl・6HO : 0.1モル/l NaHPO・HO : 0.1モル/l くえん酸ナトリウム : 0.1モル/l pH : 5.6 (めっき条件) 温 度 : 60℃ 時 間 : 1分 得られた無電解ニッケルめっき皮膜の厚みは0.03μ
mであった。また不純物である燐の含有量は12重量%
であった。以後は実施例1と同様の手順で銅ポリイミド
基板を作成し、配線を形成し、得られた配線板について
配線間の残留ニッケル層の有無の観察および絶縁抵抗値
の測定を行なった。その結果、配線間にはニッケル層の
残留が認められ、また、絶縁抵抗は4×10Ω(IP
C−TM−650 2.6.3.2.C−24/23/
50法による)であり、絶縁抵抗値は大幅に低下した。
Table 6 (Composition of the plating solution) NiCl 2 · 6H 2 O: 0.1 mol / l NaH 2 PO 2 · H 2 O: 0.1 mol / l sodium citrate: 0.1 mol / l pH: 5 .6 (Plating conditions) Temperature: 60 ° C Time: 1 minute The thickness of the obtained electroless nickel plating film is 0.03μ.
It was m. The content of phosphorus as an impurity is 12% by weight.
Met. After that, a copper-polyimide substrate was prepared in the same procedure as in Example 1, wirings were formed, and the obtained wiring board was observed for the presence or absence of a residual nickel layer between the wirings and the insulation resistance value was measured. As a result, a nickel layer remained between the wirings, and the insulation resistance was 4 × 10 6 Ω (IP
C-TM-650 2.6.3.2. C-24 / 23 /
50 method), and the insulation resistance value was significantly reduced.

【0037】この結果は、ポリイミド樹脂フィルムの一
面に形成した無電解ニッケルめっき皮膜の厚みが0.1
μm以下であっても、不純物含有量が10重量%以上で
ある場合には、銅ポリイミド基板はエッチング工程にお
いてニッケル層が残留し、絶縁抵抗値は低下してしまう
ので配線板材料として信頼性が大幅に低下することが判
かる。 比較例3 30cm角の東レ・デュポン社製Kapton 200
H型のポリイミド樹脂 フィルムを5モル/lの抱水ヒドラジンと3モル/lの
水酸化ナトリウムを含有する25℃の水溶液中に30秒
間浸漬してポリイミド樹脂フィルム表面を親水性にした
後、片側をマスキングして常法による触媒活性化処理を
施し、表7に示す条件でニッケルの無電解めっき処理を
行なった。
This result shows that the thickness of the electroless nickel plating film formed on one surface of the polyimide resin film was 0.1.
Even if the thickness is less than or equal to μm, if the impurity content is 10% by weight or more, the nickel layer remains in the copper polyimide substrate in the etching step, and the insulation resistance value decreases, so that the reliability of the wiring board material is low. It turns out that it will drop significantly. Comparative Example 3 30 cm square Kapton 200 manufactured by Toray DuPont
H type polyimide resin film was immersed in an aqueous solution containing 5 mol / l hydrazine hydrate and 3 mol / l sodium hydroxide at 25 ° C. for 30 seconds to make the polyimide resin film surface hydrophilic, Was subjected to a catalyst activation treatment by a conventional method, and nickel electroless plating treatment was performed under the conditions shown in Table 7.

【0038】[0038]

【表7】 (めっき液組成) NiCl・6HO : 0.1モル/l NaHPO・HO : 0.1モル/l ピロりん酸ナトリウム : 0.2モル/l pH : 10 (めっき条件) 温 度 : 60℃ 時 間 : 5分 得られた無電解ニッケルめっき皮膜の厚みは0.15μ
mであった。また不純物である燐の含有量は3.4重量
%であった。以後は実施例1と同様の手順で銅ポリイミ
ド基板を作成し、配線を形成し、得られた配線板につい
て配線間の残留ニッケル層の有無の観察および絶縁抵抗
値の測定を行なった。その結果、配線間にはニッケル層
の残留が認められ、また、絶縁抵抗は4×10Ω(I
PC−TM−650 2.6.3.2.C−24/23
/50法による)であり、絶縁抵抗値は大幅に低下し
た。
TABLE 7 (Composition of the plating solution) NiCl 2 · 6H 2 O: 0.1 mol / l NaH 2 PO 2 · H 2 O: 0.1 mol / l pyrophosphoric sodium phosphate: 0.2 mol / l pH: 10 (Plating conditions) Temperature: 60 ° C Time: 5 minutes Thickness of the obtained electroless nickel plating film is 0.15μ.
It was m. The content of phosphorus as an impurity was 3.4% by weight. After that, a copper-polyimide substrate was prepared in the same procedure as in Example 1, wirings were formed, and the obtained wiring board was observed for the presence or absence of a residual nickel layer between the wirings and the insulation resistance value was measured. As a result, a nickel layer remained between the wirings, and the insulation resistance was 4 × 10 6 Ω (I
PC-TM-650 2.6.3.2. C-24 / 23
/ 50 method), and the insulation resistance value was significantly reduced.

【0039】この結果は、ポリイミド樹脂フィルム上に
形成した無電解ニッケルめっき皮膜の厚みが0.1μm
より大きい場合、不純物含有量が3.4重量%と10重
量%以下であっても、銅ポリイミド基板はエッチング工
程においてニッケル層が残留し、絶縁抵抗値が低下して
しまうので配線板材料として信頼性が大幅に低下するこ
とが判かる。 実施例4 30cm角の東レ・デュポン社製Kapton 200
H型のポリイミド樹脂フィルムを5モル/lの抱水ヒド
ラジンと3モル/lの水酸化ナトリウムを含有する25
℃の水溶液中に60秒間浸漬してポリイミド樹脂フィル
ム表面を親水性にした後、片側をマスキングして常法に
よる触媒活性化処理を施し、表8に示す条件でニッケル
の無電解めっき処理を行なった。
As a result, the thickness of the electroless nickel plating film formed on the polyimide resin film was 0.1 μm.
If the content is larger, the nickel layer remains in the copper polyimide substrate during the etching process and the insulation resistance value decreases, even if the impurity content is 3.4% by weight or 10% by weight or less. It can be seen that the sex is significantly reduced. Example 4 30 cm square Kapton 200 manufactured by Toray DuPont
An H-type polyimide resin film containing 5 mol / l hydrazine hydrate and 3 mol / l sodium hydroxide 25
After dipping in a 60 ° C. aqueous solution for 60 seconds to make the surface of the polyimide resin film hydrophilic, masking one side and subjecting it to catalyst activation treatment by a conventional method, and performing electroless plating of nickel under the conditions shown in Table 8. It was

【0040】[0040]

【表8】 (めっき液組成) NiCl・6HO : 0.1モル/l NaHPO・HO : 0.1モル/l ピロりん酸ナトリウム : 0.2モル/l pH : 10 (めっき条件) 温 度 : 60℃ 時 間 : 10秒 得られた無電解ニッケルめっき皮膜の厚みは0.005
μmであった。また不純物である燐の含有量は3.4重
量%であった。以後は実施例1と同様の手順で銅ポリイ
ミド基板を作成し、配線を形成し、得られた配線板につ
いて配線間の残留ニッケル層の有無の観察および絶縁抵
抗値の測定を行なった。その結果、配線間にはニッケル
層の残留は認められず、また、絶縁抵抗は4×1010
Ω(IPC−TM−650 2.6.3.2.C−24
/23/50法による)であり、絶縁抵抗値についても
良好な結果が得られた。また、この基板の銅とポリイミ
ド樹脂フィルムとの密着強度を測定したところ、125
0g/cmとこれまた良好な結果が得られた。しかし、
この基板を大気中で150℃の雰囲気中に1000時間
放置した場合には、密着強度が1250g/cmから1
00g/cmへと大幅に低下してしまった。また、85
℃、85%の高温高湿環境下に1000時間放置した場
合においても150g/cmへと密着強度が低下してし
まった。
[Table 8] (Plating solution composition) NiCl 2 .6H 2 O: 0.1 mol / l NaH 2 PO 2 .H 2 O: 0.1 mol / l Sodium pyrophosphate: 0.2 mol / l pH: 10 (Plating conditions) Temperature: 60 ° C. Time: 10 seconds The thickness of the obtained electroless nickel plating film is 0.005.
was μm. The content of phosphorus as an impurity was 3.4% by weight. After that, a copper-polyimide substrate was prepared in the same procedure as in Example 1, wirings were formed, and the obtained wiring board was observed for the presence or absence of a residual nickel layer between the wirings and the insulation resistance value was measured. As a result, no nickel layer remained between the wirings, and the insulation resistance was 4 × 10 10.
Ω (IPC-TM-650 2.6.3.2.C-24
/ 23/50 method), and good results were also obtained for the insulation resistance value. Further, when the adhesion strength between the copper of this substrate and the polyimide resin film was measured, it was 125
A good result of 0 g / cm was also obtained. But,
When this substrate is left in the atmosphere at 150 ° C. for 1000 hours, the adhesion strength is 1250 g / cm to 1
It has dropped significantly to 00 g / cm. Also, 85
Even when left in a high temperature and high humidity environment of 85 ° C. for 1000 hours, the adhesion strength decreased to 150 g / cm.

【0041】この結果は、ポリイミド樹脂フィルム上に
形成した無電解ニッケルめっき皮膜の厚みが0.01μ
mより小さい場合、不純物含有量が10重量%以下であ
っても、高温環境下、あるいは高温高湿環境下に長時間
放置した場合には銅とポリイミド樹脂フィルムとの間の
密着強度が著しく低下してしまうので配線板材料として
信頼性が劣ることが判かる。 実施例5 熱処理時の熱負荷係数が0.2で、最高到達温度が38
0℃とした以外は実施例1と同様の手順で銅ポリイミド
基板を作成し、この基板における銅とポリイミド樹脂フ
ィルム間の密着強度を測定したところ1000g/cm
であったが、これを85℃、85%の高温高湿環境下に
1000時間放置した後密着強度を測定したところ、5
0g/cmへと大幅にその値が低下してしまった。
This result shows that the thickness of the electroless nickel plating film formed on the polyimide resin film is 0.01 μm.
If it is smaller than m, even if the impurity content is 10% by weight or less, the adhesion strength between the copper and the polyimide resin film remarkably decreases when left in a high temperature environment or a high temperature and high humidity environment for a long time. Therefore, it is understood that the reliability of the wiring board material is poor. Example 5 The heat load coefficient during heat treatment was 0.2, and the maximum temperature reached was 38.
A copper-polyimide substrate was prepared in the same procedure as in Example 1 except that the temperature was 0 ° C., and the adhesion strength between copper and the polyimide resin film on this substrate was measured to be 1000 g / cm 2.
However, the adhesive strength was measured after leaving it for 1000 hours in a high temperature and high humidity environment of 85 ° C. and 85%.
The value has dropped significantly to 0 g / cm.

【0042】この結果は、熱処理時の熱負荷係数が本発
明に定めた値よりも低い0.2の場合には、得られた基
板を高温高湿下に長時間曝しておくと銅とポリイミド樹
脂フィルムとの間の密着強度が大幅に低下してしまい、
配線板材料としての信頼性が低下することを示すもので
ある。
This result shows that when the heat load coefficient at the time of heat treatment is 0.2, which is lower than the value specified in the present invention, copper and polyimide are obtained when the obtained substrate is exposed to high temperature and high humidity for a long time. The adhesion strength with the resin film is greatly reduced,
This shows that the reliability as a wiring board material is lowered.

【0043】[0043]

【発明の効果】以上述べたように本発明によるときは、
銅およびポリイミド樹脂フィルム間の密着強度を低下す
ることなく、ニッケル或いはコバルトまたはこれらの合
金の無電解めっきによる中間めっき皮膜を形成すること
ができ、また高温または高温高湿環境下においても高い
密着強度を維持し得る上に、得られた銅ポリイミド基板
を用いてFPCやTABテープ等の配線板を作成した場
合に、配線形成のための銅エッチング工程において、特
別の配慮を払うことなくニッケルまたはコバルトの残留
を防止することができるので、FPCやTABテープ等
の高温環境下における性能の向上に対して貢献が大であ
る。
As described above, according to the present invention,
It is possible to form an intermediate plating film by electroless plating of nickel or cobalt or these alloys without lowering the adhesion strength between copper and polyimide resin film, and also high adhesion strength under high temperature or high temperature and high humidity environment. Moreover, when a wiring board such as FPC or TAB tape is produced using the obtained copper polyimide substrate, nickel or cobalt can be used without any special consideration in the copper etching step for wiring formation. Since it is possible to prevent the residue from remaining, it greatly contributes to the improvement of the performance of FPC, TAB tape and the like in a high temperature environment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミド樹脂フィルムの表面を親水性
化し、触媒を付与し、無電解めっきを施し、不活性雰囲
気中で熱処理を施し、その後、無電解銅めっき、もしく
は無電解銅めっきに引き続き電解銅めっきを行なうこと
により銅ポリイミド基板を製造するに際し、ポリイミド
樹脂フィルム表面の親水化処理を、抱水ヒドラジンを1
〜15モル/l、アルカリ金属水酸化物を0.5〜5モ
ル/lの割合で含有する10〜50℃の水溶液を用いて
行ない、触媒付与後、該表面にニッケル、コバルトまた
はこれら金属の合金のうちの何れか一種類よりなる無電
解めっき皮膜を0.01〜0.1μmの厚みで、皮膜中
の不純物含有量が10重量%以下であるようにして施
し、得られた基板を、該基板における最高到達温度が3
50〜540℃の温度範囲であって、且つ下記数式1に
より求められる熱負荷係数Dが0.3〜3.5の範囲内
になるようにして不活性雰囲気中での熱処理を施すこと
を特徴とする銅ポリイミド基板の製造方法。 【数1】 (但し、toは処理開始時間であり、tiは任意の時間
であり、Tiは任意の時間における基板自体の温度を示
す。)
1. A surface of a polyimide resin film is made hydrophilic, a catalyst is applied, electroless plating is performed, heat treatment is performed in an inert atmosphere, and then electroless copper plating or electroless copper plating is followed by electrolysis. When a copper-polyimide substrate is manufactured by performing copper plating, the surface of the polyimide resin film is made hydrophilic, and hydrazine hydrate is added to
˜15 mol / l, and an alkali metal hydroxide containing 0.5 to 5 mol / l in an aqueous solution at 10 to 50 ° C. is used, and after the catalyst is applied, nickel, cobalt or these metals are added to the surface. An electroless plating film made of any one of the alloys is applied in a thickness of 0.01 to 0.1 μm so that the content of impurities in the film is 10% by weight or less, and the obtained substrate is The maximum temperature reached on the substrate is 3
The heat treatment is performed in an inert atmosphere within a temperature range of 50 to 540 ° C. and a heat load coefficient D calculated by the following mathematical formula 1 within a range of 0.3 to 3.5. And a method for manufacturing a copper-polyimide substrate. [Equation 1] (However, to is the processing start time, ti is an arbitrary time, and Ti is the temperature of the substrate itself at the arbitrary time.)
JP30251991A 1991-10-22 1991-10-22 Manufacture of copper polyimide board Pending JPH05114779A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30251991A JPH05114779A (en) 1991-10-22 1991-10-22 Manufacture of copper polyimide board
US07/963,739 US5246564A (en) 1991-10-22 1992-10-20 Method of manufacturing copper-polyimide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30251991A JPH05114779A (en) 1991-10-22 1991-10-22 Manufacture of copper polyimide board

Publications (1)

Publication Number Publication Date
JPH05114779A true JPH05114779A (en) 1993-05-07

Family

ID=17909945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30251991A Pending JPH05114779A (en) 1991-10-22 1991-10-22 Manufacture of copper polyimide board

Country Status (1)

Country Link
JP (1) JPH05114779A (en)

Similar Documents

Publication Publication Date Title
EP1006763B1 (en) Copper foil for printed wiring board having excellent chemical resistance and heat resistance
KR100437569B1 (en) Surface treated copper foil and Method for preparing the same and Copper-clad laminate using the same
US5246564A (en) Method of manufacturing copper-polyimide substrate
JP3198066B2 (en) Microporous copper film and electroless copper plating solution for obtaining the same
JP3166868B2 (en) Method for manufacturing copper polyimide substrate
JPH05129377A (en) Method of manufacturing copper polyimide substrate
JP4073248B2 (en) Method for producing electrolytic copper foil with carrier foil for high temperature and heat resistance and electrolytic copper foil with carrier foil for high temperature and heat obtained by the production method
JP2000297387A (en) Surface treating agent for copper and copper alloy
US4976808A (en) Process for removing a polyimide resin by dissolution
JPH0621157A (en) Manufactured of copper polyimide substrate
US4968398A (en) Process for the electrolytic removal of polyimide resins
JP2622016B2 (en) Copper polyimide substrate and method for manufacturing printed wiring board using the same
JP2884935B2 (en) Nickel or nickel alloy etching solution, method using this etching solution, and method for manufacturing wiring board using this etching solution
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JPH05114779A (en) Manufacture of copper polyimide board
JP2003096593A (en) Roughening treatment method and copper electroplating device
CN110505755B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JPH07216553A (en) Production of copper-coated polyimide substrate
US6579568B2 (en) Copper foil for printed wiring board having excellent chemical resistance and heat resistance
JP4529695B2 (en) Polyimide metal laminate and polyimide circuit board
JP2982323B2 (en) Method for manufacturing polyimide substrate
JP2574535B2 (en) Method for manufacturing copper polyimide substrate
JPH07243085A (en) Production of metal-clad polyimide substrate
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JPH08167770A (en) Manufacture of copper-clad polyimide board for copper foil transfer