JP2982323B2 - Method for manufacturing polyimide substrate - Google Patents

Method for manufacturing polyimide substrate

Info

Publication number
JP2982323B2
JP2982323B2 JP1255891A JP1255891A JP2982323B2 JP 2982323 B2 JP2982323 B2 JP 2982323B2 JP 1255891 A JP1255891 A JP 1255891A JP 1255891 A JP1255891 A JP 1255891A JP 2982323 B2 JP2982323 B2 JP 2982323B2
Authority
JP
Japan
Prior art keywords
film
ion
conductive
thin film
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1255891A
Other languages
Japanese (ja)
Other versions
JPH05327207A (en
Inventor
幸広 田宮
幹又 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1255891A priority Critical patent/JP2982323B2/en
Publication of JPH05327207A publication Critical patent/JPH05327207A/en
Application granted granted Critical
Publication of JP2982323B2 publication Critical patent/JP2982323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温時の密着性の良好
なポリイミド基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyimide substrate having good adhesion at high temperatures.

【0002】[0002]

【従来の技術】ポリイミド樹脂は優れた耐熱性を有し、
又機械的、電気的、そして化学的特性も良好で、他のプ
ラスティックと比較して遜色がない。このため、該ポリ
イミド樹脂は、例えばプリント配線板(PWB)、フレ
キシブルプリント回路(FPC)、テープ自動ボンディ
ング(TAB)実装用基板等の電気機器用部品の絶縁材
料として用いられている。
2. Description of the Related Art Polyimide resins have excellent heat resistance.
It also has good mechanical, electrical and chemical properties and is comparable to other plastics. For this reason, the polyimide resin is used as an insulating material for parts for electric equipment such as a printed wiring board (PWB), a flexible printed circuit (FPC), and a board for mounting a tape automatic bonding (TAB).

【0003】このようなPWB、FPC、TAB実装用
基板は、ポリイミド樹脂表面に導電性被膜を設けた基板
を加工することにより形成される。ポリイミド樹脂に導
電性被膜を直接形成する方法としてはスパッタリング
法、蒸着法、イオンプレーティング法、無電解めっき
法、キャステイング法、熱圧着法等がある。しかし、こ
れらの方法で形成した基板では、該基板を200℃とい
った高温環境下に10分間放置すると導電性被膜とポリ
イミド樹脂との密着強度が著しく低下し、使用できなく
なるといった欠点がある。この欠点を解消すべく、種々
の方法が検討されているが、それらの中で最も効果的と
されるものの一つに該基板を200℃以上の温度で熱処
理する方法がある。この方法によれば、確かに高温環境
下での密着強度は大幅に改善されされる。しかし、この
改善度合いは導電性被膜の厚さと関連し、被膜の厚さが
厚くなればなるほど改善度合いは低下し、膜厚が10μ
mを越えると低下度合いが顕著となるという現象があ
り、得られる製品間に密着強度のバラツキを生じるとい
う問題点がある。
[0003] Such a PWB, FPC, or TAB mounting substrate is formed by processing a substrate provided with a conductive coating on the surface of a polyimide resin. Examples of a method for directly forming a conductive film on a polyimide resin include a sputtering method, an evaporation method, an ion plating method, an electroless plating method, a casting method, and a thermocompression bonding method. However, the substrates formed by these methods have a drawback that if the substrates are left in a high-temperature environment such as 200 ° C. for 10 minutes, the adhesion strength between the conductive coating and the polyimide resin is remarkably reduced, so that the substrates cannot be used. Various methods have been studied to solve this drawback. One of the most effective methods among them is a method of heat-treating the substrate at a temperature of 200 ° C. or more. According to this method, the adhesion strength in a high temperature environment is certainly improved. However, the degree of this improvement is related to the thickness of the conductive film, and as the thickness of the film increases, the degree of improvement decreases, and the film thickness becomes 10 μm.
If it exceeds m, there is a phenomenon that the degree of reduction becomes remarkable, and there is a problem that the adhesion strength varies between the obtained products.

【0004】この問題点を解消すべくさらなる検討が進
められ、ポリイミド樹脂に無電解めっきを行った後に熱
処理を行う方法が検討されている。この方法では無電解
めっき被膜とポリイミド樹脂との密着強度は大きくな
り、且つ安定した値が得られることがわかった。しか
し、無電解めっき被膜を施した後熱処理し、次いで無電
解めっき被膜の表面をアルカリ脱脂、電解脱脂、酸洗等
の活性化処理後に電解めっき被膜を施すと、無電解めっ
き被膜と電解めっき被膜との境界より容易に剥離するこ
とがわかった。このような基板を用いてPWBやFPC
やTABを作成すると、リードの剥離やショートや断線
を生じ信頼性の無い物となる。
In order to solve this problem, further studies have been made, and a method of performing heat treatment after performing electroless plating on a polyimide resin has been studied. According to this method, the adhesion strength between the electroless plating film and the polyimide resin was increased, and a stable value was obtained. However, if the electroless plating film is applied and then heat-treated, and then the surface of the electroless plating film is subjected to activation treatment such as alkali degreasing, electrolytic degreasing, and pickling, then the electroless plating film and the electrolytic plating film are applied. It was found that the film was easily peeled off from the boundary with. PWB or FPC using such a substrate
When TAB or TAB is formed, peeling, short-circuiting, or disconnection of the lead occurs, resulting in an unreliable product.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高信
頼性を有するPWBやFPCやTABの作成を可能とす
る、無電解めっき被膜と電解めっき被膜と密着強度の大
きいポリイミド基板の作成方法の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polyimide substrate having a high adhesion strength between an electroless plating film and an electrolytic plating film, which enables the production of highly reliable PWB, FPC and TAB. In the offer.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、ポリイミド樹脂の片面、あるいは両面に導
電性被膜を設けたポリイミド基板の製造方法において、
ポリイミド樹脂表面に10μm以下好ましくは5μm以下
の導電性薄膜を設けた後、これを不活性雰囲気中で30
0〜500℃で熱処理し、次いで該導電性被膜の表面を
次亜塩素酸イオン、亜塩素酸イオン、過塩素酸イオンの
内の少なくとも1種のイオンを含む溶液で洗浄し、次い
で、該導電性薄膜の表面にさらに電気めっきを施すこと
により導電性被膜を形成することを特徴とするものであ
る。
According to the present invention, there is provided a method of manufacturing a polyimide substrate having a conductive film provided on one or both surfaces of a polyimide resin.
After a conductive thin film having a thickness of 10 μm or less, preferably 5 μm or less is provided on the surface of the polyimide resin, the conductive thin film is formed in an inert atmosphere.
Heat treatment at 0 to 500 ° C., and then washing the surface of the conductive film with a solution containing at least one ion selected from the group consisting of hypochlorite ion, chlorite ion and perchlorate ion. The conductive thin film is formed by further performing electroplating on the surface of the conductive thin film.

【0007】[0007]

【作用】一般に、導電性薄膜の上に電解めっき被膜を設
ける場合、導電性薄膜の表面の汚れや酸化膜を除去する
ためにアルカリ脱脂や電解脱脂や酸洗等といった活性化
処理をおこなっている。この目的は導電性薄膜と電解め
っき被膜との剥離を防止するためである。ポリイミド樹
脂表面に導電性薄膜を設けた後、その上に電解めっき被
膜を設ける場合、熱処理をおこなわず前記活性化処理を
おこない電解めっきを行った物では導電性薄膜と電解め
っき被膜との密着強度は大きく、剥離は導電性薄膜とポ
リイミド樹脂との境界面より起きる。熱処理をおこなっ
た後同様に前記前処理をおこない、次いで電解めっきを
おこなうとなぜ導電性薄膜と電解めっき被膜との境界面
より剥離が起き、活性化処理に次亜塩素酸イオン、亜塩
素酸イオン、過塩素酸イオンの内の少なくとも1種を含
む溶液を用いると導電性薄膜と電解めっき被膜との密着
強度が大きくなるのかは明確ではない。本発明者らは熱
処理中にポリイミド樹脂より未重合物質や可塑剤等の物
質が揮発し、熱分解して生成した無機炭素のような物が
導電性薄膜表面に付着して該薄膜表面の活性化を妨害し
ており、次亜塩素酸イオン、亜塩素酸イオン、過塩素酸
イオンのような強い酸化性をもつ物によって初めて活性
化が可能となるものと推定している。
Generally, when an electrolytic plating film is provided on a conductive thin film, an activation process such as alkali degreasing, electrolytic degreasing, pickling, etc. is performed to remove dirt and oxide film on the surface of the conductive thin film. . The purpose is to prevent the conductive thin film and the electrolytic plating film from peeling off. When a conductive thin film is provided on the surface of a polyimide resin and then an electrolytic plating film is provided thereon, the adhesion strength between the conductive thin film and the electrolytic plating film is obtained by performing the above-described activation treatment without performing heat treatment. Is large, and peeling occurs from the interface between the conductive thin film and the polyimide resin. After the heat treatment, the pre-treatment is performed in the same manner, and then the electrolytic plating is performed. Then, separation occurs from the interface between the conductive thin film and the electrolytic plating film. It is not clear whether the use of a solution containing at least one of perchlorate ions increases the adhesion strength between the conductive thin film and the electrolytic plating film. The present inventors volatilize substances such as an unpolymerized substance and a plasticizer from the polyimide resin during the heat treatment, and a substance such as inorganic carbon generated by thermal decomposition adheres to the surface of the conductive thin film and the activity of the surface of the thin film is reduced. It is presumed that activation is possible only by strongly oxidizing substances such as hypochlorite ion, chlorite ion and perchlorate ion.

【0008】本発明において、次亜塩素酸イオン、亜塩
素酸イオン、過塩素酸イオンを含む溶液は、それぞれを
次亜塩素酸塩、亜塩素酸塩、過塩素酸塩を水に溶解した
ものであり、各塩の種類については特にこだわるもので
はない。例えば、次亜塩素酸塩の場合には、価格、取扱
い易さよりナトリウム塩やカリウム塩が適当である。
In the present invention, the solution containing hypochlorite ion, chlorite ion and perchlorate ion is obtained by dissolving hypochlorite, chlorite and perchlorate in water, respectively. However, the type of each salt is not particularly particular. For example, in the case of hypochlorite, sodium salts and potassium salts are suitable from the viewpoint of cost and ease of handling.

【0009】各イオンの濃度等の前処理条件は無電解め
っき被膜の熱処理条件に影響されるため限定出来ない
が、通常0.01〜5モル/lで有り、各イオンの分解
を防止するためにpHを7以上とすることが好ましい。
又、処理時間は5秒〜30分間が好ましく、処理時の液
温は作業環境を悪化防止の観点より10〜60℃が好ま
しい。
The pretreatment conditions, such as the concentration of each ion, cannot be limited because they are affected by the heat treatment conditions of the electroless plating film, but are usually 0.01 to 5 mol / l, in order to prevent the decomposition of each ion. The pH is preferably adjusted to 7 or more.
Further, the processing time is preferably from 5 seconds to 30 minutes, and the liquid temperature during the processing is preferably from 10 to 60 ° C. from the viewpoint of preventing the working environment from deteriorating.

【0010】本発明でいう導電性薄膜や電解めっき被膜
は銅、金、銀、ニッケル、コバルト、パラジウムなどの
金属およびこれらの合金、そして導電性酸化物や半導体
等を用いて得た物をいう。以下実施例を用いて本発明を
さらに説明する。
[0010] The conductive thin film and the electrolytic plating film referred to in the present invention are those obtained by using metals such as copper, gold, silver, nickel, cobalt and palladium and alloys thereof, and conductive oxides and semiconductors. . Hereinafter, the present invention will be further described using examples.

【0011】[0011]

【実施例】【Example】

(実施例1)30×30cmの大きさの鐘淵化学(株)
社製アピカルNPI−50のポリイミド樹脂フィルムの
試験試料を25℃の25%抱水ヒドラジン溶液中に30
秒間浸漬し、表面を親水性にした後、片面をマスクし、
通常の活性化処理を施し、以下に示す条件で無電解めっ
き処理をおこなった。
(Example 1) Kanegabuchi Chemical Co., Ltd. measuring 30 × 30 cm
A test sample of an Apical NPI-50 polyimide resin film was placed in a 25% hydrazine hydrate solution at 25 ° C. for 30 minutes.
After dipping for 2 seconds and making the surface hydrophilic, mask one side,
A normal activation treatment was performed, and an electroless plating treatment was performed under the following conditions.

【0012】(浴組成) CuSO4・5H2O 10 g/l EDTA・2Na 30 g/l 37%HCHO 5 g/l ジピリジル 20 mg/l PEG#1000 0.5 g/l(Bath composition) CuSO 4 .5H 2 O 10 g / l EDTA.2Na 30 g / l 37% HCHO 5 g / l Dipyridyl 20 mg / l PEG # 1000 0.5 g / l

【0013】(めっき条件) 温 度 65 ℃ 攪 拌 空気攪拌 時 間 20 分(Plating conditions) Temperature 65 ° C. Stirring Air stirring time 20 minutes

【0014】得られた無電解めっき被膜の厚さは0.4
μmであった。これを雰囲気調整炉中に入れ、アルゴン
雰囲気中で10℃/分の昇温速度で350℃まで昇温
し、350℃で10時間加熱した後、炉内に入れたまま
室温まで自然冷却した。その後、銅表面を25℃の3.
5モル/l次亜塩素酸ナトリウム溶液中に3分間浸漬
し、次いで以下に示す条件で電解銅めっきをおこなっ
た。
The thickness of the obtained electroless plating film is 0.4
μm. This was placed in an atmosphere adjusting furnace, heated to 350 ° C. at a rate of 10 ° C./min in an argon atmosphere, heated at 350 ° C. for 10 hours, and then naturally cooled to room temperature while being kept in the furnace. Thereafter, the copper surface was heated at 25 ° C.
It was immersed in a 5 mol / l sodium hypochlorite solution for 3 minutes, and then subjected to electrolytic copper plating under the following conditions.

【0015】(浴組成) CuSO4・5H2O 120 g/l H2SO4 150 g/l[0015] (bath composition) CuSO 4 · 5H 2 O 120 g / l H 2 SO 4 150 g / l

【0016】(電解条件) 温 度 25 ℃ 攪 拌 空気吹込みによる攪拌 時 間 90 分間 電流密度 2 A/dm2 得られた銅の被膜の厚さは35μmであった。(Electrolysis conditions) Temperature 25 ° C. Stirring Stirring time by air blowing 90 minutes Current density 2 A / dm 2 The thickness of the obtained copper film was 35 μm.

【0017】次いで、銅表面にレジストを塗布し、所定
のマスクを密着し、露光し、現像し、エッチングして幅
10mm、長さ100mmの帯状の銅層を形成し、該銅
層の一端を基板に対して直角方向に引上げ、引き剥がす
ことにより密着性を調べた。その結果、密着強度は1k
g/cm 以上あり、且つ剥離は銅層とポリイミド層と
の間で起こり、無電解めっき被膜と電解銅めっき被膜と
の密着性は良好であることがわかった。よって、本実施
例のポリイミド基板を用いることにより信頼性の高いP
WBやFPCやTABを作成することは可能であること
がわかる。
Next, a resist is applied to the copper surface, a predetermined mask is brought into close contact, exposed, developed, and etched to form a strip-shaped copper layer having a width of 10 mm and a length of 100 mm. The adhesion was examined by pulling up and peeling off the substrate at right angles. As a result, the adhesion strength is 1k
g / cm 2 or more, and peeling occurred between the copper layer and the polyimide layer, indicating that the adhesion between the electroless plating film and the electrolytic copper plating film was good. Therefore, by using the polyimide substrate of this embodiment, a highly reliable P
It turns out that it is possible to create WB, FPC and TAB.

【0018】(比較例1)熱処理後の活性化処理を次亜
塩素酸ナトリウム溶液を用いず、電解脱脂でおこなった
以外は実施例1と同様にして基板を得、同様にして銅層
の密着性を調べた。その結果、密着強度は1Kg/cm
前後でばらつき、かつ全調査数の23%が無電解めっ
き被膜と電解銅めっき被膜との間で剥離を起こしてい
た。このことは、本方法で得た基板では信頼性の高いP
WBやFPCやTABを作成することはできないことを
示している。
Comparative Example 1 A substrate was obtained in the same manner as in Example 1 except that the activation treatment after the heat treatment was performed by electrolytic degreasing without using a sodium hypochlorite solution, and the adhesion of the copper layer was similarly performed. The sex was examined. As a result, the adhesion strength is 1 kg / cm
Before and after, 23% of the total number of surveys showed peeling between the electroless plating film and the electrolytic copper plating film. This means that the substrate obtained by this method has a highly reliable P
This indicates that WB, FPC, and TAB cannot be created.

【0019】(実施例2)30×30cmの大きさの東
レ・デュポン社製カプトン200H型のポリイミド樹脂
フィルム上にスパッタ法により0.6μmの厚さの銅被
膜を設けた試験資料を雰囲気調整炉中に入れ、アルゴン
雰囲気中で10℃/分の昇温速度で420℃まで昇温
し、1時間保持した後、炉内に入れたまま室温まで自然
冷却した。その後、銅表面を25℃の3.1モル/l過
塩素酸アンモニウム溶液中に10秒間浸漬し、次いで実
施例1と同じようにして電解銅めっきをおこない厚さは
35μmの銅被膜をえた。
(Example 2) A test material in which a copper coating having a thickness of 0.6 μm was provided on a 30 × 30 cm Kapton 200H type polyimide resin film manufactured by Dupont Toray Co., Ltd. by a sputtering method was used as an atmosphere control furnace. Then, the temperature was raised to 420 ° C. at a rate of 10 ° C./min in an argon atmosphere, and the temperature was maintained for 1 hour. Thereafter, the copper surface was immersed in a 3.1 mol / l ammonium perchlorate solution at 25 ° C. for 10 seconds, and then subjected to electrolytic copper plating in the same manner as in Example 1 to obtain a copper film having a thickness of 35 μm.

【0020】次いで、実施例1と同様にして銅層とポリ
イミド層との密着強度を調べた。その結果、密着強度は
1kg/cm 以上あり、且つ剥離は銅層とポリイミド
層との間で起こり、電解銅めっき被膜とスパッタ法によ
り析出した銅被膜との密着性は良好であることがわかっ
た。よって、本実施例のポリイミド基板を用いることに
より信頼性の高いPWBやFPCやTABを作成するこ
とは可能である。
Next, the adhesion strength between the copper layer and the polyimide layer was examined in the same manner as in Example 1. As a result, it was found that the adhesion strength was 1 kg / cm 2 or more, the peeling occurred between the copper layer and the polyimide layer, and the adhesion between the electrolytic copper plating film and the copper film deposited by the sputtering method was good. . Therefore, by using the polyimide substrate of this embodiment, it is possible to produce highly reliable PWB, FPC, or TAB.

【0021】(比較例2)熱処理後の活性化処理を過塩
素酸アンモニウム溶液を用いず、アルカリ脱脂でおこな
った以外は実施例2と同様にして基板を得、同様にして
銅層の密着性を調べた。その結果、密着強度は1kg/
cm 前後でばらつき、かつ全調査数の18%がスパッ
タ法で形成した銅被膜と電解銅めっき被膜との間で剥離
を起こしていた。このことは、本方法で得た基板では信
頼性の高いPWBやFPCやTABを作成することはで
きないことを示している。
Comparative Example 2 A substrate was obtained in the same manner as in Example 2 except that the activation treatment after the heat treatment was performed by alkali degreasing without using an ammonium perchlorate solution, and the adhesion of the copper layer was similarly performed. Was examined. As a result, the adhesion strength was 1 kg /
cm 2, and 18% of the total number of samples was peeled between the copper film formed by the sputtering method and the electrolytic copper plating film. This indicates that a substrate obtained by this method cannot produce highly reliable PWB, FPC, or TAB.

【0022】(実施例3)30×30cmの大きさの宇
部興産(株)社製ユーピレックス−50SS型のポリイ
ミド樹脂フィルムの試験試料を25℃の25%抱水ヒド
ラジン溶液中に30秒間浸漬し、表面を親水性にした
後、片面をマスクし、通常の活性化処理を施し、以下に
示す条件で無電解ニッケル・ほう素めっき処理をおこな
った。
(Example 3) A test sample of a polyimide resin film of Upilex-50SS type having a size of 30 × 30 cm manufactured by Ube Industries, Ltd. was immersed in a 25% hydrazine hydrate solution at 25 ° C. for 30 seconds. After making the surface hydrophilic, one surface was masked, a normal activation treatment was performed, and an electroless nickel-boron plating treatment was performed under the following conditions.

【0023】(浴組成) NiSO4・6H2O 30 g/l DMAB 5 g/l グリシン 18 g/l りんご酸 27 g/l アンモニア水(28%) 30 g/l[0023] (bath composition) NiSO 4 · 6H 2 O 30 g / l DMAB 5 g / l glycine 18 g / l malic acid 27 g / l aqueous ammonia (28%) 30 g / l

【0024】(めっき条件) 温 度 70 ℃ 攪 拌 空気攪拌 時 間 2 分(Plating conditions) Temperature 70 ° C. Stirring Air stirring time 2 minutes

【0025】得られた無電解めっき被膜の厚さは0.2
μmであった。これを雰囲気調整炉中に入れ、アルゴン
雰囲気中で100℃/分の昇温速度で480℃まで昇温
し、5分間保持した後、20℃/分の割合で室温まで冷
却した。その後、銅表面を25℃の0.1モル/l次亜
塩素酸カルシウム溶液中に10分間浸漬し、次いで実施
例1と同じようにして電解銅めっきをおこない厚さは3
5μmの導電性被膜をえた。
The thickness of the obtained electroless plating film is 0.2
μm. This was placed in an atmosphere adjusting furnace, heated to 480 ° C. at a rate of 100 ° C./min in an argon atmosphere, held for 5 minutes, and then cooled to room temperature at a rate of 20 ° C./min. Thereafter, the copper surface was immersed in a 0.1 mol / l calcium hypochlorite solution at 25 ° C. for 10 minutes, and then subjected to electrolytic copper plating in the same manner as in Example 1 to a thickness of 3
A conductive film of 5 μm was obtained.

【0026】次いで、実施例1と同様にして導電性被膜
とポリイミド層との密着強度を調べた。その結果、密着
強度は1kg/cm2 以上あり、且つ剥離は導電性被膜
とポリイミド層との間で起こり、電解銅めっき被膜と無
電解ニッケル・ほう素被膜との密着性は良好であること
がわかった。よって、本実施例のポリイミド基板を用い
ることにより信頼性の高いPWBやFPCやTABを作
成することは可能である。
Next, the adhesion strength between the conductive film and the polyimide layer was examined in the same manner as in Example 1. As a result, it was found that the adhesion strength was 1 kg / cm 2 or more, the peeling occurred between the conductive film and the polyimide layer, and the adhesion between the electrolytic copper plating film and the electroless nickel / boron film was good. Was. Therefore, by using the polyimide substrate of this embodiment, it is possible to produce highly reliable PWB, FPC, or TAB.

【0027】[0027]

【発明の効果】本発明の方法によれば導電層とポリイミ
ド層との密着性の良い基板を製造できる。そして、この
ようにして得たポリイミド基板を用いることにより信頼
性の高いPWBやFPCやTABを作成することができ
る。
According to the method of the present invention, a substrate having good adhesion between the conductive layer and the polyimide layer can be manufactured. By using the polyimide substrate thus obtained, highly reliable PWB, FPC or TAB can be produced.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H05K 3/38 H05K 3/18 B32B 15/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H05K 3/38 H05K 3/18 B32B 15/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリイミド樹脂の片面、あるいは両面
に導電性被膜を設けたポリイミド基板の製造方法におい
て、ポリイミド樹脂表面に10μm以下の導電性薄膜を
設けた後、これを不活性雰囲気中で300〜500℃で
熱処理し、次いで該導電性被膜の表面を次亜塩素酸イオ
ン、亜塩素酸イオン、過塩素酸イオンの内の少なくとも
1種のイオンを含む溶液で洗浄し、次いで、該導電性薄
膜の表面にさらに電気めっきを施すことにより導電性被
膜を形成することを特徴とするポリイミド基板の製造方
法。
In a method of manufacturing a polyimide substrate having a conductive film provided on one or both sides of a polyimide resin, a conductive thin film having a thickness of 10 μm or less is provided on the surface of the polyimide resin, and then the thin film is subjected to 300 to 300 μm in an inert atmosphere. Heat treatment at 500 ° C., and then wash the surface of the conductive film with a solution containing at least one ion of hypochlorite ion, chlorite ion, and perchlorate ion; Forming a conductive film by further performing electroplating on the surface of the polyimide substrate.
【請求項2】 ポリイミド樹脂の片面、あるいは両面
にスパッタリング法、蒸着法、イオンプレーティング
法、無電解めっき法、キャステイング法、熱圧着法、電
解めっき法の内の少なくとも一つの方法により導電性薄
膜を設けた後熱処理をおこなうことを特徴とする請求項
1記載のポリイミド基板の製造方法。
2. A conductive thin film formed on one or both sides of a polyimide resin by at least one of sputtering, vapor deposition, ion plating, electroless plating, casting, thermocompression, and electrolytic plating. 2. The method for producing a polyimide substrate according to claim 1, wherein a heat treatment is performed after the step (a).
【請求項3】 次亜塩素酸イオン、亜塩素酸イオン、
過塩素酸イオンの内の少なくとも1種を含む溶液が、温
度 10〜60℃、濃度 0.01〜5モル/l、pH
7以上の溶液であり、洗浄時間が5秒〜30分間である
ことを特徴とする請求項1ないし2項記載のポリイミド
基板の製造方法。
3. A hypochlorite ion, a chlorite ion,
A solution containing at least one of perchlorate ions has a temperature of 10 to 60 ° C, a concentration of 0.01 to 5 mol / l, and a pH
3. The method for producing a polyimide substrate according to claim 1, wherein the solution is 7 or more, and the cleaning time is 5 seconds to 30 minutes.
【請求項4】 導電性薄膜および導電性被膜が銅、
金、銀、ニッケル、コバルト、パラジウム、導電性酸化
物、半導体の内の少なくとも1種からなることを特徴と
する請求項1ないし3項記載のポリイミド基板の製造方
法。
4. The conductive thin film and the conductive coating are copper,
4. The method for producing a polyimide substrate according to claim 1, comprising at least one of gold, silver, nickel, cobalt, palladium, a conductive oxide, and a semiconductor.
【請求項5】 前記導電性被膜が5μm以下であるこ
とを特徴とする請求項1ないし4項記載のポリイミド基
板の製造方法。
5. The method according to claim 1, wherein the conductive film has a thickness of 5 μm or less.
JP1255891A 1991-01-11 1991-01-11 Method for manufacturing polyimide substrate Expired - Lifetime JP2982323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255891A JP2982323B2 (en) 1991-01-11 1991-01-11 Method for manufacturing polyimide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255891A JP2982323B2 (en) 1991-01-11 1991-01-11 Method for manufacturing polyimide substrate

Publications (2)

Publication Number Publication Date
JPH05327207A JPH05327207A (en) 1993-12-10
JP2982323B2 true JP2982323B2 (en) 1999-11-22

Family

ID=11808673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255891A Expired - Lifetime JP2982323B2 (en) 1991-01-11 1991-01-11 Method for manufacturing polyimide substrate

Country Status (1)

Country Link
JP (1) JP2982323B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY139405A (en) 1998-09-28 2009-09-30 Ibiden Co Ltd Printed circuit board and method for its production
JP4051900B2 (en) 2000-12-20 2008-02-27 富士ゼロックス株式会社 Heat resistant resin film having metal thin film and method for producing the same, endless belt, method for producing the same and image forming apparatus
WO2013147050A1 (en) * 2012-03-30 2013-10-03 Dic株式会社 Laminate body, conductive pattern, electrical circuit, and method for producing laminate body
JP6029419B2 (en) * 2012-11-02 2016-11-24 ダイキン工業株式会社 Residue removing liquid after semiconductor dry process and residue removing method using the same

Also Published As

Publication number Publication date
JPH05327207A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
CA1338186C (en) Circuit board material and electroplating bath for the production thereof
JP2769954B2 (en) Method for electrodepositing metal plating directly on plastic substrates
JP2620151B2 (en) Copper foil for printed circuits
US5448021A (en) Copper plating process and wiring board
US4144118A (en) Method of providing printed circuits
US5246564A (en) Method of manufacturing copper-polyimide substrate
WO1995014116A1 (en) Preparation of alumina ceramic surfaces for electroless and electrochemical metal deposition
JP3890542B2 (en) Method for manufacturing printed wiring board
JP2982323B2 (en) Method for manufacturing polyimide substrate
EP0079356B1 (en) A method for chemically stripping platings including palladium and at least one of the metals copper and nickel and a bath intended to be used for the method
JP3166868B2 (en) Method for manufacturing copper polyimide substrate
US5156731A (en) Polyimide substrate and method of manufacturing a printed wiring board using the substrate
US4976808A (en) Process for removing a polyimide resin by dissolution
JPH0621157A (en) Manufactured of copper polyimide substrate
US4968398A (en) Process for the electrolytic removal of polyimide resins
JP2622016B2 (en) Copper polyimide substrate and method for manufacturing printed wiring board using the same
JP2884935B2 (en) Nickel or nickel alloy etching solution, method using this etching solution, and method for manufacturing wiring board using this etching solution
JPH07216553A (en) Production of copper-coated polyimide substrate
JP2000178752A (en) Palladium catalyst removing agent for electroless plating
JPH05129377A (en) Method of manufacturing copper polyimide substrate
JPH07243085A (en) Production of metal-clad polyimide substrate
JPH06200396A (en) Manufacture of metal-coated polyimide substrate
JP2003171781A (en) Copper foil for printed circuit board, and production method therefor
JPH10298788A (en) Tarnishing preventing solution for copper or copper alloy and tarnishing preventing method therefor
TWI424099B (en) A direct plating method and a palladium conductor layer to form a solution