JPH05114757A - Superconductive element and manufacture thereof - Google Patents

Superconductive element and manufacture thereof

Info

Publication number
JPH05114757A
JPH05114757A JP3205525A JP20552591A JPH05114757A JP H05114757 A JPH05114757 A JP H05114757A JP 3205525 A JP3205525 A JP 3205525A JP 20552591 A JP20552591 A JP 20552591A JP H05114757 A JPH05114757 A JP H05114757A
Authority
JP
Japan
Prior art keywords
superconducting
channel
oxide
region
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3205525A
Other languages
Japanese (ja)
Inventor
Takao Nakamura
孝夫 中村
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3205525A priority Critical patent/JPH05114757A/en
Publication of JPH05114757A publication Critical patent/JPH05114757A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve a superconductive electric field effect element in characteristics by a method wherein a non-superconductive oxide which constitutes a resistive channel is formed of oxide superconductor which has lost superconductive properties. CONSTITUTION:A superconductive electric field effect element 1, which is provided with a superconductive channel 2 arranged between a source region 13 and a drain region 14, and a resistive element 16, which is connected in parallel with the superconductive channel 2 between a source electrode 3 and a drain electrode 4 of the superconductive field effect element 1, are integrated together. The superconductive channel 2 and a resistive channel 6 of the resistive element 16 are electrically insulated from each other and formed of a thin film in one piece. The thin film concerned is made of oxide which forms the superconductive channel 2 and oxide superconductor which forms the resistive channel 6 having lost its superconductive properties due to the addition of impurities or due to lack of oxygen contained in crystal. By this setup, the superconductive electric field effect element 1 can be improved in characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導素子に関する。
より詳細には、チャネルが酸化物超電導体で構成されて
いる電界効果型三端子素子と抵抗素子とを集積化した超
電導素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device.
More specifically, it relates to a superconducting element in which a field effect type three-terminal element having a channel made of an oxide superconductor and a resistance element are integrated.

【0002】[0002]

【従来の技術】超電導現象を利用した素子は、従来の半
導体素子に比較して高速であり、消費電力も小さく、飛
躍的に高性能化することができると考えられている。特
に近年研究が進んでいる酸化物超電導体を使用すること
により、比較的高い温度で動作する超電導素子を作製す
ることが可能である。超電導素子としては、ジョセフソ
ン素子がよく知られているが、ジョセフソン素子は2端
子の素子であるので論理回路を構成しようとすると、回
路が複雑になる。そのため、3端子の超電導素子が実用
上有利である。
2. Description of the Related Art It is considered that an element utilizing the superconducting phenomenon is faster than a conventional semiconductor element, consumes less power, and can be dramatically improved in performance. In particular, by using an oxide superconductor, which has been studied in recent years, it is possible to manufacture a superconducting element that operates at a relatively high temperature. As a superconducting element, a Josephson element is well known, but since the Josephson element is a two-terminal element, the circuit becomes complicated when trying to configure a logic circuit. Therefore, a three-terminal superconducting element is practically advantageous.

【0003】3端子の超電導素子には、近接させて配置
した超電導電極間の半導体に超電導電流を流す超電導近
接効果を利用したものと、超電導チャネルに流れる超電
導電流をゲート電極で制御するものとが代表的である。
どちらの素子も入出力の分離が可能であり、電圧制御型
の素子であって、信号の増幅作用があるという点では共
通している。しかしながら、超電導近接効果を得るため
には、超電導体電極をその超電導体のコヒーレンス長の
数倍(酸化物超電導体の場合数nm)以内の距離に配置し
なければならない。従って、非常に精密な加工が要求さ
れる。それに対し、チャネルが超電導チャネルになって
いる超電導素子は、電流密度が大きく、製造上も超電導
電極を近接させて配置するという微細加工を必要としな
い。
The three-terminal superconducting element utilizes a superconducting proximity effect that causes a superconducting current to flow in the semiconductor between the superconducting electrodes arranged close to each other, and one that controls the superconducting current flowing in the superconducting channel with a gate electrode. It is typical.
Both elements are capable of separating input and output, are voltage-controlled elements, and have a common point in that they have a signal amplifying action. However, in order to obtain the superconducting proximity effect, the superconductor electrode must be arranged within a distance of several times the coherence length of the superconductor (several nm in the case of an oxide superconductor). Therefore, very precise processing is required. On the other hand, a superconducting element whose channel is a superconducting channel has a large current density and does not require microfabrication in which the superconducting conductive electrodes are arranged close to each other in manufacturing.

【0004】図4に、超電導チャネルを有する超電導電
界効果型素子の一例の概略図を示す。図4の超電導電界
効果型素子1は、基板10上に配置された酸化物超電導体
による超電導チャネル2と、超電導チャネル2の両端付
近にそれぞれ配置されたソース電極3およびドレイン電
極4と、超電導チャネル2上にゲート絶縁層9を介して
配置されたゲート電極5とを具備する。この超電導電界
効果型素子は、ソース電極3およびドレイン電極4間を
流れる超電導電流をゲート電極5に印加する電圧で制御
する。
FIG. 4 shows a schematic view of an example of a superconducting field effect element having a superconducting channel. The superconducting field effect device 1 of FIG. 4 comprises a superconducting channel 2 made of an oxide superconductor arranged on a substrate 10, a source electrode 3 and a drain electrode 4 arranged near both ends of the superconducting channel 2, and a superconducting channel. 2 and a gate electrode 5 disposed on the gate insulating layer 9 via a gate insulating layer 9. In this superconducting field effect element, the superconducting current flowing between the source electrode 3 and the drain electrode 4 is controlled by the voltage applied to the gate electrode 5.

【0005】[0005]

【発明が解決しようとする課題】上記の超電導電界効果
型素子の特性を図5に示す。図5(a)は、図4に示した
超電導電界効果型素子において、特定のゲート電圧値に
対するソース−ドレイン間の電圧−電流特性を示したグ
ラフである。図5(a)のグラフに示した特性は、いわゆ
る所要特性と呼ばれる理想的な状態における特性であ
る。しかしながら、実際に図5(a)に示す所要特性の素
子を動作させた場合には、図5(a)のような特性を示さ
ず、ヒステリシス特性を示す。図5(b)に、図5(a)に示
した特性を有する超電導電界効果型素子のゲート電圧を
一定にして、ソース−ドレイン間の電圧を変化させたと
きの電流の変化を示す。
The characteristics of the above-mentioned superconducting field effect element are shown in FIG. FIG. 5A is a graph showing the voltage-current characteristics between the source and the drain with respect to a specific gate voltage value in the superconducting field effect device shown in FIG. The characteristics shown in the graph of FIG. 5A are characteristics in an ideal state, which is so-called required characteristics. However, when an element having the required characteristics shown in FIG. 5A is actually operated, the characteristics shown in FIG. 5A are not exhibited, but the hysteresis characteristics are exhibited. FIG. 5B shows a change in current when the gate voltage of the superconducting field effect device having the characteristics shown in FIG. 5A is kept constant and the voltage between the source and the drain is changed.

【0006】図5(b)に示すようこの超電導電界効果型
素子は、電圧が上昇するときと、電圧が下降するときと
で、電流値が異なる変化を起こす。このような超電導電
界効果型素子は、ゲート電圧の値およびソース−ドレイ
ン間電圧の値に対するソース−ドレイン間電流の値が、
特定できないため実用性が低い。
As shown in FIG. 5 (b), in this superconducting field effect device, the current value changes differently when the voltage rises and when the voltage falls. In such a superconducting field effect device, the value of the source-drain current with respect to the value of the gate voltage and the value of the source-drain voltage is
Practicality is low because it cannot be specified.

【0007】そこで、本発明の目的は、上記の超電導電
界効果型素子の特性を改善した超電導素子を提供するこ
とにある。
Therefore, an object of the present invention is to provide a superconducting element with improved characteristics of the above-mentioned superconducting field effect element.

【0008】[0008]

【課題を解決するための手段】本発明に従うと、酸化物
超電導体で構成されたソース領域およびドレイン領域
と、該ソース領域およびドレイン領域間に配置された酸
化物超電導体で構成された超電導チャネルと、該超電導
チャネルを流れる電流を制御するためのゲート電圧が印
加されるゲート電極とを備える超電導電界効果型素子
と、該超電導電界効果型素子の前記ソース領域およびド
レイン領域間に接続され、前記超電導チャネルを構成す
る酸化物超電導体と等しい構成元素を含む非超電導酸化
物で構成された抵抗チャネルとを具備し、前記超電導電
界効果型素子の超電導部分と、前記抵抗チャネルとが一
体の薄膜で構成され、前記抵抗チャネルを構成する非超
電導酸化物が、不純物を含んで超電導性を失った前記酸
化物超電導体または結晶中の酸素が少なくて超電導性を
失った前記酸化物超電導体で構成されていることを特徴
とする超電導素子が提供される。
According to the present invention, a superconducting channel composed of a source region and a drain region composed of an oxide superconductor and an oxide superconductor arranged between the source region and the drain region. And a superconducting field effect element including a gate electrode to which a gate voltage for controlling a current flowing through the superconducting channel is applied, and the superconducting field effect element is connected between the source region and the drain region, The superconducting part of the superconducting field effect element, and the resistance channel are integrated into a thin film, comprising a resistance channel composed of a non-superconducting oxide containing the same constituent element as the oxide superconductor forming the superconducting channel. The non-superconducting oxide, which is configured and constitutes the resistance channel, contains the impurities and loses the superconducting property. Superconducting device is provided, characterized in that less oxygen in is composed of the oxide superconductor loses superconductivity.

【0009】また、本発明においては、酸化物超電導体
で構成された超電導領域と、非超電導酸化物で構成され
た抵抗領域とを有する超電導素子を作製する方法におい
て、前記超電導素子の超電導領域および抵抗領域以上の
大きさの面積を有する酸化物超電導薄膜を形成し、該酸
化物超電導薄膜の抵抗領域となる部分に不純物イオンを
注入するか、または該酸化物超電導薄膜の抵抗領域とな
る部分の酸化物超電導体結晶中の酸素を減少させて、酸
化物超電導体を非超電導酸化物に変えることを特徴とす
る超電導素子の作製方法が提供される。
Further, in the present invention, in a method for producing a superconducting element having a superconducting region made of an oxide superconductor and a resistance region made of a non-superconducting oxide, a superconducting region of the superconducting element and Forming an oxide superconducting thin film having an area larger than the resistance region, and implanting impurity ions into a portion to be the resistance region of the oxide superconducting thin film, or of a portion to be the resistance region of the oxide superconducting thin film. Provided is a method for producing a superconducting element, which comprises reducing oxygen in an oxide superconductor crystal to convert an oxide superconductor into a non-superconducting oxide.

【0010】[0010]

【作用】本発明の超電導素子は、ソース領域およびドレ
イン領域間に配置された超電導チャネルを有する超電導
電界効果型素子と、この超電導電界効果型素子のソース
領域およびドレイン領域間に超電導チャネルと並列に接
続された抵抗素子とが集積化された素子であり、超電導
電界効果型素子の超電導部分と抵抗素子の抵抗チャネル
とが一体の薄膜で構成されている。この薄膜は、超電導
部分が酸化物超電導体で構成され、抵抗チャネルは、不
純物が添加されて超電導性を失った酸化物超電導体か、
または結晶中の酸素が少な過ぎて超電導性を失った酸化
物超電導体で構成されている。また、超電導チャネル
と、抵抗チャネルとは絶縁領域で電気的に絶縁されてい
ることが好ましい。
The superconducting element of the present invention comprises a superconducting field effect element having a superconducting channel arranged between a source region and a drain region, and a superconducting channel in parallel between the source region and the drain region of the superconducting field effect element. The connected resistance element is an integrated element, and the superconducting portion of the superconducting field effect element and the resistance channel of the resistance element are formed of an integrated thin film. In this thin film, the superconducting portion is composed of an oxide superconductor, and the resistance channel is an oxide superconductor that has lost superconductivity due to the addition of impurities.
Alternatively, it is composed of an oxide superconductor which has lost superconductivity due to too little oxygen in the crystal. Further, it is preferable that the superconducting channel and the resistance channel are electrically insulated from each other by an insulating region.

【0011】換言すれば、本発明の超電導素子の超電導
部分および抵抗チャネルの部分は、単一の酸化物超電導
薄膜から形成されており、抵抗チャネルの部分は、この
酸化物超電導薄膜に不純物を添加することで形成された
非超電導酸化物またはこの酸化物超電導薄膜から酸素を
抜いて形成された非超電導酸化物により構成されてい
る。酸化物超電導体の超電導特性は、その組成に対して
感受性が強く、不純物が添加されたり、結晶中の酸素が
少なかったりすると容易に超電導性を失う。従って、本
発明の方法では、不純物を添加したり、酸素を除去した
りして、酸化物超電導薄膜を構成する酸化物超電導体の
一部を抵抗体の酸化物に変える。この非超電導性の酸化
物の抵抗率を変更するには、添加する不純物の濃度、除
去する酸素の量を調節することにより行う。
In other words, the superconducting portion and the resistance channel portion of the superconducting element of the present invention are formed of a single oxide superconducting thin film, and the resistance channel portion is doped with impurities in the oxide superconducting thin film. The non-superconducting oxide formed by the above process or the non-superconducting oxide formed by removing oxygen from the oxide superconducting thin film. The superconducting property of the oxide superconductor is highly sensitive to its composition, and the superconducting property is easily lost when impurities are added or the amount of oxygen in the crystal is small. Therefore, in the method of the present invention, impurities are added or oxygen is removed to change a part of the oxide superconductor forming the oxide superconducting thin film into the oxide of the resistor. The resistivity of the non-superconducting oxide is changed by adjusting the concentration of impurities to be added and the amount of oxygen to be removed.

【0012】本発明の方法では、酸化物超電導薄膜の一
部に不純物を添加する方法は、イオン注入法が好まし
い。具体的には、Baイオン、Niイオン等を注入する。抵
抗値を測定しながら1016個/cm2 程度のイオンを注入
し、注入の際の加速電圧は、40〜150 kVが好ましい。
上記の範囲を超えた量のイオンを注入しても一切の導電
性を持たない。一方、注入の際のイオンの加速電圧が、
上記の範囲よりも低いと十分な深さまでイオンが注入さ
れず、イオン注入の効果がない。また、上記の範囲を超
えた加速電圧でイオンを注入すると、酸化物超電導薄膜
の表面が荒れるために特性が劣化する。
In the method of the present invention, the method of adding impurities to a part of the oxide superconducting thin film is preferably an ion implantation method. Specifically, Ba ions, Ni ions, etc. are implanted. It is preferable that about 10 16 ions / cm 2 of ions are implanted while measuring the resistance value, and the acceleration voltage at the time of implantation is 40 to 150 kV.
It does not have any conductivity when implanted with an amount of ions exceeding the above range. On the other hand, the acceleration voltage of ions at the time of implantation is
If it is lower than the above range, ions are not implanted to a sufficient depth, and the effect of ion implantation is not obtained. Further, when ions are implanted at an acceleration voltage exceeding the above range, the surface of the oxide superconducting thin film is roughened and the characteristics are deteriorated.

【0013】一方、本発明の方法において、酸化物超電
導薄膜の一部から酸素を除去するには、高真空中で熱処
理を行うことによる。酸化物超電導体は、酸素分圧の低
い雰囲気中で加熱することにより、結晶中の酸素が抜け
て酸素量が減少する。処理時間により酸素を抜く量を変
えることができ、抵抗率を調整することができる。酸化
物超電導体は結晶のc軸と垂直な方向の酸素の拡散係数
が大きい(c軸と垂直な方向に酸素が動きやすい)の
で、上記の酸化物超電導薄膜をc軸配向の酸化物超電導
体結晶で構成し、抵抗チャネルとなる部分の側面から酸
素が抜ける形状に加工することも好ましい。上記の熱処
理を行う際は、最終的に1×10-10 Torr程度まで排気す
ることが好ましく、また、加熱温度はY−Ba−Cu−O系
酸化物超電導体の場合で380 〜 500℃が好ましい。これ
は、Y−Ba−Cu−O系酸化物超電導体は、約400 ℃で結
晶中の酸素が最も動き易くなるからである。
On the other hand, in the method of the present invention, oxygen is removed from a part of the oxide superconducting thin film by performing heat treatment in a high vacuum. When the oxide superconductor is heated in an atmosphere having a low oxygen partial pressure, oxygen in the crystal is released and the amount of oxygen is reduced. The amount of oxygen removed can be changed depending on the treatment time, and the resistivity can be adjusted. Since the oxide superconductor has a large diffusion coefficient of oxygen in the direction perpendicular to the c-axis of the crystal (oxygen easily moves in the direction perpendicular to the c-axis), the above oxide superconducting thin film is c-axis oriented oxide superconductor. It is also preferable that the structure is made of crystal and processed into a shape in which oxygen escapes from the side surface of the portion that becomes the resistance channel. When the above heat treatment is performed, it is preferable to finally exhaust the gas to about 1 × 10 −10 Torr, and the heating temperature is 380 to 500 ° C. in the case of the Y—Ba—Cu—O oxide superconductor. preferable. This is because in the Y-Ba-Cu-O-based oxide superconductor, oxygen in the crystal is most likely to move at about 400 ° C.

【0014】本発明の超電導素子は、ゲート電極で開閉
される超電導チャネルと抵抗チャネルとが、ソース電極
およびドレイン電極間に並列に配置されているので、超
電導チャネルのゲートが閉じているときには、抵抗チャ
ネルにソース−ドレイン間電流が流れる。従って、超電
導電界効果型素子特有のヒステリシス特性が解消され
る。そのため、本発明の超電導素子において、抵抗チャ
ネルの抵抗値は、上記超電導電界効果型素子の超電導チ
ャネルのゲートが閉じているときの超電導チャネルのソ
ース−ドレイン間の抵抗値よりもかなり小さい値としな
ければならない。
In the superconducting element of the present invention, the superconducting channel opened and closed by the gate electrode and the resistance channel are arranged in parallel between the source electrode and the drain electrode. Therefore, when the gate of the superconducting channel is closed, the resistance is reduced. A source-drain current flows through the channel. Therefore, the hysteresis characteristic peculiar to the superconducting field effect element is eliminated. Therefore, in the superconducting element of the present invention, the resistance value of the resistance channel should be a value considerably smaller than the resistance value between the source and drain of the superconducting channel when the gate of the superconducting channel of the superconducting field effect element is closed. I have to.

【0015】本発明は、任意の酸化物超電導体に適用で
きるが、Y1Ba2Cu37-X系酸化物超電導体は安定的に高
品質の結晶性のよい薄膜が得られるので好ましい。ま
た、Bi2Sr2Ca2Cu3x 系酸化物超電導体は、特にその超
電導臨界温度Tc が高いので好ましい。
The present invention can be applied to any oxide superconductor, but a Y 1 Ba 2 Cu 3 O 7 -X oxide superconductor is preferred because it can stably obtain a high quality thin film with good crystallinity. .. Further, the Bi 2 Sr 2 Ca 2 Cu 3 O x oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0016】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail by way of examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0017】[0017]

【実施例】図1(a)および(b)に本発明の超電導素子の一
例の概略図を示す。図1(a)は平面図であり、図1(b)は
図1(a)のA−Aにおける断面図である。図1(a)および
(b)に示した本発明の超電導素子は、MgO基板10上に形
成された薄膜11の一部をなすY1Ba2Cu37-X酸化物超電
導体で構成された超電導チャネル2と、超電導チャネル
2上に配置されたゲート電極5と、やはり、超電導チャ
ネル2上のゲート電極5の両側にそれぞれ配置されたソ
ース領域13およびドレイン領域14をそれぞれ具備するY
1Ba2Cu37-X酸化物超電導体で構成された超電導ソース
電極3および超電導ドレイン電極4とを具備する。この
超電導チャネル2、超電導ソース電極3、超電導ドレイ
ン電極4およびゲート電極5は超電導電界効果素子を構
成する。
EXAMPLES FIGS. 1A and 1B are schematic views showing an example of a superconducting element of the present invention. 1 (a) is a plan view, and FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a). Figure 1 (a) and
The superconducting element of the present invention shown in (b) has a superconducting channel 2 composed of a Y 1 Ba 2 Cu 3 O 7-X oxide superconductor forming a part of a thin film 11 formed on an MgO substrate 10. , A gate electrode 5 arranged on the superconducting channel 2, and a source region 13 and a drain region 14 arranged on both sides of the gate electrode 5 on the superconducting channel 2, respectively.
1 Ba 2 Cu 3 O 7-X A superconducting source electrode 3 and a superconducting drain electrode 4 made of an oxide superconductor. The superconducting channel 2, superconducting source electrode 3, superconducting drain electrode 4 and gate electrode 5 form a superconducting field effect element.

【0018】また、MgO基板10上の薄膜11は、超電導チ
ャネル2と並列して配置された抵抗チャネル6と、超電
導チャネル2と抵抗チャネル6との間に配置された両者
を電気的に絶縁する絶縁領域7とを具備する。抵抗チャ
ネル6上の両端近傍には、ソース電極3およびドレイン
電極4が配置されている。
Further, the thin film 11 on the MgO substrate 10 electrically insulates the resistance channel 6 arranged in parallel with the superconducting channel 2 and the both arranged between the superconducting channel 2 and the resistance channel 6. And an insulating region 7. A source electrode 3 and a drain electrode 4 are arranged near both ends of the resistance channel 6.

【0019】上述のように、上記の超電導チャネル2、
抵抗チャネル6および絶縁領域7は、それぞれ基板10上
に成膜された薄膜11の一部をなす。即ち、薄膜11の一部
は超電導体であり、他の一部は抵抗体であり、さらに他
の一部は絶縁体であって、それぞれ超電導チャネル2、
抵抗チャネル6および絶縁領域7となっている。
As mentioned above, the superconducting channel 2,
The resistance channel 6 and the insulating region 7 respectively form a part of the thin film 11 formed on the substrate 10. That is, a part of the thin film 11 is a superconductor, another part is a resistor, and another part is an insulator.
The resistance channel 6 and the insulating region 7 are formed.

【0020】上記本発明の超電導素子を作製する方法を
以下に説明する。まず、MgO基板10上にSiO2 で絶縁領
域7のパターンを形成し、その上にY1Ba2Cu37-X酸化
物超電導薄膜を成膜する。Y1Ba2Cu37-X酸化物超電導
薄膜の成膜方法としては、各種のスパッタリング法、M
BE法、真空蒸着法、CVD法等任意の方法が使用可能
である。スパッタリング法で成膜を行う際の主な成膜条
件を以下に示す。 基板温度 700℃ スパッタリングガス Ar 90 % O2 10 % 圧力 5×10-2Torr 膜厚 400nm
A method for producing the superconducting element of the present invention will be described below. First, a pattern of the insulating region 7 is formed of SiO 2 on the MgO substrate 10, and a Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film is formed thereon. The Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film can be formed by various sputtering methods, M
Any method such as a BE method, a vacuum vapor deposition method, a CVD method can be used. The main film forming conditions for forming a film by the sputtering method are shown below. Substrate temperature 700 ℃ Sputtering gas Ar 90% O 2 10% Pressure 5 × 10 -2 Torr Film thickness 400nm

【0021】上記のY1Ba2Cu37-X酸化物超電導薄膜が
成長する間に、MgO基板10上のSiO2 層からSiが薄膜中
に拡散し、絶縁領域7が自動的に形成される。絶縁領域
7を備えるY1Ba2Cu37-X酸化物超電導薄膜が形成され
たら、抵抗チャネル6をY1Ba2Cu37-X酸化物超電導薄
膜に形成する。抵抗チャネル6は、Y1Ba2Cu37-X酸化
物超電導薄膜の所定の位置に不純物イオンを注入する
か、または熱処理を行って、その位置のY1Ba2Cu37-X
酸化物超電導体結晶中の酸素を絶縁体にならない程度に
除去することに形成する。イオン注入の条件を以下に示
す。 注入イオン Ba 加速電圧 150 kV 注入量(ドーズ量) 1016個/cm2 また、熱処理条件を以下に示す。 基板温度 450℃ 圧力 1×10-10 Torr 処理時間 4分間 このようにして、形成された抵抗チャネル6の抵抗率
は、超電導状態でない(ゲートが閉じている状態の)超
電導チャネル2の抵抗の数倍になっている。
During the growth of the above Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film, Si diffuses from the SiO 2 layer on the MgO substrate 10 into the thin film and the insulating region 7 is automatically formed. To be done. After the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film having the insulating region 7 is formed, the resistance channel 6 is formed in the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film. The resistance channel 6 is formed by injecting impurity ions into a predetermined position of the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film or by performing heat treatment to the Y 1 Ba 2 Cu 3 O 7-X at that position.
It is formed by removing oxygen in the oxide superconductor crystal to the extent that it does not become an insulator. The conditions for ion implantation are shown below. Implanted ions Ba acceleration voltage 150 kV Implantation amount (dose amount) 10 16 / cm 2 The heat treatment conditions are shown below. Substrate temperature 450 ° C. Pressure 1 × 10 -10 Torr Treatment time 4 minutes The resistivity of the resistance channel 6 thus formed is the number of resistances of the superconducting channel 2 which is not in the superconducting state (when the gate is closed). Doubled.

【0022】上記のように、絶縁領域7および抵抗チャ
ネル6が形成されると、Y1Ba2Cu37-X酸化物超電導薄
膜は、超電導チャネル2、抵抗チャネル6および絶縁領
域7を備える薄膜11となる。この薄膜11の超電導チャネ
ル2および抵抗チャネル6上の両端にやはりY1Ba2Cu3
7-X酸化物超電導体の薄膜の超電導電極3および4を
それぞれ形成、配置する。また、超電導チャネル2上に
Au、Ag等の貴金属により、超電導電極3および4から離
してゲート電極5を形成して本発明の超電導素子が完成
する。
When the insulating region 7 and the resistance channel 6 are formed as described above, the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film includes the superconducting channel 2, the resistance channel 6 and the insulating region 7. It becomes the thin film 11. Y 1 Ba 2 Cu 3 is also formed on both ends of the thin film 11 on the superconducting channel 2 and the resistance channel 6.
The superconducting electrodes 3 and 4 of the thin film of O 7 -X oxide superconductor are respectively formed and arranged. Also, on the superconducting channel 2
The superconducting element of the present invention is completed by forming the gate electrode 5 apart from the superconducting conductive electrodes 3 and 4 with a noble metal such as Au or Ag.

【0023】図2(a)および(b)および図3(c)を参照し
て本発明の超電導素子の動作を説明する。図2(a)およ
び(b)は、本発明の超電導素子の動作を等価回路で図示
したものである。即ち、本発明の超電導素子は、超電導
電界効果型素子1と、超電導電界効果型素子1の超電導
チャネル2に並列にソース電極3およびドレイン電極4
間に接続されている抵抗素子16で構成される回路と等価
である。図2(a)は、本発明の超電導素子において、超
電導電界効果型素子1のゲート電極5に電圧が印加され
てなく、超電導チャネル2のゲートが開いている状態を
示す。このとき、超電導チャネル2は、超電導状態であ
り、電気抵抗が事実上0であるので、ソース−ドレイン
間電流は全て超電導チャネル2を流れる。
The operation of the superconducting element of the present invention will be described with reference to FIGS. 2 (a) and 2 (b) and FIG. 3 (c). 2 (a) and 2 (b) show the operation of the superconducting element of the present invention by an equivalent circuit. That is, the superconducting element of the present invention comprises a superconducting field effect element 1 and a source electrode 3 and a drain electrode 4 in parallel with a superconducting channel 2 of the superconducting field effect element 1.
It is equivalent to a circuit composed of a resistance element 16 connected between them. FIG. 2A shows a state in which, in the superconducting element of the present invention, no voltage is applied to the gate electrode 5 of the superconducting field effect element 1 and the gate of the superconducting channel 2 is open. At this time, since the superconducting channel 2 is in the superconducting state and the electric resistance is practically 0, all the source-drain current flows through the superconducting channel 2.

【0024】図2(b)は本発明の超電導素子において、
超電導電界効果型素子1のゲート電極5に電圧が印加さ
れて、超電導チャネル2のゲートが閉じている状態を示
す。この場合、超電導チャネル2の超電導状態は失われ
ている。このとき、超電導チャネル2の抵抗値Rs は、
ソース−ドレイン間の電圧が上昇して超電導チャネル2
に電流が流れ始めるときの抵抗値Rupおよびソース−ド
レイン間の電圧が下降して超電導チャネル2に流れてい
た電流が断たれる瞬間の抵抗値Rdownと、次のような関
係になっている。 Rup<Rs <Rdown 抵抗素子16は、超電導チャネル2に対して十分な幅、厚
さを有しており、その抵抗値Rは、R≪Rupに設定され
ているので、このときのソース−ドレイン間電流はほと
んど抵抗素子16をながれる。従って、この場合のソース
−ドレイン間抵抗は、ほぼRに等しい。
FIG. 2 (b) shows a superconducting device of the present invention.
A state is shown in which a voltage is applied to the gate electrode 5 of the superconducting field effect element 1 and the gate of the superconducting channel 2 is closed. In this case, the superconducting state of the superconducting channel 2 is lost. At this time, the resistance value R s of the superconducting channel 2 is
The voltage between the source and drain rises and the superconducting channel 2
And the resistance value R down at the moment when the current flowing in the superconducting channel 2 is cut off because the resistance value R up when the current starts to flow and the voltage between the source and the drain drop. There is. R up <R s <R down The resistance element 16 has a sufficient width and thickness for the superconducting channel 2, and its resistance value R is set to R << R up. Most of the source-drain current flows through the resistance element 16. Therefore, the source-drain resistance in this case is approximately equal to R.

【0025】図3(c)は、上記本発明の超電導素子の特
性図である。図3(c)に示すよう、本発明の超電導素子
では、超電導電界効果型素子1のヒステリシス特性が大
幅に改善されており、ゲート電圧によりソース−ドレイ
ン間の電圧電流特性の一義性を向上することができる。
従って、本発明の超電導素子は、特に電子機器等に使用
する場合に実用性が高い。
FIG. 3 (c) is a characteristic diagram of the superconducting element of the present invention. As shown in FIG. 3 (c), in the superconducting element of the present invention, the hysteresis characteristic of the superconducting field effect element 1 is significantly improved, and the uniqueness of the voltage-current characteristic between the source and the drain is improved by the gate voltage. be able to.
Therefore, the superconducting element of the present invention is highly practical, especially when used in electronic devices and the like.

【0026】[0026]

【発明の効果】以上説明したように、本発明に従えば、
実用性の高い超電導3端子素子が提供される。本発明を
超電導回路、電子機器の作製に応用することにより、従
来得られなかった高性能な電子装置が作製可能である。
As described above, according to the present invention,
A highly practical superconducting three-terminal element is provided. By applying the present invention to the production of superconducting circuits and electronic equipment, it is possible to produce high-performance electronic devices that have never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導素子の概略図である。(a)は平
面図を示し、(b)は(a)A−Aにおける断面図を示す。
FIG. 1 is a schematic view of a superconducting element of the present invention. (a) shows a plan view and (b) shows a sectional view taken along line (a) AA.

【図2】(a)および(b)は、本発明の超電導素子の動作を
示す概念図である。
2 (a) and 2 (b) are conceptual diagrams showing the operation of the superconducting element of the present invention.

【図3】(c)は本発明の超電導素子の特性図である。FIG. 3 (c) is a characteristic diagram of the superconducting element of the present invention.

【図4】超電導電界効果型素子の概略図である。FIG. 4 is a schematic view of a superconducting field effect device.

【図5】超電導電界効果型素子の特性図である。FIG. 5 is a characteristic diagram of a superconducting field effect device.

【符号の説明】[Explanation of symbols]

1 超電導電界効果型素子 2 超電導チャネル 3 ソース電極 4 ドレイン電極 5 ゲート電極 6 抵抗チャネル 1 superconducting field effect device 2 superconducting channel 3 source electrode 4 drain electrode 5 gate electrode 6 resistance channel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体で構成されたソース領域
およびドレイン領域と、該ソース領域およびドレイン領
域間に配置された酸化物超電導体で構成された超電導チ
ャネルと、該超電導チャネルを流れる電流を制御するた
めのゲート電圧が印加されるゲート電極とを備える超電
導電界効果型素子と、 該超電導電界効果型素子の前記ソース領域およびドレイ
ン領域間に接続され、前記超電導チャネルを構成する酸
化物超電導体と等しい構成元素を含む非超電導酸化物で
構成された抵抗チャネルとを具備し、 前記超電導電界効果型素子の超電導部分と、前記抵抗チ
ャネルとが一体の薄膜で構成され、前記抵抗チャネルを
構成する非超電導酸化物が、不純物を含んで超電導性を
失った前記酸化物超電導体または結晶中の酸素が少なく
て超電導性を失った前記酸化物超電導体で構成されてい
ることを特徴とする超電導素子。
1. A source region and a drain region made of an oxide superconductor, a superconducting channel made of an oxide superconductor arranged between the source region and the drain region, and a current flowing through the superconducting channel. A superconducting field effect element having a gate electrode to which a gate voltage for controlling is applied, and an oxide superconductor connected between the source region and the drain region of the superconducting field effect element to form the superconducting channel. And a resistance channel formed of a non-superconducting oxide containing a constituent element equal to the superconducting portion of the superconducting field effect element, and the resistance channel is formed of an integrated thin film to form the resistance channel. The non-superconducting oxide has a low superconducting property due to a small amount of oxygen in the oxide superconductor or crystal that has lost the superconducting property due to inclusion of impurities Superconductive element characterized in that it is composed of the oxide superconductor Tsu.
【請求項2】 酸化物超電導体で構成された超電導領域
と、非超電導酸化物で構成された抵抗領域とを有する超
電導素子を作製する方法において、前記超電導素子の超
電導領域および抵抗領域以上の大きさの面積を有する酸
化物超電導薄膜を形成し、該酸化物超電導薄膜の抵抗領
域となる部分に不純物イオンを注入するか、または該酸
化物超電導薄膜の抵抗領域となる部分の酸化物超電導体
結晶中の酸素を減少させて、酸化物超電導体を非超電導
酸化物に変えることを特徴とする超電導素子の作製方
法。
2. A method for producing a superconducting device having a superconducting region made of an oxide superconductor and a resistance region made of a non-superconducting oxide, the size of the superconducting region being larger than the superconducting region and the resistance region of the superconducting device. Forming an oxide superconducting thin film having an area of 10 μm and implanting impurity ions into the resistance region of the oxide superconducting thin film, or an oxide superconductor crystal of the part forming the resistance region of the oxide superconducting thin film. A method for producing a superconducting element, characterized in that oxygen in the oxide is reduced to change an oxide superconductor to a non-superconducting oxide.
JP3205525A 1991-07-22 1991-07-22 Superconductive element and manufacture thereof Withdrawn JPH05114757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205525A JPH05114757A (en) 1991-07-22 1991-07-22 Superconductive element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3205525A JPH05114757A (en) 1991-07-22 1991-07-22 Superconductive element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05114757A true JPH05114757A (en) 1993-05-07

Family

ID=16508330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205525A Withdrawn JPH05114757A (en) 1991-07-22 1991-07-22 Superconductive element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05114757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186301A (en) * 1994-12-27 1996-07-16 Chodendo Sensor Kenkyusho:Kk Squid with dumping resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186301A (en) * 1994-12-27 1996-07-16 Chodendo Sensor Kenkyusho:Kk Squid with dumping resistance

Similar Documents

Publication Publication Date Title
US5051396A (en) Method of manufacturing superconducting patterns by adding impurities
JPS61206279A (en) Superconductive element
JP2963614B2 (en) Method for manufacturing oxide superconductor junction element
JPH0834320B2 (en) Superconducting element
JPH05251777A (en) Superconducting field-effect type element and manufacture thereof
JPH05114757A (en) Superconductive element and manufacture thereof
JPH0537036A (en) Superconductive device and manufacture thereof
US5462919A (en) Method for manufacturing superconducting thin film formed of oxide superconductor having non superconducting region and device utilizing the superconducting thin film
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JP2647251B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JPH0537032A (en) Superconductive device
JPH02194667A (en) Superconducting transistor and manufacture thereof
JPH08288563A (en) Superconducting field-effect element and manufacture thereof
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JPH0537033A (en) Superconductive device
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JP2691065B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JPH0537034A (en) Superconductive device
JP2738144B2 (en) Superconducting element and fabrication method
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
JP2641973B2 (en) Superconducting element and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008