JPH0511369B2 - - Google Patents

Info

Publication number
JPH0511369B2
JPH0511369B2 JP60226979A JP22697985A JPH0511369B2 JP H0511369 B2 JPH0511369 B2 JP H0511369B2 JP 60226979 A JP60226979 A JP 60226979A JP 22697985 A JP22697985 A JP 22697985A JP H0511369 B2 JPH0511369 B2 JP H0511369B2
Authority
JP
Japan
Prior art keywords
film
stretching
particles
protrusions
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60226979A
Other languages
Japanese (ja)
Other versions
JPS6288207A (en
Inventor
Yukihisa Sato
Hideo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP22697985A priority Critical patent/JPS6288207A/en
Publication of JPS6288207A publication Critical patent/JPS6288207A/en
Publication of JPH0511369B2 publication Critical patent/JPH0511369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はコンデンサー誘電体用ポリエステルフ
イルムに関し、更に詳しくはコンデンサー製造の
際の加工性に優れ、しかもコンデンサーとしたと
きの絶縁破壊電圧が高くかつ絶縁欠陥が少く、コ
ンデンサー誘電体用フイルムとして極めて優れた
2軸延伸ポリエステルフイルに関する。 〔従来技術〕 ポリエチレンテレフタレートからなる2軸延伸
フイルムは、機械的性質、耐熱性、電気的性質な
どに優れていることから、コンデンサーの誘電体
として用いられている。該フイルムをコンデンサ
ーの誘電体として使用するときの態様に、5〜
10μ厚みの金属性電極箔(主にアルミニウムが用
いられる)と一般に4〜30μの厚みのフイルムを
重ねて巻きとつて素子を作る場合(箔巻きコンデ
ンサー素子と呼ぶ)と、フイルムに直接アルミ
ニウムや亜鉛を真空蒸着して素子に巻きとる様式
(蒸着フイルムコンデンサー素子と呼ぶ)とがあ
る。蒸着フイルムコンデンサー素子は、特にコン
デンサーの小型化の為に賞用されているが、コン
デンサーの製造工程で要求される重要な要件の一
つは、該素子の巻回性とつぶれ性が良好なことで
ある。すなわち、蒸着後のフイルムは巻芯に巻回
した(巻回工程)後、芯から抜きとり、プレスし
て素子を偏平につぶし(プレス工程と呼ぶ)、リ
ード線をつけるためにハンダ付ができるように、
偏平にした素子の両端面に金属粒子を吹きつける
工程(メタリコン工程と呼ぶ)を経なければなら
ない。また箔巻きコンデンサー素子でも、プレス
工程やメタリコン工程を経るものもあるので、巻
回性とつぶれ性が良好であることが要求される。
ここで、巻回性が良好とは、巻回機にてフイルム
をコンデンサー素子に巻取る際、フイルムの蛇行
や端面ずれを生じないことを意味し、つぶれ性が
良好とは、ブレスが均一にでき、且つ余り大きな
荷重をかけることなく偏平にでき、しかもプレス
後の素子の端面部にメタリコン工程で金属粒子の
入りこむ隙間のないことである。 巻回性が悪かつたり、つぶれ性が悪く端面に空
隙があると、メタリコン粒子の侵入により、絶縁
抵抗や誘電正接の劣化がおこり、製品は不良品と
なる。 巻回性やすぶれ性を改良するためには、誘電体
として用いられているフイルムの滑り性をよくす
ることが必須要件であつて、この要件をみたすた
めに、ポリマー中に無機の微細な粒子を添加した
り、ポリマー中に不溶性の触媒残渣を形成せしめ
たりして、フイルム面に突起を付与することが行
なわれている。 上記のごとくポリマー中に不活性無機化合物を
添加したり、不溶性の触媒残渣を形成せしめ、フ
イルム表面に多くの突起を形成せしめることによ
つて加工性(例えばフイルムの巻回性、つぶれ
性)はある程度良好となるが、その反面絶縁破壊
電圧が低下し、絶縁破壊異常率が高くなり、コン
デンサー素子としての性能を低下せしめる。逆
に、絶縁破壊電圧を高め、絶縁破壊異常率を抑え
るためフイルム表面を平滑にしようとすると加工
性が低下する。 〔発明の目的〕 本発明の目的は、上述の問題を解決し、加工性
に優れ、しかも絶縁破壊電圧が高くかつ絶縁欠陥
の少いコンデンサー誘電体用2軸延伸ポリエステ
ルフイルムを提供することにある。 〔発明の構成・効果〕 本発明の目的は、本発明によれば、厚み2〜
12μmの2軸延伸ポリエステルフイルムであつ
て、この表面は下記(1)〜(3)の特性 (1) 表面粗さRa値〔X:μm〕が次の範囲にあ
る 0.019≦X≦0.046 (2) 高さ0.5〜0.7μmの表面突起の数〔Y:個/
mm2〕及び高さ1.1μm以上の表面突起の数〔Z:
個/mm2〕が次の範囲にある Y≧100 Z≦11 (3) 上記突起の少なくとも一部は、突起とその周
囲に該突起を核とするごとく形成された窪みと
からなる凹凸単位を形成して存在する を備えていることを特徴とするコンデンサー誘電
体用ポリエステルフイルムによつて達成される。 本発明におけるポリエステルとは、テレフタル
酸、イソフタル酸、ナフタレン−2,6−ジカル
ボン酸等の如き芳香族ジカルボン酸を主たる酸成
分とし、エチレングリコール、ジエチレングリコ
ール、テトラメチレングリコール、ネオペンチレ
ングリコール等の如きグリコールを主たるジオー
ル成分とするポリエステルである。該ポリエステ
ルは例えば芳香族ジカルボン酸とグリコールとを
直接重縮合させて製造することができ、また芳香
族ジカルボン酸ジアルキルエステルとグリコール
とエステル交換反応させた後重縮合せしめる、或
いは芳香族ジカルボン酸のジグリコールエステル
を重縮合せしめる等の方法によつても製造するこ
とができる。上記ポリエステルの代表的なものと
して、ポリエチレンテレフタレート、ポリエチレ
ン−2,6−ナフタレンジカルボキシレート等が
例示される。ポリエステルは、ホモ・ポリマーで
あつてもよく、またジカルボン酸成分の15モル%
以下が非芳香族ジカルボン酸成分であり及び/又
はジオール成分の15モル%以下が脂肪族グリコー
ル以外のジオール成分であるような共重合ポリエ
ステルであつてもよい。更に又、上記ポリエステ
ルは、他の重合体が総量当り15重量%以下(好ま
しくは10重量%以下)の割合でブレンドされた、
所謂ポリマーブレンドをも包合する。ブレンドで
きる他の重合体としてポリアミド、ポリオレフイ
ン、他種ポリエステル(ポリカーボネートを含
む)が例示される。また前記ポリエステルは必要
に応じて、安定剤、着色剤、酸化防止剤等の添加
剤を含有するものであつてもよい。 本発明のフイルム表面の突起は、ポリマーに添
加した無機化合物の粒子;ポリマーの重合に際し
生成した不溶性の触媒残渣に基づく粒子;または
両者の粒子に由来して形成される。 この突起の一部ないし全部は凹凸単位を構成す
る突起となる。また凹凸単位を構成する窪みは、
従来のエンボス等機械的なスタンプによる凹状の
ものではなく、フイルムを延伸する工程に於て、
フイルム自身の変形によつて形成されるものであ
る。 粒子を含有した未延伸フイルムを1軸方向に延
伸すると、粒子は変形せずにポリマーが塑性変形
するから、その条件にもよるが、通常大変形(延
伸)に際しポリマーと粒子との境にボイドが生じ
る。このボイドを含みフイルムを、次は1軸延伸
方向とほぼ直角方向(第2軸方向)に延伸して2
軸配向フイルムにすると、1軸延伸時に生じてい
たボイドは更に第2軸方向に変形されて、図1−
1に示す如く、突起21の周りにボイド22が擬
円形状に形成される。この場合は図1−2の断面
図に示す如くフイルム表面近傍の浅い部分に存在
する粒子とその周囲のポイドは粒子を核とする突
起をもたらすが、粒子周囲には窪を形成すること
はない。 本発明における凹凸単位の窪みは、上記のボイ
ドをフイルム表面の窪に変化させたものである。
未延伸フイルムを1軸延伸するに際し、延伸前の
フイルムの予備加熱を高い温度に設定するか、ま
たは(及び)延伸倍率を低く設定することによつ
て第1軸延伸を経たフイルムが粒子(無機添加物
による外部粒子又は触媒残渣を含む内部粒子)周
辺にボイドが実質的に形成されないようにする。
次いでこの状態の延伸フイルムを第2軸方向に延
伸するとこの第2軸方向に沿つて粒子を核とした
フイルムの陥没部分(窪)が形成される。そして
楕円状の窪の長径は第2軸方向に沿つたものとな
る。第1軸延伸に際し、僅かなボイドが粒子周辺
に形成された場合でもこの粒子を核として窪が生
ずる。 2軸延伸を経たフイルム表面の凹凸単位は図2
−1(平面図)の如き状態にあり、第2軸延伸が
粒子を中心に応力集中されるような延伸条件であ
れば陥没部分は応力集中の程度に応じて深く窪み
かつ第2軸方向に沿つて長径が大となる傾向があ
る。図2−2(断面図)は表面近傍のフイルム断
面を示すものであつて、粒子を含む突起21とそ
の周辺に形成された窪24とがポリエステルフイ
ルム23に生じる。本発明では突起の周辺に生じ
た窪は第2軸方向に偏奇した擬楕円状のものを包
含する。 本発明のフイルムは、その表面に、高さ0.5〜
0.7μmの表面突起の数(Y)が100(個/mm2)以上、好
ましく140(個/mm2)以上であり、かつ高さ1.1μm
以上の表面突起の数(Z)が11(個/mm2)以下、好ま
しくは7(個/mm2)以下である。そしてこれら突
起の少くとも一部は凹凸単位を形成して存在す
る。この凹凸単位は5個/mm2以上、更には15個/
mm2以上あることが好ましい。更に、上記フイルム
は、表面粗さRa値(X)が0.019〜0.046(μm)の範
囲、好ましくは0.023〜0.039(μm)の範囲にあ
る、表面特性を備えている必要がある。Ra値:
Xが大きすぎても、また小さすぎても、本発明の
目的を達成することが難しい。同様に、表面突
起:Yが少なすぎても、また表面突起:Zが多す
ぎても本発明の目的を達成することが難しい。 次に、本発明のポリエステルフイルムの製膜方
法の例を具体的に説明するが、本発明はこの例に
限定されるものではない。 カオリン、炭酸カルシウム等の平均粒子径が
0.10〜3.0μm(好ましくは0.3〜1.5μm)の微細粒
子を0.10〜1.0重量%含有した未延伸ポリエステ
ルフイルムを、第1軸方向に延伸するに際し、
100〜125℃に予備加熱する。この未延伸フイルム
を約100〜125℃に予備加熱する場合には、表面が
マツト加工された硬質クロム鍍金ロールやセラミ
ツク製のロールが好ましい。未延伸フイルムはロ
ール表面に粘着することなく、実質的な結晶化の
起きない条件で所定の予熱損度に達し得る。勿
論、非接触的に未延伸フイルムを予備加熱するこ
とができる。未延伸フイルムは100〜125℃の温度
で3.4倍以下(好ましくは2.6〜3.2倍)の延伸倍率
で延伸される。延伸速度は比較的遅い方が好まし
く、180m/mmを越えない方がよい。通常50〜140
m/mm程度の延伸速度を選択し、低速度の場合に
は延伸温度をやや低温側に移すことができる。 次に第2延伸は1軸配向フイルムを一旦ガラス
転移点以下に冷却するか、又は冷却することな
く、100〜150℃の温度に予備加熱し、更にほゞ同
程度の温度下において第2軸方向に3.0〜4.0倍
(好ましくは3.2〜3.8倍)に延伸する。第2軸延
伸の温度が高い場合は凹凸単位の窪部の境界が明
瞭となるが、低温では境界が明らかとならない場
合が多い。第2軸方向の延伸倍率は凹凸単位の発
生頻度に著しい影響を及ぼすことはない。 この2軸延伸フイルムは、もし第1軸方向の機
械的強度が不充分の場合には、この方向に更に
120〜170℃程度の温度下において、1.1〜1.6倍程
度再延伸することもできる。 2段延伸、要すれば3段延伸を経た2軸配向ポ
リエステルフイルムは、180〜240℃(好ましくは
190〜210℃)の温度で0.2〜10秒間程度熱固定を
施すことができる。なお、3段延伸における第3
段(第1軸方向)再延伸は熱固定を経たフイルム
に実施することも可能である。 第1軸延伸を施す方向は、フイルムの機械方向
でも幅方向でも差支えない。また第2軸延伸方向
は第1軸方向とほぼ直角であるとよい。勿論、更
に第1軸方向及び(又は)第2軸方向に延伸を加
える高段(多段)延伸を施すことができる。この
場合にも、フイルム表面の凹凸単位はその形状が
多少変形しても、そのまま残存する。 上述の延伸条件及び延伸方法を適宜組合せるこ
とによつて、凹凸単位として適切な頻度を備え、
しかも表面粗さRa、表面突起の数Y,Zを満足
するポリエステルフイルムが製造できる。 微粒子に由来する突起とその周辺に核突起を該
とするごとく形成された窪みとからなる凹凸単位
がフイルム表面に存在する場合、この窪みを形成
するような塑性変形と同じ現象がフイルム中の微
粒子の周辺にも生じ、そのためフイルム中の微粒
子周辺にもボイドが存在しないか、またはその割
合が小さいという特徴をもたらし、同時にフイル
ム厚み方向の屈折率も高くなるという特徴をもた
らす。本発明のポリエステルフイルムはこのよう
な特徴をすべて備えている。例えば、従来のコン
デンサー誘電体用ポリエチレンテレフタレートフ
イルムの厚み方向屈折率が1.492以下であるのに
比して、本発明のポリエチレンテレフタレートフ
イルムの厚み方向屈折率は1.493〜1.499の範囲に
あつて高い。これは、絶縁破壊電圧を高めかつ絶
縁欠陥を小さくするのに極めて有利な点である。 以下に本発明における物性測定法を示す。 1 表面粗さ(Ra) 中心線平行粗さ:Ra(単位μm)としてJIS−
B0601の5項で定義される値。 測定条件 カツトオフ値:0.25mm 測定長:2.5mm 2 表面突起数(Y,Z) フイルム表面にアルミニウム蒸着を施した
後、多重干渉法により測定波長0.54μmで干渉
縞を出し、干渉縞を写真投影し、2次の干渉縞
の個数を計数し、その数をY〔個/mm2〕とし、
4次以上の干渉縞の個数を計数し、その数をZ
(個/mm2〕とする。 3 凹凸単位の測定 フイルム表面に薄くアルミニウム蒸着をした
ものを微分干渉顕微鏡装置(例えばNikon微分
干渉顕微鏡R型)を用いて写真撮影し、その大
きさをスケールで測定し、窪の長径が4μm以
上の凹凸単位を計数する。 4 絶縁破壊電圧及び絶縁破壊異常率 絶縁破壊電圧はJIS−C−2318に示される方
法で測定した。n=100の平均値を採用し、こ
の平均値の1/3以下の値を示すものの割合(%)
を絶縁破壊異常率とする。 5 熱収縮率 フイルム試料の大きさ350mm×350mmのものの
縦及び横方向につき中央部に300mmの距離をお
いて標点を付け、150℃に設定したテスター産
業製熱風式恒温槽内に試料10枚を無緊張下につ
りさげ、2時間保持後取り出し、標点間の距離
を再び測定し、熱収縞率を下記の式により算出
し、n=10の平均値で表わす。 熱収縮率(%)=L0−L/L0×100 〔但し、L0:原長(標点間距離300mm) L:試験後の長さ(単位・mm)〕 6 蒸着加工性の評価 フイルム巾500mm、巻長さ20000mの原フイル
ムに対してアルミニム蒸着をアルミニウム純度
99.99%、蒸発源温度1400℃、蒸発面とフイル
ム面との距離350mm、入射角40°、真空度5×
10-5Torr、蒸着速度300m/mm、蒸着テンシヨ
ン20Kg、蒸着厚さ100mμの条件でアルミニウ
ム蒸着を行ない、原フイルムの蒸着加工性につ
いて蒸着加工時に横しわが全く発生しないもの
を◎、やや横しわが発生するが蒸着斑や蒸着後
のスリツト不良までには到らないものを○、横
しわ、あるいは場合により縦しわが発生し、蒸
着斑や蒸着後のスリツト不良が頻繁に起こり、
使用に供し得ないものを×とした。 7 素子端面不揃い、及び偏平化後の素子端面形
状の評価 4〜12μのフイルムをアルミニウム蒸着し、
20mm巾にスリツトしたものを、外径3mmの巻芯
に巻張力40g、巻取速度30cm/secで4mの長
さを巻回した素子を作り、素子端面不揃いにつ
いては、端面が全て完全に揃つているものを○
とし、一部にやや不揃いのものもあるがその程
度も小で、実用上何ら差支えないものを△、使
用できないものを×とした。 該素子をプレスにより偏平につぶした時の偏
平化後の素子端面形状評価は、フイルム層間が
一直線で均一につぶれて隙間のないものを○、
一部に僅かの隙間が認められるが実用上何ら問
題のないものを△、つぶれが不均一でフイルム
層間に隙間ができて使用できないものを×とし
た。 8 総合評価 つぶれ性、巻回性等の取扱い作業性、蒸着加
工性、絶縁破壊電圧及び絶縁破壊異常率等の電
気特性について総合的に評価して、いずれも良
好なものを◎、若干劣る面を有するが実用上問
題ないもの○、実用上問題のあるものを△、使
用に耐えないものを×とした。 〔実施例〕 以下、具体例により本発明を詳述するが、この
例は、どのような意味でも本発明を限定するもの
ではない。 実施例1〜7及び比較例1〜5 平均粒径0.8、1.0、1.3μmの炭酸カルシウムを
それぞれ表1に示す量含有し、極限粘度数〔オル
ソクロロフエノールを溶媒とし、25℃で測定〕で
0.65のポリエチレンテレフタレートを用い、これ
らポリエチレンテレフタレートを160℃で乾燥し
たのち280℃で溶融押出し、50℃に保持したキヤ
ステイングドラム上に急冷固化せしめ75μmの未
延伸フイルムを得た。 引続き未延伸フイルムを図3に示した如く4本
の加熱ローラー31,32,33及び34で予熱
したのち赤外線ヒーター38でフイルムを加熱し
ながらローラー34とローラー35の間で縦方向
に3.3倍の延伸倍率で1段延伸をした。更にこの
フイルムを105℃の温度で横方向に3.7倍に延伸
し、次いで220℃で熱処理を施した。なお、この
ときの延伸速度は55m/分であつた。 ここで、縦延伸時の加熱ローラー31〜34で
の予熱温度及び赤外ヒーター38の条件を変更し
なが、ローラー35直前のフイルム温度を変えて
製膜延伸した。 得られた2軸延伸フイルムの厚みは6μmで、
150℃における熱収縮率は縦方向1.6%、横方向
1.8%であつた。 このようにして得られたフイルムをアルミニウ
ム蒸着し、20mm巾スリツトし、素子に巻回、プレ
スして素子を偏平につぶした。これにより蒸着加
工性、素子端面不揃い、偏平化後の素子端面形状
の評価を行ない、その結果を表1に示した。な
お、蒸着加工性は実施例、比較例ともすべて良好
であつた。
[Industrial Field of Application] The present invention relates to a polyester film for capacitor dielectrics, and more specifically, it has excellent processability during capacitor manufacturing, has a high dielectric breakdown voltage when used in capacitors, has few insulation defects, and is suitable for capacitor dielectrics. This invention relates to a biaxially oriented polyester film that is extremely excellent as a body film. [Prior Art] A biaxially stretched film made of polyethylene terephthalate is used as a dielectric material for capacitors because it has excellent mechanical properties, heat resistance, electrical properties, and the like. 5 to 5 when using the film as a dielectric of a capacitor.
There are two cases in which an element is made by stacking and winding a 10μ thick metallic electrode foil (aluminum is mainly used) and a 4 to 30μ thick film (called a foil-wound capacitor element), and when aluminum or zinc is directly applied to the film. There is a method in which the capacitor is vacuum-deposited and wound around an element (called a vapor-deposited film capacitor element). Vapor-deposited film capacitor elements are particularly prized for miniaturizing capacitors, but one of the important requirements in the capacitor manufacturing process is that the element should have good windability and crushability. It is. In other words, the film after vapor deposition is wound around a core (winding process), then pulled out from the core, pressed to flatten the element (called press process), and soldered to attach lead wires. like,
A process of spraying metal particles onto both end faces of the flattened element (called a metallicon process) must be performed. Furthermore, since some foil-wound capacitor elements undergo a pressing process or metallicon process, they are required to have good windability and crushability.
Here, "good winding properties" means that the film does not meander or shift at the edges when the film is wound onto a capacitor element using a winding machine, and "good crushability" means that the film is rolled uniformly. It is possible to flatten the element without applying too much load, and there is no gap in the end face of the element after pressing, through which metal particles can enter during the metallicon process. If the winding properties are poor, the crushability is poor, and there are voids on the end face, metallicon particles will enter, causing deterioration of the insulation resistance and dielectric loss tangent, and the product will be defective. In order to improve the windability and chafing properties, it is essential to improve the slipperiness of the film used as a dielectric, and to meet this requirement, fine inorganic particles are added to the polymer. Protrusions have been imparted to the film surface by adding or forming insoluble catalyst residues in the polymer. As mentioned above, by adding an inert inorganic compound to the polymer, forming an insoluble catalyst residue, and forming many protrusions on the film surface, the processability (for example, the windability and crushability of the film) can be improved. Although the performance is good to some extent, on the other hand, the dielectric breakdown voltage decreases, the dielectric breakdown abnormality rate increases, and the performance as a capacitor element decreases. On the other hand, if an attempt is made to make the film surface smooth in order to increase the dielectric breakdown voltage and suppress the dielectric breakdown abnormality rate, the processability will decrease. [Object of the Invention] An object of the present invention is to solve the above-mentioned problems and provide a biaxially stretched polyester film for capacitor dielectrics that has excellent processability, high dielectric breakdown voltage, and few insulation defects. . [Structure/effect of the invention] According to the invention, the object of the present invention is to
It is a 12 μm biaxially stretched polyester film, and its surface has the following characteristics (1) to (3): (1) Surface roughness Ra value [X: μm] is in the following range: 0.019≦X≦0.046 (2 ) Number of surface protrusions with a height of 0.5 to 0.7 μm [Y: pieces/
mm 2 ] and the number of surface protrusions with a height of 1.1 μm or more [Z:
/ mm2 ] is in the following range: Y≧100 Z≦11 (3) At least a part of the above protrusion is an uneven unit consisting of a protrusion and a depression formed around the protrusion with the protrusion as the core. This is achieved by a polyester film for capacitor dielectric material, which is characterized in that it is formed and present. The polyester in the present invention refers to a polyester whose main acid component is an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, etc., and a polyester such as ethylene glycol, diethylene glycol, tetramethylene glycol, neopentylene glycol, etc. It is a polyester whose main diol component is glycol. The polyester can be produced, for example, by directly polycondensing an aromatic dicarboxylic acid and a glycol, or by transesterifying an aromatic dicarboxylic acid dialkyl ester with a glycol and then polycondensing it, or by polycondensing an aromatic dicarboxylic acid dialkyl ester and a glycol. It can also be produced by a method such as polycondensation of glycol esters. Typical examples of the polyester include polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and the like. The polyester may be a homopolymer and may contain 15 mole percent of the dicarboxylic acid component.
It may be a copolymerized polyester in which the following is a non-aromatic dicarboxylic acid component and/or 15 mol% or less of the diol component is a diol component other than aliphatic glycol. Furthermore, the polyester is blended with other polymers in a proportion of 15% by weight or less (preferably 10% by weight or less) based on the total amount.
It also includes so-called polymer blends. Examples of other polymers that can be blended include polyamides, polyolefins, and other types of polyesters (including polycarbonate). Further, the polyester may contain additives such as stabilizers, colorants, and antioxidants, if necessary. The protrusions on the surface of the film of the present invention are formed from particles of an inorganic compound added to the polymer; particles based on insoluble catalyst residues produced during polymerization of the polymer; or particles of both. A part or all of these protrusions become protrusions constituting a concavo-convex unit. In addition, the depressions that make up the unevenness unit are
In the process of stretching the film, instead of the concave shape created by mechanical stamps such as conventional embossing,
It is formed by the deformation of the film itself. When an unstretched film containing particles is stretched in the uniaxial direction, the polymer is plastically deformed without deforming the particles, so usually voids are formed at the boundary between the polymer and particles during large deformation (stretching), although it depends on the conditions. occurs. The film containing these voids is then stretched in a direction approximately perpendicular to the uniaxial stretching direction (second axial direction).
When the film is made into an axially oriented film, the voids that were created during the uniaxial stretching are further deformed in the second axial direction, as shown in Figure 1-
As shown in FIG. 1, a void 22 is formed around the protrusion 21 in a quasi-circular shape. In this case, as shown in the cross-sectional view of Figure 1-2, the particles existing in the shallow part near the film surface and the surrounding poids produce protrusions with the particles as the nucleus, but no depressions are formed around the particles. . In the present invention, the depressions in the unevenness unit are obtained by changing the above-mentioned voids to depressions on the film surface.
When an unstretched film is uniaxially stretched, the film is preheated to a high temperature before stretching, or (and) the stretching ratio is set low, so that the film that has undergone the 1st axial stretching has particles (inorganic Voids are substantially not formed around external particles due to additives or internal particles containing catalyst residues.
Next, when the stretched film in this state is stretched in the second axial direction, a depressed portion (depression) of the film with the particles as a nucleus is formed along the second axial direction. The major axis of the elliptical depression is along the second axis direction. Even if slight voids are formed around the particles during the first axial stretching, depressions are formed with these particles as cores. Figure 2 shows the unit of unevenness on the film surface after biaxial stretching.
-1 (top view), and if the stretching conditions are such that stress is concentrated around the particles during the second axis stretching, the depressed portion will be deeply depressed and extend in the second axis direction according to the degree of stress concentration. The major axis tends to increase along the length. FIG. 2-2 (cross-sectional view) shows a cross section of the film near the surface, in which protrusions 21 containing particles and depressions 24 formed around the protrusions 21 are formed in the polyester film 23. In the present invention, the depression formed around the protrusion includes a pseudo-elliptical shape eccentric in the second axis direction. The film of the present invention has a surface with a height of 0.5 to
The number (Y) of 0.7 μm surface projections is 100 (pieces/mm 2 ) or more, preferably 140 (pieces/mm 2 ) or more, and the height is 1.1 μm.
The number (Z) of the above surface protrusions is 11 (pieces/mm 2 ) or less, preferably 7 (pieces/mm 2 ) or less. At least some of these protrusions exist forming uneven units. The number of these uneven units is 5 pieces/ mm2 or more, and even 15 pieces/mm2 or more.
It is preferable that it is at least mm 2 . Furthermore, the above-mentioned film needs to have surface characteristics such that the surface roughness Ra value (X) is in the range of 0.019 to 0.046 (μm), preferably in the range of 0.023 to 0.039 (μm). Ra value:
If X is too large or too small, it is difficult to achieve the object of the present invention. Similarly, if there are too few surface protrusions Y or too many surface protrusions Z, it is difficult to achieve the object of the present invention. Next, an example of the method for forming a polyester film of the present invention will be specifically explained, but the present invention is not limited to this example. The average particle size of kaolin, calcium carbonate, etc.
When stretching an unstretched polyester film containing 0.10 to 1.0% by weight of fine particles of 0.10 to 3.0 μm (preferably 0.3 to 1.5 μm) in the first axial direction,
Preheat to 100-125°C. When this unstretched film is preheated to about 100 to 125°C, a hard chromium-plated roll or a ceramic roll with a matte surface is preferred. The unstretched film can reach a predetermined preheat loss without sticking to the roll surface and under conditions where substantial crystallization does not occur. Of course, the unstretched film can be preheated in a non-contact manner. The unstretched film is stretched at a temperature of 100 to 125°C at a stretching ratio of 3.4 times or less (preferably 2.6 to 3.2 times). The drawing speed is preferably relatively slow, and preferably does not exceed 180 m/mm. Usually 50-140
A drawing speed of about m/mm is selected, and if the drawing speed is low, the drawing temperature can be moved to a slightly lower temperature side. Next, the second stretching is performed by cooling the uniaxially oriented film below the glass transition point or preheating it to a temperature of 100 to 150°C without cooling, and then stretching the uniaxially oriented film at approximately the same temperature. Stretch 3.0 to 4.0 times (preferably 3.2 to 3.8 times) in the direction. When the temperature of the second axis stretching is high, the boundary between the concave portions of the concavo-convex unit becomes clear, but at low temperature, the boundary is often not clear. The stretching ratio in the second axis direction does not significantly affect the frequency of occurrence of uneven units. If this biaxially stretched film has insufficient mechanical strength in the first axial direction, it can be further stretched in this direction.
It is also possible to re-stretch the film by about 1.1 to 1.6 times at a temperature of about 120 to 170°C. The biaxially oriented polyester film, which has been subjected to two-stage stretching and, if necessary, three-stage stretching, is heated at 180 to 240°C (preferably
Heat setting can be performed at a temperature of 190 to 210°C for about 0.2 to 10 seconds. In addition, the third stage in the three-stage stretching
Stage (first axial direction) re-stretching can also be carried out on a film that has undergone heat setting. The direction in which the first axial stretching is applied may be either the machine direction or the width direction of the film. Further, the second axial stretching direction is preferably approximately perpendicular to the first axial direction. Of course, high-stage (multi-stage) stretching in which stretching is further performed in the first axial direction and/or the second axial direction can be performed. In this case as well, the uneven units on the film surface remain as they are even if their shapes are slightly deformed. By appropriately combining the above-mentioned stretching conditions and stretching methods, the unevenness unit can have an appropriate frequency,
Furthermore, it is possible to produce a polyester film that satisfies the surface roughness Ra and the numbers Y and Z of surface protrusions. When there is an uneven unit on the film surface consisting of protrusions originating from fine particles and depressions formed around the protrusions as if they were nuclear protrusions, the same phenomenon as the plastic deformation that forms these depressions occurs due to the formation of the microparticles in the film. Therefore, voids do not exist or their proportion is small around the fine particles in the film, and at the same time, the refractive index in the film thickness direction becomes high. The polyester film of the present invention has all of these characteristics. For example, while the refractive index in the thickness direction of a conventional polyethylene terephthalate film for capacitor dielectrics is 1.492 or less, the refractive index in the thickness direction of the polyethylene terephthalate film of the present invention is high in the range of 1.493 to 1.499. This is extremely advantageous for increasing dielectric breakdown voltage and reducing insulation defects. The method for measuring physical properties in the present invention is shown below. 1 Surface roughness (Ra) Center line parallel roughness: Ra (unit: μm) JIS-
Value defined in clause 5 of B0601. Measurement conditions Cutoff value: 0.25mm Measurement length: 2.5mm 2 Number of surface protrusions (Y, Z) After applying aluminum vapor deposition to the film surface, interference fringes are produced at a measurement wavelength of 0.54 μm using multiple interference method, and the interference fringes are photographically projected. Then, count the number of secondary interference fringes and let the number be Y [pieces/mm 2 ],
Count the number of interference fringes of order 4 or higher, and calculate the number by Z
(pieces/mm 2 ). 3 Measurement of unevenness Take a photo of the film surface with a thin layer of aluminum vapor deposited on it using a differential interference microscope (for example, Nikon differential interference microscope R type), and measure its size on a scale. 4. Dielectric breakdown voltage and dielectric breakdown abnormality rate Dielectric breakdown voltage was measured by the method shown in JIS-C-2318. The average value of n = 100 was adopted. and the percentage (%) of those showing a value less than 1/3 of this average value.
Let be the dielectric breakdown abnormality rate. 5 Thermal shrinkage rate Film samples with a size of 350 mm x 350 mm were placed with gauges at a distance of 300 mm in the center in both the vertical and horizontal directions, and 10 samples were placed in a hot air constant temperature oven made by Tester Sangyo set at 150°C. was suspended without tension, held for 2 hours, taken out, the distance between the gauge points was measured again, and the heat loss rate was calculated using the following formula, and expressed as the average value of n=10. Thermal contraction rate (%) = L 0 - L / L 0 × 100 [However, L 0 : Original length (distance between gauges 300 mm) L: Length after test (unit: mm)] 6 Evaluation of vapor deposition processability Aluminum vapor deposition is performed on the original film with a film width of 500 mm and a winding length of 20,000 m to improve aluminum purity.
99.99%, evaporation source temperature 1400℃, distance between evaporation surface and film surface 350mm, incident angle 40°, degree of vacuum 5×
Aluminum evaporation was performed under the conditions of 10 -5 Torr, evaporation speed 300m/mm, evaporation tension 20Kg, and evaporation thickness 100mμ. Regarding the evaporation processability of the original film, those that did not have any horizontal wrinkles during the evaporation processing were evaluated as ◎ and slightly horizontal. If wrinkles occur but do not lead to deposition spots or slit defects after deposition, horizontal wrinkles or, in some cases, vertical wrinkles occur, and deposition spots or slit defects after deposition occur frequently.
Items that could not be used were marked as ×. 7 Evaluation of element end face irregularities and element end face shape after flattening A film of 4 to 12μ was deposited with aluminum,
A slit of 20 mm width is wound around a core with an outer diameter of 3 mm to a length of 4 m at a winding tension of 40 g and a winding speed of 30 cm/sec. What is attached○
There are some irregularities, but the degree of such irregularities is small and there is no problem in practical use, and those that are rated △, and those that cannot be used, are rated ×. When the element is flattened by pressing, the shape of the element end face after flattening is evaluated as ○, if the film layers are flattened in a straight line and uniformly, and there are no gaps.
A film in which a slight gap was observed in some parts but did not pose any practical problem was rated Δ, and a film unusable due to non-uniform crushing and gaps between film layers was rated ×. 8 Comprehensive evaluation Comprehensive evaluation of handling workability such as crushability and windability, vapor deposition workability, electrical properties such as dielectric breakdown voltage and dielectric breakdown abnormality rate, and ◎ is good in all, and ◎ is slightly poor. ○ indicates that there is no problem in practical use, △ indicates that there is a problem in practical use, and × indicates that it cannot withstand use. [Example] Hereinafter, the present invention will be explained in detail with reference to specific examples, but these examples are not intended to limit the present invention in any way. Examples 1 to 7 and Comparative Examples 1 to 5 Calcium carbonate with average particle diameters of 0.8, 1.0, and 1.3 μm was contained in the amounts shown in Table 1, and the intrinsic viscosity was [measured at 25°C using orthochlorophenol as a solvent].
Using polyethylene terephthalate having a molecular weight of 0.65, the polyethylene terephthalate was dried at 160°C, melt-extruded at 280°C, and rapidly solidified on a casting drum kept at 50°C to obtain an unstretched film of 75 μm. Subsequently, the unstretched film was preheated by four heating rollers 31, 32, 33 and 34 as shown in FIG. One stage of stretching was performed at the stretching ratio. Further, this film was stretched 3.7 times in the transverse direction at a temperature of 105°C, and then heat-treated at 220°C. Note that the stretching speed at this time was 55 m/min. Here, while the preheating temperature of the heating rollers 31 to 34 during longitudinal stretching and the conditions of the infrared heater 38 were not changed, the film temperature immediately before the roller 35 was changed to form and stretch the film. The thickness of the obtained biaxially stretched film was 6 μm,
Thermal shrinkage rate at 150℃ is 1.6% in the vertical direction and 1.6% in the horizontal direction.
It was 1.8%. The film thus obtained was deposited with aluminum, slit to a width of 20 mm, wound around an element, and pressed to flatten the element. As a result, the vapor deposition processability, irregularities on the device end faces, and the shape of the device end faces after flattening were evaluated, and the results are shown in Table 1. Incidentally, the vapor deposition processability was good in both Examples and Comparative Examples.

【表】【table】

【表】 表1から、実施例1〜7のものがコンデンサー
誘電体用フイルムとしてすぐれた特性を有してい
ることがわかる。更に、第1段延伸温度が85℃の
場合フイルム表面に凹凸単位が全く発生せず、
100℃では凹凸単位が極くわずかに発生する傾向
を示し、105℃、115℃と高くなるにつれてより多
くの凹凸単位が生じていることがわかる。 実施例8〜13及び比較例6〜10 平均粒径0.9μmのカオリンを表2に示す量含有
し、極限粘度数0.65のポリエチレンテレフタレー
トを用いる以外は実施例1〜7と同様に行つた。
なお縦延伸時のフイルム温度は表2に示す温度と
した。 得られたフイルムの特性は表2に示す。
Table 1 shows that Examples 1 to 7 have excellent properties as capacitor dielectric films. Furthermore, when the first stage stretching temperature was 85°C, no uneven units were generated on the film surface;
It can be seen that at 100°C, very few uneven units tend to occur, and as the temperature increases to 105°C and 115°C, more uneven units occur. Examples 8 to 13 and Comparative Examples 6 to 10 The same procedures as Examples 1 to 7 were carried out except that kaolin having an average particle size of 0.9 μm was contained in the amount shown in Table 2, and polyethylene terephthalate having an intrinsic viscosity of 0.65 was used.
The film temperature during longitudinal stretching was as shown in Table 2. The properties of the obtained film are shown in Table 2.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図−1は粒子の周りに出来たボイドの状態を示
し、図1−1は平面図、第1−2は断面図であ
る。図−2は粒子を含む突起とその周辺に窪が形
成された状態を示し、図2−1は平面図、図2−
2は断面図である。図−3は本発明の実施例に用
いた延伸機の模式図である。図−4は従来技術に
よるポリエステルフイルムの表面を示す顕微鏡写
真であり、図−5は本発明のポリエステルフイル
ムの表面の顕微鏡写真である(いずれも拡大倍率
900倍)。
Fig. 1 shows the state of voids formed around particles, Fig. 1-1 is a plan view, and Fig. 1-2 is a cross-sectional view. Figure 2 shows a projection containing particles and a depression formed around it, Figure 2-1 is a plan view, and Figure 2-
2 is a sectional view. FIG. 3 is a schematic diagram of a stretching machine used in an example of the present invention. Figure 4 is a micrograph showing the surface of a polyester film according to the prior art, and Figure 5 is a micrograph showing the surface of a polyester film of the present invention (both are magnifications
900 times).

Claims (1)

【特許請求の範囲】 1 2軸延伸ポリエステルフイルムであつて、こ
の表面は下記(1)〜(3)の特性 (1) 表面粗さRa値〔X:μm〕が次の範囲にあ
る 0.019≦X≦0.046 (2) 高さ0.5〜0.7μmの表面突起の数〔Y:個/
mm2〕及び高さ1.1μm以上の表面突起の数〔Z:
個/mm2〕が次の範囲にある Y≧100 Z≦11 (3) 上記突起の少なくとも一部は、突起とその周
囲に該突起を核とするごとく形成された窪みと
からなる凹凸単位を形成して存在する を備えていることを特徴とするコンデンサー誘電
体用ポリエステルフイルム。
[Claims] 1. A biaxially stretched polyester film, the surface of which has the following properties (1) to (3): (1) Surface roughness Ra value [X: μm] is in the following range: 0.019≦ X≦0.046 (2) Number of surface protrusions with a height of 0.5 to 0.7 μm [Y: pieces/
mm 2 ] and the number of surface protrusions with a height of 1.1 μm or more [Z:
/ mm2 ] is in the following range: Y≧100 Z≦11 (3) At least a part of the above protrusion is an uneven unit consisting of a protrusion and a depression formed around the protrusion with the protrusion as the core. A polyester film for capacitor dielectric material, characterized in that it forms and exists.
JP22697985A 1985-10-14 1985-10-14 Polyester film for dielectric of capacitor Granted JPS6288207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22697985A JPS6288207A (en) 1985-10-14 1985-10-14 Polyester film for dielectric of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22697985A JPS6288207A (en) 1985-10-14 1985-10-14 Polyester film for dielectric of capacitor

Publications (2)

Publication Number Publication Date
JPS6288207A JPS6288207A (en) 1987-04-22
JPH0511369B2 true JPH0511369B2 (en) 1993-02-15

Family

ID=16853605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22697985A Granted JPS6288207A (en) 1985-10-14 1985-10-14 Polyester film for dielectric of capacitor

Country Status (1)

Country Link
JP (1) JPS6288207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004834A (en) * 2014-07-04 2016-01-13 주식회사 블루인더스 Industrial Safety Uniform having flame-retardant and ventilation function and the manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558306U (en) * 1992-01-10 1993-08-03 株式会社三協精機製作所 Printer
JP3829424B2 (en) * 1997-07-22 2006-10-04 東レ株式会社 Polyester film for capacitors and film capacitors
JP2005229104A (en) * 2004-01-13 2005-08-25 Toray Ind Inc Biaxial orientation polyester film for capacitor, metallized polyester film, and film capacitor
NO20085410A (en) * 2008-12-30 2010-04-19 Seaweed Energy Solutions As Carrier for growing macroalgae in the sea and an arrangement for releasing such carriers
JP6199711B2 (en) * 2013-11-26 2017-09-20 京セラ株式会社 Dielectric film and film capacitor
JP6430328B2 (en) * 2015-04-22 2018-11-28 ニチコン株式会社 Capacitor element manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120167A (en) * 1977-03-29 1978-10-20 Teijin Ltd Orientated polyester film for capacitor dielectric
JPS5579146A (en) * 1978-12-11 1980-06-14 Daiafoil Polyester film for evaporation of silver
JPS59203232A (en) * 1983-05-02 1984-11-17 Diafoil Co Ltd Polyester film for magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120167A (en) * 1977-03-29 1978-10-20 Teijin Ltd Orientated polyester film for capacitor dielectric
JPS5579146A (en) * 1978-12-11 1980-06-14 Daiafoil Polyester film for evaporation of silver
JPS59203232A (en) * 1983-05-02 1984-11-17 Diafoil Co Ltd Polyester film for magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004834A (en) * 2014-07-04 2016-01-13 주식회사 블루인더스 Industrial Safety Uniform having flame-retardant and ventilation function and the manufacturing method

Also Published As

Publication number Publication date
JPS6288207A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JPH054210B2 (en)
KR20120099546A (en) Polyester release film for forming green sheet
JPH0511369B2 (en)
KR100808996B1 (en) Polyester film for capacitors
JP2932550B2 (en) Biaxially stretched plastic film for capacitor and capacitor using the same
JP2008138103A (en) Biaxially oriented polyester film roll
JP2012171329A (en) Biaxially-oriented polyethylene film roll and method for forming the same
WO2021033494A1 (en) Polyester film roll
CA1043064A (en) Process for producing biaxially oriented films and shrinkable biaxially oriented films obtained thereby
JP3847551B2 (en) Polyester film for capacitors
JP2000150298A (en) Biaxially-oriented polyester film for capacitor
JP4387245B2 (en) Biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film for electrical insulation
JPS62259304A (en) Polyester film for capacitor dielectric
JPH0570295B2 (en)
JP3246132B2 (en) Polyester composition
JP3847550B2 (en) Polyester film for capacitors
JP2024006176A (en) polyester film roll
KR102201215B1 (en) Polyester film and manufacturing method thereof
JP6301711B2 (en) Oriented laminated polyester film
JPS59227421A (en) Polyester film
JP2000204177A (en) Biaxially oriented polyester film
JP3847552B2 (en) Polyester film for capacitors
JP2550745B2 (en) Polyester resin film
JPH1022169A (en) Biaxially oriented polyester film for capacitor
JP2003238034A (en) Polyester film roll for capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term