JP2574535B2 - Method for manufacturing copper polyimide substrate - Google Patents

Method for manufacturing copper polyimide substrate

Info

Publication number
JP2574535B2
JP2574535B2 JP2314421A JP31442190A JP2574535B2 JP 2574535 B2 JP2574535 B2 JP 2574535B2 JP 2314421 A JP2314421 A JP 2314421A JP 31442190 A JP31442190 A JP 31442190A JP 2574535 B2 JP2574535 B2 JP 2574535B2
Authority
JP
Japan
Prior art keywords
copper
substrate
polyimide
polyimide substrate
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2314421A
Other languages
Japanese (ja)
Other versions
JPH04186891A (en
Inventor
修一 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2314421A priority Critical patent/JP2574535B2/en
Publication of JPH04186891A publication Critical patent/JPH04186891A/en
Application granted granted Critical
Publication of JP2574535B2 publication Critical patent/JP2574535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、はんだ付等の熱衝撃に充分耐え得るような
銅めっき被膜を有する銅ポリイミド基板のそりの改善に
関する。
Description: TECHNICAL FIELD The present invention relates to improvement of warpage of a copper polyimide substrate having a copper plating film capable of sufficiently withstanding thermal shock such as soldering.

[従来の技術] ポリイミド樹脂は優れた耐熱性を有し、また機械的、
電気的、化学的特性も他のプラスチック材料に比べて遜
色が無いので、電気機器等の絶縁材料としてよく用いら
れる。
[Prior art] Polyimide resin has excellent heat resistance,
Since it has the same electrical and chemical properties as other plastic materials, it is often used as an insulating material for electrical equipment and the like.

例えば、プリント配線板(PWB)、フレキシブルプリ
ント回路(FPC)、テープ自動ボンディング(TAB)テー
プ等の電子部品はこのポリイミド樹脂に銅被膜を設けた
銅ポリイミド基板を加工して得られている。従来のこの
ようなPWB、FPC、TAB用の素材となる銅ポリイミド基板
は一般的にはポリイミド樹脂と銅箔とを接着剤で貼合わ
せるラミネート方が採られていた。、しかしながらこの
ラミネート法によって得られた基板では接着剤の耐薬品
性が未だ充分でないため、銅被膜のエッチング処理の際
に接着剤にイオン吸着が起こり、形成された回路間隔が
特に狭い場合に絶縁不良を起こす恐れがあった。この欠
点を解消するため樹脂に直接金属層を形成する方法が採
用されている。
For example, electronic components such as a printed wiring board (PWB), a flexible printed circuit (FPC), and a tape automatic bonding (TAB) tape are obtained by processing a copper polyimide substrate provided with a copper coating on this polyimide resin. Conventional copper polyimide substrates used as materials for such PWBs, FPCs, and TABs generally employ a lamination method in which a polyimide resin and a copper foil are bonded with an adhesive. However, the substrate obtained by this laminating method does not yet have sufficient chemical resistance of the adhesive, so the ion is absorbed by the adhesive during the etching process of the copper film, and the insulating is performed when the formed circuit interval is particularly narrow. There was a risk of failure. In order to solve this drawback, a method of directly forming a metal layer on a resin has been adopted.

この方法はポリイミド樹脂の表面をエッチング処理に
より親水化し、次いでPdやAg等で触媒付与し、その後無
電解めっき、要すれば引続き電解めっきを行なうもので
ある。このようにして得られた基板は熱衝撃性が改良さ
れ、十分実用に耐えるものとされていた。しかし、近年
の高密度化、高集積化によりPWBやFPCやTABテープの使
用環境は大幅に変化し、従来よりはるかに熱的に過酷な
条件で使用されるようになってきた。この結果、上記方
法で得られた銅ポリイミド基板の耐熱衝撃性でも不十分
となり、更に高耐熱衝撃性の銅ポリイミド基板が求めら
れるようになってきた。本発明者らはこの要求に答える
べく、ポリイミド樹脂表面に無電解めっきを施し、要す
れば引続き電気めっきを施した後に120〜420℃の温度で
該基板を熱処理を施す方法を特願平1−96995号公報に
提案してきている。この方法は、該無電解めっきの前処
理として行われるポリイミド樹脂の表面のエッチング処
理により該表面に形成された耐熱性、耐薬品性に劣る変
質層を熱処理によって熱的、化学的に安定な構造に改質
し、それによりポリイミド樹脂表面の銅被膜にはんだ付
け等の熱衝撃に十分耐え得る耐熱衝撃性を付与しようと
するものである。
In this method, the surface of a polyimide resin is hydrophilized by an etching treatment, then a catalyst is applied with Pd, Ag, or the like, and then electroless plating is performed, and if necessary, electrolytic plating is performed. The substrate obtained in this way had improved thermal shock resistance and was considered to be sufficiently practical. However, the use environment of PWBs, FPCs and TAB tapes has changed drastically due to recent high density and high integration, and they have come to be used under much more severe thermal conditions than before. As a result, the thermal shock resistance of the copper polyimide substrate obtained by the above method becomes insufficient, and a copper polyimide substrate having higher thermal shock resistance has been required. In order to meet this requirement, the present inventors have proposed a method of subjecting a polyimide resin surface to electroless plating and, if necessary, electroplating, and then subjecting the substrate to a heat treatment at a temperature of 120 to 420 ° C. No. 96995. In this method, a heat-resistant, chemically-resistant altered layer formed on the surface of the polyimide resin formed by etching treatment of the surface of the polyimide resin, which is performed as a pre-treatment of the electroless plating, is thermally and chemically stable by heat treatment. In order to impart thermal shock resistance to the copper film on the surface of the polyimide resin, which can sufficiently withstand thermal shock such as soldering.

[発明が解決しようとする課題] 前記特願平1−96995号公報に開示された方法によっ
てポリイミド樹脂上にはんだ付け等の熱衝撃に充分耐え
得るような銅めっき被膜を形成した銅ポリイミド基板を
得ることが可能となり、該銅ポリイミド基板を用いて接
着剤を介さないPWB、FPC、TABを得ることが可能とな
る。しかし、該方法によって得られた銅ポリイミド基板
は、そりを有し、そのため該銅ポリイミド基板を用いて
FPC、TAB等を連続走行型装置で製造した場合、該基板上
のレジスト塗布厚不均一や基板搬送時の蛇行等が生じ、
不良品が多発し、歩留まりや生産性の低下等の問題が発
生する。
[Problems to be Solved by the Invention] A copper polyimide substrate having a copper plating film formed on a polyimide resin by a method disclosed in the above-mentioned Japanese Patent Application No. 1-96995 so as to sufficiently withstand thermal shocks such as soldering. Thus, PWB, FPC, and TAB without using an adhesive can be obtained using the copper polyimide substrate. However, the copper polyimide substrate obtained by the method has a warp, and therefore, using the copper polyimide substrate,
When FPC, TAB, etc. are manufactured by a continuous traveling type device, unevenness in resist coating thickness on the substrate or meandering at the time of substrate transfer occurs,
Defective products occur frequently, and problems such as a decrease in yield and productivity occur.

本発明の目的は、ポリイミド樹脂表面に銅の無電解め
っきを施し、必要に応じてこれに引続き銅の電解めっき
を施した後、該基板に120〜420℃の熱処理を施すことに
よって得られる銅ポリイミド基板においてそりのない銅
ポリイミド基板を提供することにある。
An object of the present invention is to provide a copper resin obtained by subjecting a polyimide resin surface to electroless plating of copper and, if necessary, subsequently performing electrolytic plating of copper, and then subjecting the substrate to a heat treatment at 120 to 420 ° C. An object of the present invention is to provide a copper polyimide substrate free of warpage in the polyimide substrate.

[課題を解決するための手段] 本発明者はポリイミド樹脂表面に銅の無電解めっきを
施し、必要に応じてこれに引続き銅の電解めっきを施し
た後、該基板に120〜420℃の熱処理を施すことによって
得られる銅ポリイミド基板において該基板にそりが発生
する原因について種々研究した結果、該基板のそりは基
板を熱処理する際に発生すること、ある種のポリイミド
樹脂を用いた場合は基板に該熱処理を施してもそりの程
度が軽減されることなどを見いだし、これらの知見に基
づいて本発明を完成するに至った。
[Means for Solving the Problems] The present inventor performed electroless plating of copper on the surface of a polyimide resin, followed by electroplating of copper if necessary, and then heat-treated the substrate at 120 to 420 ° C. As a result of various studies on the cause of warpage in the copper polyimide substrate obtained by performing the above, that warpage of the substrate occurs when the substrate is heat-treated, and when a certain kind of polyimide resin is used, It has been found that the degree of warpage is reduced even if the heat treatment is performed, and the present invention has been completed based on these findings.

即ち、上記の問題を解決するための本発明の方法は、
ポリイミド樹脂表面に銅の無電解めっきを施し、必要に
応じてこれに引続き銅の電解めっきを施した後、該基板
に120〜420℃の熱処理を施すことによって銅ポリイミド
基板を得る方法において、ポリイミド樹脂として熱膨張
係数が120〜420℃の温度範囲において1.5×10-5〜2.0×
10-5-1の範囲のものを用いることを特徴とするもので
ある。
That is, the method of the present invention for solving the above-mentioned problem is as follows:
In a method of obtaining a copper polyimide substrate by subjecting the polyimide resin surface to electroless plating of copper, and subsequently performing electrolytic plating of copper as necessary, and then subjecting the substrate to a heat treatment at 120 to 420 ° C. 1.5 × 10 -5 to 2.0 × in the temperature range of 120 to 420 ° C. as a resin
It is characterized in that a material in the range of 10 -5 ° C -1 is used.

[作用] 本発明者は、銅ポリイミド基板のそりをJIS C−6481
法によって評価して基板そり率を求め、該基板そり率と
該基板を用いてFPC、TAB等を連続走行型製造装置で製造
した場合の前記問題点との相関を調査した。その結果、
該基板そり率が4以上であれば該基板を用いてFPC、TAB
等を連続走行型製造装置で製造しても前記問題点は発生
しないことが判明した。
[Action] The present inventor has proposed that the warpage of a copper polyimide substrate be adjusted to JIS C-6481.
The substrate warpage rate was evaluated by the method, and the correlation between the substrate warpage rate and the above-described problem when FPC, TAB, and the like were manufactured using the substrate by a continuous traveling manufacturing apparatus was investigated. as a result,
If the substrate warpage ratio is 4 or more, FPC, TAB
It has been found that the above-mentioned problem does not occur even when such a device is manufactured by a continuous running type manufacturing apparatus.

ところで、一般に熱膨張係数の異なる2種類の基体か
らなる複合材に熱処理を施した場合、各基体の寸法変化
率が異なるため基体界面に応力が生じ該基体が薄膜状で
あれば該応力のために複合材にそりが発生することは知
られているものの、本発明の対象である銅ポリイミド基
板の製造において、どの程度の熱膨張係数の範囲のポリ
イミド基板を用いれば良いかと言うことについて示唆す
る何ものも開示されていない。
In general, when a heat treatment is performed on a composite material composed of two types of substrates having different coefficients of thermal expansion, stress is generated at the substrate interface because the dimensional change rates of the respective substrates are different. Although it is known that warpage occurs in the composite material, it suggests what extent of the coefficient of thermal expansion of the polyimide substrate should be used in the production of the copper polyimide substrate which is the object of the present invention. Nothing is disclosed.

本発明者は種々の熱膨張係数のポリイミド樹脂を用い
て該基板のそり率とポリイミド樹脂の熱膨張係数との関
係を求めた。その結果、本発明において用いるポリイミ
ド樹脂の熱膨張係数を120〜420℃の温度範囲において1.
5×10-5〜2.0×10-5-1の範囲とすれば得られる銅ポリ
イミド基板のそり率を4以内にすることができることを
見出した。以下、実施例を用いて本発明をさらに説明す
る。
The present inventors have determined the relationship between the warp ratio of the substrate and the coefficient of thermal expansion of the polyimide resin using polyimide resins having various coefficients of thermal expansion. As a result, the coefficient of thermal expansion of the polyimide resin used in the present invention is 1.
It has been found that the warp ratio of the obtained copper polyimide substrate can be made within 4 by setting the range of 5 × 10 −5 to 2.0 × 10 −5 ° C. −1 . Hereinafter, the present invention will be further described using examples.

[実施例] 熱膨張係数が120℃において2.1×10-5、2.0×10-5
1.7×10-5、1.5×10-5、1.4×10-5各℃-1の、厚さ50μ
m、幅508mm、長さ50mのポリイミドフィルムの片面を50
重量%の抱水ヒドラジンを含有する水溶液に25℃で1分
間浸漬し、水洗後奥野製薬社製OPC−80キャタリストM
を使用して25℃で5分間の触媒付与を施し、充分に水洗
した後、奥野製薬社製OPC−555アクセレーターを使用し
て25℃で7分間の促進処理を行った。以上の前処理を行
った後以下に示す条件で無電解銅めっきを行った。
[Example] The coefficient of thermal expansion was 2.1 × 10 −5 , 2.0 × 10 −5 at 120 ° C.
1.7 × 10 -5 , 1.5 × 10 -5 , 1.4 × 10 -5 each ° C -1 , thickness 50μ
m, width 508mm, length 50m polyimide film 50
Immersed in an aqueous solution containing 1% by weight of hydrazine hydrate at 25 ° C. for 1 minute, washed with water, and then Okuno Pharmaceutical OPC-80 Catalyst M
After applying the catalyst for 5 minutes at 25 ° C. and washing sufficiently with water, an accelerating treatment was performed at 25 ° C. for 7 minutes using an OPC-555 accelerator manufactured by Okuno Pharmaceutical Co., Ltd. After performing the above pretreatment, electroless copper plating was performed under the following conditions.

(浴組成) CuSO4・5H2O:10g/l EDTA・2Na:30g/l 37%HCHO:5ml/l PEG#1000:0.5g/l 2,2′−ビピリジル:10mg/l (めっき条件) 温度:65℃ 撹はん:空気撹はん 時間:10分 pH:12.5 得られた無電解銅めっき被膜の厚みはそれぞれ0.3μ
mであった。
(Bath composition) CuSO 4 · 5H 2 O: 10g / l EDTA · 2Na: 30g / l 37% HCHO: 5ml / l PEG # 1000: 0.5g / l 2,2'- bipyridyl: 10 mg / l (Plating conditions) Temperature: 65 ° C Stirring: Air stirring Time: 10 minutes pH: 12.5 The resulting electroless copper plating films each have a thickness of 0.3μ
m.

その後、それぞれの基板を真空加熱炉に静置して真空
度10-4torrにおいて昇温速度10℃/min.で昇温し、400℃
で1時間熱処理を施した。
Thereafter, the temperature was raised at a heating rate 10 ° C. / min. In vacuum 10 -4 torr to stand each substrate in a vacuum heating furnace, 400 ° C.
For 1 hour.

得られた各銅ポリイミド基板の反り率をJIS C−6481
に従い求めた。得られた結果を第1表に示した。
The warpage rate of each of the obtained copper polyimide substrates was determined according to JIS C-6481.
And asked for it. The results obtained are shown in Table 1.

第1表より120℃における熱膨張係数が1.5×10-5〜2.
0×10-5-1のポリイミド樹脂を用いた銅ポリイミド基
板でFPC、TAB等を連続走行型製造装置で製造すれば、レ
ジスト塗布厚不均一や基板搬送時の蛇行等が起こらず、
歩留まり、生産性の向上が期待できることを示す。
From Table 1, the coefficient of thermal expansion at 120 ° C. is 1.5 × 10 −5 to 2.
If FPC, TAB, etc. are manufactured by a continuous traveling type manufacturing apparatus on a copper polyimide substrate using a polyimide resin of 0 × 10 -5 ° C. -1 , non-uniform resist coating thickness or meandering at the time of substrate transfer does not occur,
It shows that yield and productivity can be improved.

[発明の効果] 本発明によれば、ポリイミド樹脂表面に銅の無電解め
っきを施し、必要に応じてこれに引続き銅の電解めっき
を施した後、該基板に120〜420℃の熱処理を施すことに
よって得られる銅ポリイミド基板において、該ポリイミ
ド樹脂の熱膨張係数が120〜420℃の温度範囲において1.
5×10-5〜2.0×10-5-1の範囲のものを使用することに
より、該銅ポリイミド基板を用いてFPC、TAB等を連続走
行型製造装置で製造した場合、レジスト塗布厚不均一、
基板搬送時の蛇行等が起こらず、歩留まり、生産性の向
上が期待できる。
[Effects of the Invention] According to the present invention, the surface of a polyimide resin is subjected to electroless plating of copper, and then, if necessary, is subjected to electrolytic plating of copper, and then the substrate is subjected to a heat treatment at 120 to 420 ° C. In the copper polyimide substrate obtained by the above, the coefficient of thermal expansion of the polyimide resin 1.
The use of the copper polyimide substrate in the range of 5 × 10 -5 to 2.0 × 10 -5 ° C.- 1 enables the use of the copper polyimide substrate to produce FPC, TAB, etc. in a continuous traveling type manufacturing apparatus, resulting in unsatisfactory resist coating thickness. Uniform,
No meandering or the like occurs during the transfer of the substrate, and an improvement in yield and productivity can be expected.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリイミド樹脂表面に銅の無電解めっきを
施し、必要に応じてこれに引続き銅の電界めっきを施し
た後、該基板に120〜420℃の熱処理を施すことによって
銅ポリイミド基板を得る方法において、ポリイミド樹脂
として熱膨張係数が120〜420℃の温度範囲において1.5
×10-5〜2.0×10-5-1の範囲のものを用いることを特
徴とする銅ポリイミド基板の製造方法。
An electroless plating of copper is performed on the surface of a polyimide resin, followed by electroplating of copper if necessary, and then a heat treatment at 120 to 420 ° C. is performed on the substrate to form a copper polyimide substrate. In the method for obtaining a polyimide resin having a coefficient of thermal expansion of 1.5 to
A method for producing a copper polyimide substrate, characterized by using a substrate in the range of × 10 -5 to 2.0 × 10 -5 ° C -1 .
JP2314421A 1990-11-21 1990-11-21 Method for manufacturing copper polyimide substrate Expired - Fee Related JP2574535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314421A JP2574535B2 (en) 1990-11-21 1990-11-21 Method for manufacturing copper polyimide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314421A JP2574535B2 (en) 1990-11-21 1990-11-21 Method for manufacturing copper polyimide substrate

Publications (2)

Publication Number Publication Date
JPH04186891A JPH04186891A (en) 1992-07-03
JP2574535B2 true JP2574535B2 (en) 1997-01-22

Family

ID=18053148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314421A Expired - Fee Related JP2574535B2 (en) 1990-11-21 1990-11-21 Method for manufacturing copper polyimide substrate

Country Status (1)

Country Link
JP (1) JP2574535B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060349B2 (en) 2002-09-24 2006-06-13 Fuji Xerox Co., Ltd. Resin composition, process for producing the same and electrophotographic fixing member
JP4647954B2 (en) * 2004-08-13 2011-03-09 新日鐵化学株式会社 Method for producing laminate for flexible printed wiring board
EP1872941A4 (en) * 2005-04-18 2008-12-10 Toyo Boseki Thin film-laminated polyimide film and flexible printed wiring board
JP4943450B2 (en) * 2006-11-29 2012-05-30 Jx日鉱日石金属株式会社 2-layer copper-clad laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842946A (en) * 1987-09-28 1989-06-27 General Electric Company Method for treating a polyimide surface to improve the adhesion of metal deposited thereon, and articles produced thereby
JPH01104780A (en) * 1987-10-16 1989-04-21 Kizai Kk Surface treatment of polyether imide resin molded article
DE3740369A1 (en) * 1987-11-25 1989-06-08 Schering Ag METHOD FOR PRE-TREATING PLASTICS

Also Published As

Publication number Publication date
JPH04186891A (en) 1992-07-03

Similar Documents

Publication Publication Date Title
US4725504A (en) Metal coated laminate products made from textured polyimide film
US5235139A (en) Method for fabricating printed circuits
US3573973A (en) High speed additive circuit process
US5478462A (en) Process for forming polyimide-metal laminates
US4868071A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
EP0053279B1 (en) Method of preparing a printed circuit
US4832799A (en) Process for coating at least one surface of a polyimide sheet with copper
JPS63259083A (en) Polyimide film having surface pattern
US4066809A (en) Method for preparing substrate surfaces for electroless deposition
US5358602A (en) Method for manufacture of printed circuit boards
JP2574535B2 (en) Method for manufacturing copper polyimide substrate
US5066545A (en) Process for forming polyimide-metal laminates
US5156731A (en) Polyimide substrate and method of manufacturing a printed wiring board using the substrate
JPH0828561B2 (en) Manufacturing method of printed wiring board
US4968398A (en) Process for the electrolytic removal of polyimide resins
JPH0472070A (en) Copper polyimide substrate and production of printed wiring board formed by using this substrate
JPS63168077A (en) Manufacture of printed wiring board
JPH07216553A (en) Production of copper-coated polyimide substrate
JPH05129377A (en) Method of manufacturing copper polyimide substrate
US5015517A (en) Textured polyimide film
GB2038101A (en) Printed circuits
JPH07243085A (en) Production of metal-clad polyimide substrate
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JPH07316825A (en) Production of formed article of partially plated aromatic polyester liquid crystal polymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees