JPH05113271A - Absorption cooling device - Google Patents

Absorption cooling device

Info

Publication number
JPH05113271A
JPH05113271A JP3078599A JP7859991A JPH05113271A JP H05113271 A JPH05113271 A JP H05113271A JP 3078599 A JP3078599 A JP 3078599A JP 7859991 A JP7859991 A JP 7859991A JP H05113271 A JPH05113271 A JP H05113271A
Authority
JP
Japan
Prior art keywords
water
adsorbent
cooling
heat
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3078599A
Other languages
Japanese (ja)
Inventor
Harunobu Mizukami
春信 水上
Toshihiko Yamanaka
敏彦 山中
Yoshio Miyairi
嘉夫 宮入
Minoru Hanai
実 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3078599A priority Critical patent/JPH05113271A/en
Publication of JPH05113271A publication Critical patent/JPH05113271A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To increase the cooling capacity by coating a water-absorptive resin on inner surfaces of heat transfer tubes. CONSTITUTION:A water-absorptive polymer 564 is coated on the lower inner surface of an evaporation tube 562 and water-absorptive wicks 565 are closely attached on the surface of the water-absorptive polymer 564. Therefore, water is sucked up to an adequate height according to a capillary phenomenon of the water-absorptive polymer 564 and the wicks 565 formed on the inner surface. Thereby, the length of part of the evaporation tube 562 immersed in water is minimized and a liquid film is formed on the heat transfer surface by the wicks 565 so that a required amount of water is retained. As a result, liquid is uniformly, stably supplied over the whole heat transfer surface. Moreover, the voids inside the wicks 565 serve as vapor paths and causes vapor to escape easily, so that a maximum heat transfer amount can be achieved at a low pressure loss, thus the cooling capacity can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸着式冷却装置に関す
る。
FIELD OF THE INVENTION The present invention relates to an adsorption cooling device.

【0002】[0002]

【従来の技術】例えば、自動車,建設機械,マリンボー
ト等内燃機関を動力源とする乗り物の室内及び又は冷蔵
庫冷却用として、図2に示すように、フロンガスを冷媒
とし前記機関を動力源とする蒸気圧縮式冷却装置が従来
より知られている。この種の蒸気圧縮式冷却装置は、走
行乃至作業を目的とする機関の出力の一部を冷却のため
に使用するのであるから、機関の負担が増加するのみな
らず、燃料消費率を低下させる不具合があり、また最近
は専らフレオンを冷媒として使用するのでオゾン層破壊
の問題から総量規制、生産削減等の法規制が取られるに
至っている。
2. Description of the Related Art For cooling a room and / or a refrigerator of a vehicle powered by an internal combustion engine such as an automobile, a construction machine, a marine boat, etc., as shown in FIG. Vapor compression cooling devices have been known for some time. Since this type of vapor compression cooling device uses a part of the output of the engine for running or working for cooling, it not only increases the load on the engine but also reduces the fuel consumption rate. There are some problems, and recently, Freon is exclusively used as a refrigerant. Therefore, due to the problem of ozone layer depletion, regulations such as total amount control and production reduction have been taken.

【0003】そこで、これに対処する目的で、エンジン
の排熱を加熱部の熱源とする吸着式冷凍機を用い、フロ
ンガスを用いない自動車クーラーが、実開平01−12
6811号により提案されている。この提案は、図3に
示すように、蒸発部2と、蒸発部2から発生する冷媒蒸
気を吸着する吸着部3と、吸着した冷媒蒸気を加熱によ
り蒸発(脱着の意味と解される)させる加熱部4と、加
熱部からの蒸気を凝縮させる凝縮部5とを有する吸着式
冷凍機1を設けるとともに、蒸発部2の熱交換器6を自
動車室内冷房用の冷房回路7に接続し、吸着部3及び凝
縮部5の熱交換器8及び9を密閉型空冷回路10に接続
し、加熱部4の熱交換器11をエンジン熱供給回路12
に接続し、熱源として自動車エンジンの冷却排熱の一部
を利用するのである。
Therefore, for the purpose of coping with this, an automobile cooler that uses an adsorption refrigerator that uses exhaust heat of an engine as a heat source of a heating unit and does not use CFCs is disclosed in Japanese Utility Model No. 01-12.
No. 6811. In this proposal, as shown in FIG. 3, an evaporation unit 2, an adsorption unit 3 that adsorbs a refrigerant vapor generated from the evaporation unit 2, and an adsorbed refrigerant vapor are evaporated (understood as desorption) by heating. An adsorption refrigerator 1 having a heating part 4 and a condensing part 5 for condensing the vapor from the heating part is provided, and the heat exchanger 6 of the evaporating part 2 is connected to a cooling circuit 7 for cooling the interior of the vehicle for adsorption. The heat exchangers 8 and 9 of the section 3 and the condenser section 5 are connected to the closed air cooling circuit 10, and the heat exchanger 11 of the heating section 4 is connected to the engine heat supply circuit 12.
And uses part of the cooling exhaust heat of the automobile engine as a heat source.

【0004】この構造を詳説すると、図4に示すよう
に、吸着式冷凍機1はそれぞれ蒸気流路13により接続
された吸着剤槽14と蒸気槽15とを真空状態のもとに
密閉したまま両槽14,15に熱交換器を各別に設けて
なる2個の吸脱ユニットA,Bを設け、吸着剤槽14に
は冷媒例えば水を一定量吸着させたシリカ系の固体吸着
剤Sを充填する。そして吸脱ユニットAの吸着剤槽14
の熱交換器を加熱部4の熱交換器11としてエンジン熱
供給回路12に接続し、吸脱ユニットAの蒸気槽15と
吸脱ユニットBの吸着剤槽14とにおける熱交換器をそ
れぞれ熱交換器9,8として空冷回路10に接続して冷
却水を供給する。更に吸脱ユニットBの蒸気槽15の熱
交換器を蒸発部2の熱交換器6として冷房回路7に接続
する。
To explain this structure in detail, as shown in FIG. 4, in the adsorption refrigerator 1, the adsorbent tank 14 and the steam tank 15 which are connected to each other by the steam passage 13 are hermetically sealed in a vacuum state. Two adsorbing / desorbing units A and B, which are respectively provided with heat exchangers respectively, are provided in both tanks 14 and 15, and the adsorbent tank 14 is provided with a silica-based solid adsorbent S adsorbing a certain amount of a refrigerant, for example, water. Fill. And the adsorbent tank 14 of the adsorption / desorption unit A
Is connected to the engine heat supply circuit 12 as the heat exchanger 11 of the heating section 4, and the heat exchangers in the steam tank 15 of the adsorption / desorption unit A and the adsorbent tank 14 of the adsorption / desorption unit B are respectively heat-exchanged. The cooling water is supplied by connecting to the air cooling circuit 10 as the vessels 9 and 8. Further, the heat exchanger of the steam tank 15 of the adsorption / desorption unit B is connected to the cooling circuit 7 as the heat exchanger 6 of the evaporator 2.

【0005】このようにして、まず吸脱ユニットAの吸
着剤槽14内の固体吸着剤Sをエンジン熱の供給により
加熱し、吸着していた冷媒水分を蒸発させつつ蒸気流路
13を経て熱交換器9で凝縮させ(これを当出願人は脱
着という)、かつ吸脱ユニットBにおいては、吸脱ユニ
ットAの脱着完了の下に、吸着剤槽14の熱交換器8に
30℃程度の冷水を供給し、蒸気槽15の熱交換器6に
は冷房回路7の冷水を通じることにより、冷媒蒸気の吸
着作用を発揮させて、蒸気槽15の熱交換器6に凝縮し
ていた冷媒水を蒸発させ、そのときの潜熱で冷房回路7
の冷水を8℃程度まで冷却する。ここで、熱交換器11
と8,9と6は対交換して運転され、蒸気流路13によ
り接続された吸着剤槽14と蒸気槽15とを真空状態の
もとに密閉したまま両槽14,15に熱交換器を各別に
設け、吸着剤槽14には冷媒例えば水を一定量吸着させ
たシリカ系の固体吸着剤Sを充填し、吸脱ユニットA,
Bの吸着剤槽14は交互に加熱と冷却を受け、対応する
蒸気槽15はそれぞれ凝縮部5(凝縮器)及び蒸発部2
(蒸発器)として交互に作用し、冷房回路は常に蒸発部
に切り替え接続することで、蒸発部の冷媒の蒸発に伴う
潜熱により効果的な冷房作用を行うのである。
In this way, first, the solid adsorbent S in the adsorbent tank 14 of the adsorption / desorption unit A is heated by the supply of engine heat to evaporate the adsorbed refrigerant moisture and heat it through the vapor flow path 13. After condensing in the exchanger 9 (this is called desorption by the applicant), and in the adsorption / desorption unit B, after the desorption of the adsorption / desorption unit A is completed, the heat exchanger 8 of the adsorbent tank 14 is heated to about 30 ° C. By supplying cold water and passing the cold water of the cooling circuit 7 through the heat exchanger 6 of the steam tank 15, the refrigerant water is made to exhibit the adsorbing action of the refrigerant steam and condensed in the heat exchanger 6 of the steam tank 15. And the latent heat at that time causes the cooling circuit 7 to evaporate.
The cold water in the above is cooled to about 8 ° C. Here, the heat exchanger 11
And 8, 9 and 6 are operated in pairs, and the adsorbent tank 14 and the steam tank 15 connected by the steam flow path 13 are hermetically sealed under a vacuum condition to both tanks 14 and 15. The adsorbent tank 14 is filled with a silica-based solid adsorbent S that adsorbs a certain amount of a refrigerant, for example, water.
The adsorbent tank 14 of B is alternately heated and cooled, and the corresponding steam tanks 15 are respectively condensed by the condenser 5 (condenser) and the evaporator 2.
By alternately operating as an (evaporator) and switching and connecting the cooling circuit to the evaporating section at all times, an effective cooling operation is performed by latent heat accompanying evaporation of the refrigerant in the evaporating section.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな吸着式冷凍機1はそれぞれ吸着剤槽14と蒸気槽1
5を蒸気通路13で一体に連結してなる吸脱ユニット
A,Bを2基必要とするので、現在入手し得る固体吸着
剤Sの吸着量特性では、吸着剤槽14はかなり大きな容
積を必要とし、蒸発の潜熱を取り出すための熱交換器の
所要面積もかなり大きくなる。自動車用のように、小
型,軽量,低燃費(高性能),無公害を商品価値の判断
尺度に持ち、各種機器の装着密度の極めて高い用途に対
しては、低燃費及びフロンガスに対する無公害の点でこ
の提案は優れているが、下記のように、改善すべき点も
ある。 (1) 内燃機関を動力源とする乗り物その他設備等では、
前記機関を冷却するための冷却水から得られる排熱を利
用するだけでは、所要温度レベルと熱量がアイドリング
運転時に不足する。 (2) 吸着剤槽14と蒸気槽15を一体的に構成すること
は、装着の自由度を制約する。 (3) 冷房回路の熱交換器22と吸着式冷凍機1の蒸発部
2(蒸気器)を兼用することが有利である。 (4) 脱着に便利な熱源としては、固体吸着剤の呼吸量を
多くして蒸発に寄与する冷媒量を多くし、冷房能力を大
きくするには、脱着温度は高いのが好ましく、機関の冷
却水に基づく機関排熱だけでは不十分の場合は機関の排
熱が保有する熱も併用するのが望ましい。
However, such an adsorption type refrigerator 1 has an adsorbent tank 14 and a steam tank 1, respectively.
Since two adsorbing / desorbing units A and B in which 5 are integrally connected by the vapor passage 13 are required, the adsorbent tank 14 requires a considerably large volume in the adsorbing amount characteristics of the solid adsorbent S currently available. Therefore, the required area of the heat exchanger for taking out latent heat of vaporization becomes considerably large. It has small size, light weight, low fuel consumption (high performance), and no pollution as criteria for evaluating the product value, such as for automobiles, and it has low fuel consumption and no pollution to CFCs for applications with extremely high mounting density of various equipment. Although this proposal is excellent in terms of points, there are some points to be improved as described below. (1) For vehicles and other equipment powered by an internal combustion engine,
Only by using the exhaust heat obtained from the cooling water for cooling the engine, the required temperature level and the amount of heat are insufficient during idling operation. (2) The integral construction of the adsorbent tank 14 and the steam tank 15 limits the degree of freedom of mounting. (3) It is advantageous to use both the heat exchanger 22 of the cooling circuit and the evaporation section 2 (steamer) of the adsorption refrigerator 1. (4) As a convenient heat source for desorption, it is preferable that the desorption temperature is high in order to increase the amount of refrigerant that contributes to evaporation by increasing the breathing amount of the solid adsorbent and to increase the cooling capacity. If the engine exhaust heat based on water is not sufficient, it is desirable to use the heat of the engine exhaust heat in combination.

【0007】そこで、本出願人はさきに特願平2−32
4856号をもって下記するような吸着式冷凍装置を提
案した。すなわち、図5において、100A,100B
はそれぞれ吸着剤充填槽、101は吸着剤充填槽内の空
所、110は熱交換部材、120は固体吸着剤、130
は筒状容器、131A、131Bは熱媒体供給口、20
0は加熱用熱媒体回路、210は機関の冷却水循環回
路、211は機関、212はラジエーター、213は分
流弁、214はポンプ、215はパイピング、220は
排気熱交換器、300は冷却水循環回路、310は空気
冷却器、320はポンプ、400は凝縮器、500は凝
縮液体貯留容器、600は蒸発器、601はドレン、6
11はダクト、612は送風機、700は4方切替弁、
800は密閉循環系形成手段、810は蒸気通路、81
1は絞り弁、900は加熱用熱媒体回路200の方向切
替弁、1000は冷却水循環回路300の方向切替弁、
1100は水冷媒(吸着質)である。
Therefore, the present applicant has previously filed Japanese Patent Application No. 2-32.
With the No. 4856, the following adsorption type refrigeration system was proposed. That is, in FIG. 5, 100A, 100B
Is an adsorbent filling tank, 101 is a space in the adsorbent filling tank, 110 is a heat exchange member, 120 is a solid adsorbent, and 130 is a solid adsorbent.
Is a cylindrical container, 131A and 131B are heat medium supply ports, 20
Reference numeral 0 is a heating heat medium circuit, 210 is an engine cooling water circulation circuit, 211 is an engine, 212 is a radiator, 213 is a flow dividing valve, 214 is a pump, 215 is piping, 220 is an exhaust heat exchanger, 300 is a cooling water circulation circuit, 310 is an air cooler, 320 is a pump, 400 is a condenser, 500 is a condensed liquid storage container, 600 is an evaporator, 601 is a drain, 6
11 is a duct, 612 is a blower, 700 is a 4-way switching valve,
800 is a closed circulation system forming means, 810 is a steam passage, 81
Reference numeral 1 is a throttle valve, 900 is a direction switching valve of the heating medium circuit 200 for heating, 1000 is a direction switching valve of the cooling water circulation circuit 300,
1100 is a water refrigerant (adsorbate).

【0008】この吸着式冷却装置は2基の吸着剤充填槽
100A,100Bのそれぞれ内部と固体吸着剤120
のなす空所101は、4方切替弁900を介して単一の
蒸気通路810で連結され、各吸着剤充填槽100A,
100Bの熱交換部材110は入口及び出口側で夫々加
熱用熱媒体回路200と冷却水循環回路300に、方向
切替弁900及び1000を介して並列接続され、方向
切替弁の選択的切替えにより、一方の吸着剤充填槽を加
熱し他方を冷却することができる。凝縮器400、凝縮
液体貯溜容器500、蒸発器600は一方の吸着剤充填
槽の空所から他方の吸着剤充填槽の空所へ、密閉循環系
形成手段800と4方切替弁700を介して密閉的に連
結され、4方切替弁700の切替え操作により、脱着工
程にある吸着剤充填槽から脱着(又は放出)される吸着
質蒸気を、吸着工程にある吸着剤充填槽に向け一方向的
に蒸気通路810へ蒸気を供給する。蒸気通路810へ
供給された蒸気は凝縮器400で凝縮され、一旦凝縮液
体貯溜容器500に溜められた後、蒸発器600で冷却
負荷610から蒸発熱を奪って蒸発し、吸着工程にある
吸着剤充填槽内の吸着剤に吸着される。加熱用熱媒体回
路200は例えば乗り物の動力源となる内燃機関211
を冷却するための、ラジエーター212,ポンプ21
4,パイピング215よりなり、冷却水循環回路210
に排気熱交換器220を直列又は並列に接続して、分流
弁213を介して、ラジエーター212と吸着剤充填槽
を並列接続する。このようにして、機関211のシリン
ダー部を冷却して得られるより高温の熱源が得られる。
蒸発器600からの蒸気通路810の上流又は下流側に
は、負荷に適合した蒸気供給を行うため適宜絞り811
を設ける。蒸発器600の負荷は、例えばダクト611
を介し送風機612より送られる車室内の空気であり、
冷却に伴って当然ドレンが発生するので、これを空気冷
却器310及び又は凝縮器400すなわち冷却水循環回
路300の冷却に用いて性能向上を図る。なお、4方切
替弁700、方向切替弁900、1000は2方向弁を
用いて図6変形図に示すようにしても良い。
This adsorption-type cooling device includes two adsorbent-filled tanks 100A and 100B and a solid adsorbent 120, respectively.
The empty space 101 formed by is connected by a single steam passage 810 via a four-way switching valve 900, and each adsorbent filling tank 100A,
The heat exchange member 110 of 100B is connected in parallel to the heating heat medium circuit 200 and the cooling water circulation circuit 300 on the inlet side and the outlet side, respectively, via the direction switching valves 900 and 1000, and one of them is selectively switched by the direction switching valve. The adsorbent-filled tank can be heated and the other cooled. The condenser 400, the condensed liquid storage container 500, and the evaporator 600 are moved from the empty space of one adsorbent filling tank to the empty space of the other adsorbent filling tank via the closed circulation system forming means 800 and the four-way switching valve 700. The adsorbate vapor that is hermetically connected and desorbed (or released) from the adsorbent filling tank in the desorption process by the switching operation of the four-way switching valve 700 is unidirectionally directed toward the adsorbent filling tank in the adsorption process. To the steam passage 810. The vapor supplied to the vapor passage 810 is condensed in the condenser 400 and once stored in the condensed liquid storage container 500, and then the evaporator 600 removes the heat of vaporization from the cooling load 610 to evaporate the adsorbent in the adsorption step. Adsorbed by the adsorbent in the filling tank. The heating medium circuit 200 is, for example, an internal combustion engine 211 that serves as a power source for a vehicle.
Radiator 212 and pump 21 for cooling
4, piping 215, cooling water circulation circuit 210
The exhaust heat exchanger 220 is connected in series or in parallel, and the radiator 212 and the adsorbent filling tank are connected in parallel via the flow dividing valve 213. In this way, a higher temperature heat source obtained by cooling the cylinder portion of the engine 211 is obtained.
On the upstream side or the downstream side of the steam passage 810 from the evaporator 600, an appropriate throttle 811 is provided in order to supply steam suitable for the load.
To provide. The load of the evaporator 600 is, for example, the duct 611.
Air in the vehicle compartment sent from the blower 612 through
Since drainage naturally occurs with cooling, this is used for cooling the air cooler 310 and / or the condenser 400, that is, the cooling water circulation circuit 300 to improve performance. The four-way switching valve 700 and the directional switching valves 900 and 1000 may be two-way valves as shown in the modification of FIG.

【0009】ここで、冷媒として作用させる水を吸着質
とし、吸着剤を (a)JIS A型シリカゲル (b)モレキュラシブ13X (c)モレキュラシブ 4X としたときの吸着等温線を示すと、それぞれ図7、図
8、図9に示す通りである。例えばJIS A型シリカ
ゲルと水の場合は図7に示すように、 水蒸気分圧42.2mmHg(相当飽和温度35℃) 吸着剤温度85℃の時吸着量qt=85=5% 水蒸気分圧6.5mmHg(相当飽和温度5℃) 吸着剤温度35℃の時吸着量qt=35=9% とそれぞれ異なった吸着量を示す。そしてこの変化は可
逆変化であるから、吸着剤の温度とそれに対応する吸着
質の圧力を適宜選択すれば、所定量の吸着質の出し入れ
が可能となり、上記の例では吸着量の変化量(呼吸量と
も表現できる)Δqは4%、すなわち吸着剤1kg当たり
40gの水分量移動となる。各吸着剤の水分の平衡呼吸
量Δqを図10に示す。この装置では吸着剤と吸着質を
充填した容器の2基を設け、それぞれ容器内の吸着剤と
吸着質の界面の上記2水準の圧力と温度を、一方が高い
水準で脱着工程にあるとき他方が低い水準の吸着工程に
なるように選択的に切り替えることで、脱着工程にある
一方の容器内(又は容器内の吸着剤)から放出される蒸
気は吸着工程にある他方の容器内(又は容器内の吸着
剤)に吸引され、他方の容器(又は容器内の吸着剤)は
一種の吸引ポンプ的作用をする。容器へ又は容器からの
吸着質の移動は気相で進行するから、これが円滑に進よ
うに、つまり吸着質の吸着剤への接触と吸着剤からの分
離の均一化のために、容器内には吸着質蒸気の通路とな
る空所を設けここに連結する流路を介して蒸気移動がな
される。
Here, the adsorption isotherms when water acting as a refrigerant is an adsorbate and the adsorbent is (a) JIS A type silica gel (b) molecular 13X (c) molecular 4X are shown in FIG. As shown in FIGS. 8 and 9. For example, in the case of JIS A type silica gel and water, as shown in FIG. 7, water vapor partial pressure 42.2 mmHg (equivalent saturation temperature 35 ° C.) adsorbent temperature 85 ° C. adsorbed amount q t = 85 = 5% water vapor partial pressure 6 0.5 mmHg (equivalent saturation temperature 5 ° C.) When the adsorbent temperature is 35 ° C., the adsorption amount q t = 35 = 9%, which are different from each other. Since this change is a reversible change, it is possible to take in and out a predetermined amount of adsorbate by appropriately selecting the temperature of the adsorbent and the pressure of the corresponding adsorbate. Δq is 4%, that is, 40 g of water is transferred per 1 kg of the adsorbent. FIG. 10 shows the equilibrium respiration amount Δq of water of each adsorbent. This apparatus is provided with two containers, a container filled with an adsorbent and an adsorbate, and the above two levels of pressure and temperature at the interface between the adsorbent and the adsorbate in the container, respectively, when one is in the desorption process at a high level By selectively switching to a lower level adsorption process, the vapor released from one container (or the adsorbent in the container) in the desorption process is in the other container (or container) in the adsorption process. Is sucked by the adsorbent), and the other container (or the adsorbent in the container) acts as a kind of suction pump. The movement of the adsorbate to and from the container proceeds in the gas phase, so that it can proceed smoothly, that is, in order to make the contact of the adsorbate with the adsorbent and the separation from the adsorbent uniform, Is provided with a cavity serving as a passage for the adsorbate vapor, and vapor is moved through a flow path connected to the cavity.

【0010】吸着剤界面への熱量の供給と除去:吸着剤
の温度を上げ下げするためには、加熱のために熱源と冷
却のための冷却源を要し、そのために筒状容器130の
内部に、吸着剤が熱交換部材110の表面を覆うように
熱交換部材110を設け、その内部に熱媒体通路を内蔵
し熱媒体供給口131A,131Bを介して外部と連通
する。この外部をそれぞれ吸着剤充填槽100A,10
0Bの熱媒体供給口131A,131Bの入口と出口を
加熱用熱媒体回路200と冷却水循環回路300に並列
的に選択接続する1対の方向切り替弁900,1000
に接続することで、加熱源である高温液状の加熱用熱媒
体回路200と冷却源である空気冷却器310を有する
冷却水循環回路300に選択的に接続し加熱と冷却を行
う。その結果、一方の吸着剤の界面では脱着、他方の吸
着剤の界面では吸着が進行する。
Supply and removal of heat from the adsorbent interface: In order to raise or lower the temperature of the adsorbent, a heat source for heating and a cooling source for cooling are required. The heat exchange member 110 is provided so that the adsorbent covers the surface of the heat exchange member 110, and the heat medium passage is built in the heat exchange member 110 and communicates with the outside through the heat medium supply ports 131A and 131B. The adsorbent filling tanks 100A, 10
A pair of directional switching valves 900, 1000 for selectively connecting the inlets and outlets of the heat medium supply ports 131A, 131B of 0B to the heating heat medium circuit 200 and the cooling water circulation circuit 300 in parallel.
By connecting to the cooling water circulation circuit 300 including the heating medium circuit 200 for heating, which is a heating source of high temperature liquid, and the air cooler 310, which is a cooling source, heating and cooling are performed. As a result, desorption occurs at the interface of one adsorbent and adsorption progresses at the interface of the other adsorbent.

【0011】吸着質蒸気の凝縮と蒸発:脱着と吸着に伴
う吸着質蒸気の単なる移動では熱力学的冷却作用は起こ
らないので、吸着質の潜熱を取り出すには脱着により得
られる吸着質蒸気を冷却して一旦凝縮させた後、これを
蒸発させる工程が不可欠である。この脱着蒸気の凝縮
を、空気冷却器310を有する冷却水循環回路300で
冷却される凝縮器400を介して行い、凝縮器400で
凝縮した液化吸着質を蒸発器600で蒸発させ、所望の
媒体から熱を奪う、すなわち冷却作用を取り出す。その
際、凝縮器400と蒸発器600の圧力は動作変数とし
て気液平衡の関係から、例えば凝縮温度35℃なら4
2.2mmHg,蒸発温度 5℃なら 6.5mmHg,と
なり、熱の授受を伴うこの条件を満たすように、凝縮器
400と蒸発器600を設計する。
Condensation and evaporation of adsorbate vapor: Since the thermodynamic cooling action does not occur by simply moving the adsorbate vapor accompanying desorption and adsorption, the adsorbate vapor obtained by desorption is cooled in order to extract the latent heat of the adsorbate. Then, a process of once condensing and then evaporating this is indispensable. This desorption vapor is condensed through the condenser 400 cooled by the cooling water circulation circuit 300 having the air cooler 310, and the liquefied adsorbate condensed in the condenser 400 is evaporated in the evaporator 600, so that the desired medium is removed. It takes away heat, that is, takes out the cooling action. At that time, the pressures of the condenser 400 and the evaporator 600 are 4 as long as the condensation temperature is 35 ° C., for example, from the gas-liquid equilibrium relationship as an operating variable.
The temperature is 2.2 mmHg, and if the evaporation temperature is 5 ° C., it is 6.5 mmHg, and the condenser 400 and the evaporator 600 are designed so as to satisfy this condition involving heat transfer.

【0012】蒸気流路の切り替え:2基の吸着剤充填槽
の内部は4方切替弁700の2つの流路を介して連通
し、4方切替弁700の流路のうち他の2つの流路は、
一方から他方に向かって、凝縮器400、液体貯溜用容
器500、蒸発器600の順に連結する密閉循環系形成
手段800により密閉的に連結されて単一の蒸気流路を
形成する。そしてこれらは単一の蒸気流路を形成し、2
基の吸着剤充填槽がそれぞれ脱着と吸着を交互に繰り返
すのに対し、常に脱着側の吸着剤充填槽の空所は凝縮器
400の入口側に、吸着側の吸着剤充填槽の空所は蒸発
器600の出口側に連結され、一方向蒸気流を生成す
る。
Switching of vapor flow paths: The insides of the two adsorbent-filled tanks are communicated with each other through the two flow paths of the four-way switching valve 700 and the other two flow paths of the four-way switching valve 700. The road is
From one side to the other side, the condenser 400, the liquid storage container 500, and the evaporator 600 are hermetically connected by the closed circulation system forming means 800 that is connected in this order to form a single vapor flow path. And they form a single vapor flow path,
Whereas the base adsorbent filling tank alternately repeats desorption and adsorption, the desorption side adsorbent filling tank is always on the inlet side of the condenser 400 and the adsorption side adsorbent filling tank is on the adsorbent side. It is connected to the outlet side of the evaporator 600 and produces a one-way steam flow.

【0013】脱着と吸着作用切替えに伴う蒸気流量変動
の抑制:液体貯溜用容器500は2基の吸着剤充填槽の
脱着と吸着に交互に切替えしたとき、蒸気流路内の蒸気
量変動を抑制するバッファーの作用を行う。
Suppression of variation in vapor flow rate due to switching of desorption and adsorption: When the liquid storage container 500 is alternately switched between desorption and adsorption of two adsorbent-filled tanks, variation in vapor amount in the vapor passage is suppressed. Acts as a buffer.

【0014】冷却作用:凝縮器400で液化された吸着
質は蒸発器600の入口部でその圧力飽和温度まで自己
冷却し、その後、冷却負荷である媒体から熱を奪って蒸
発する。例えば蒸発圧力飽和温度が5℃のとき、水の蒸
発潜熱は1968年日本機械学会蒸気表により594.
6Kcal /kgであるから、単位重量(1kg)の吸着剤当
たり23.8Kcal の冷却効果を得る。
Cooling action: The adsorbate liquefied in the condenser 400 self-cools to its pressure saturation temperature at the inlet of the evaporator 600, and then takes heat from the medium, which is a cooling load, and evaporates. For example, when the vaporization pressure saturation temperature is 5 ° C., the latent heat of vaporization of water is 594.
Since it is 6 Kcal / kg, a cooling effect of 23.8 Kcal per unit weight (1 kg) of the adsorbent is obtained.

【0015】内燃機関の排熱回収:自動車、建設機械、
マリンボート等内燃機関を動力源とする乗り物の、又は
ディーゼル発電機等を装備する設備等に用いられる内燃
機関の冷却は冷却水循環回路210により、機関のシリ
ンダー周りに冷却水を循環的に流してなされる。この冷
却水循環回路210に排気熱交換機220を直列又は並
列接続して、機関の排熱を回収し従来の冷却水循環回路
210で回収されるより高温かつ所定量の熱回収を行
い、吸着剤の脱着温度を高め、吸着質の呼吸量を増加
し、以て吸着剤単位重量当たりの蒸気発生量を増加さ
せ、冷却効果を高める。更に付言すれば、同じ冷却効果
を得るのに対し少ない吸着剤量で吸着剤充填槽の小型
化、軽量化をもたらす。また、車両の冷房負荷は、車
種、運転条件、気象条件により異なるが、一例を挙げる
と次の如くなる。すなわち、排気量2000ccクラスの
乗用車の場合、 外気温度35℃ 車室内温度25℃とすると、 車速40Km/h走行時約3500Kcal /h アイドリング運転時約2500Kcal /hとなる。一
方、特にアイドリング運転時に着目すると、既設の冷却
水系におけるラジエーターの放熱量は約2600Kcal
/hと見積もられる。加熱に用いられる熱量に対し冷却
に寄与する熱量は、この種の冷却装置の成績係数が0.
5〜0.7であることを考慮すれば、不足することが解
る。ここで、排気の保有する熱量を、200℃程度まで
回収すれば、内燃機関から全体として回収される熱量は
約4500Kcal /hと見積られ、冷房負荷を十分賄い
得る熱量である。走行条件に付いても同様に熱勘定で
き、排気熱回収が必要である。
Exhaust heat recovery of internal combustion engine: automobile, construction machine,
A cooling water circulation circuit 210 circulates cooling water around a cylinder of the engine to cool a vehicle such as a marine boat that uses an internal combustion engine as a power source or a facility equipped with a diesel generator or the like. Done. Exhaust heat exchanger 220 is connected to this cooling water circulation circuit 210 in series or in parallel to recover the exhaust heat of the engine to recover a higher temperature and a predetermined amount of heat than that recovered by the conventional cooling water circulation circuit 210 to desorb the adsorbent. It raises the temperature and the respiration rate of the adsorbate, thereby increasing the amount of steam generated per unit weight of the adsorbent and enhancing the cooling effect. Further, in addition to the same cooling effect, the adsorbent filling tank can be made smaller and lighter with a small amount of adsorbent. The cooling load of the vehicle varies depending on the type of vehicle, operating conditions, and weather conditions, but is as follows as an example. In other words, in the case of a passenger car with a displacement of 2000 cc, if the outside air temperature is 35 ° C and the passenger compartment temperature is 25 ° C, the vehicle speed is about 3500 Kcal / h when running and about 2500 Kcal / h when idling. On the other hand, especially when idling, paying attention to the amount of heat dissipated by the radiator in the existing cooling water system is about 2600 Kcal.
/ H. Regarding the amount of heat that contributes to cooling with respect to the amount of heat used for heating, the coefficient of performance of this type of cooling device is 0.
Considering that it is 5 to 0.7, it can be seen that there is a shortage. Here, if the heat quantity of the exhaust gas is recovered to about 200 ° C., the heat quantity recovered from the internal combustion engine as a whole is estimated to be about 4500 Kcal / h, which is a heat quantity that can sufficiently cover the cooling load. Heat can be calculated in the same way even under driving conditions, and exhaust heat recovery is required.

【0016】空気冷却器及び又は凝縮能力増加蒸発器6
00には冷却負荷として水蒸気を含んだ空気が作用する
ので、蒸発器で冷却された空気中の水蒸気の飽和分圧は
下がり、余分の水蒸気はドレン601として分離され
る。この冷えたドレン601を冷却水循環回路300の
空気冷却器310及び又は冷却水循環回路300で冷却
される凝縮器400の冷却に使えば、冷熱の損失防止と
空気冷却器及び又は凝縮の能力増加に役立つ。
Air cooler and / or evaporator with increased condensation capacity 6
Since air containing water vapor acts as a cooling load on 00, the saturated partial pressure of water vapor in the air cooled by the evaporator decreases, and excess water vapor is separated as drain 601. If this cooled drain 601 is used for cooling the air cooler 310 of the cooling water circulation circuit 300 and / or the condenser 400 cooled by the cooling water circulation circuit 300, it helps prevent loss of cold heat and increases the capacity of the air cooler and / or condensation. ..

【0017】吸着剤の選定:吸着質が決まり、吸着温
度、脱着温度、蒸発圧力、凝縮圧力が決まると、吸着剤
の選定いかんは吸着式冷却器の単位重量当たりの冷却能
力を支配する要因となる。吸着質を水とし、吸着温度/
脱着温度=35/85℃、蒸発温度飽和圧力/凝縮温度
飽和圧力=6.5/42.2mmHgに対する吸着剤の呼
吸量は下記の通りであり、 (1) 4.0% (2) 3.2% (3) 2.5% (4) 1.
5% ただし、 (1) JIS A型シリカゲル (2) 活性アルミナ (3) ゼオライト4A (4) ゼオライト13X であり、オングストロームオーダーの粒状多孔のJIS
A型シリカゲル〜活性アルミナが吸着剤として好適で
ある。
Selection of adsorbent: Once the adsorbate is determined and the adsorption temperature, desorption temperature, evaporation pressure, and condensation pressure are determined, the choice of adsorbent is a factor that controls the cooling capacity per unit weight of the adsorption cooler. Become. Water as the adsorbate, adsorption temperature /
The respiration rate of the adsorbent for desorption temperature = 35/85 ° C., evaporation temperature saturation pressure / condensation temperature saturation pressure = 6.5 / 42.2 mmHg is as follows: (1) 4.0% (2) 3. 2% (3) 2.5% (4) 1.
5% However, (1) JIS A type silica gel (2) Activated alumina (3) Zeolite 4A (4) Zeolite 13X, which is a granular porous JIS of Angstrom order
A type silica gel to activated alumina are suitable as the adsorbent.

【0018】しかしながら、その後の研究によりこのよ
うな冷却装置に採用される慣用蒸発器では図11に示す
ように、上記ガスヘッダーと下部液ヘッダーとを複数の
鉛直蒸発管で連通した構造を採っており、水を4〜7mm
Hgで蒸発させるために、蒸発管高さHに対して水位高
hに応じて図12に示すように大きく蒸発能力が変化す
る。これは水のヘット分だけ蒸発温度が高くなり、水没
部分が蒸発しにくくなるため、水面のみ沸騰して気泡が
蒸発管を上昇する際、伝熱面に液膜を形成し、この液膜
が蒸発することによる。本発明はこのような事情に鑑み
て提案されたもので、吸着剤槽を小型化して装置の配置
の自由度を大きくし冷房能力の増加を図ると共に、低圧
力損失で最大能力を発揮する省エネルギかつ無公害の吸
着式冷却装置を提供することを目的とする。
However, in the subsequent studies, in the conventional evaporator used in such a cooling device, as shown in FIG. 11, the gas header and the lower liquid header are connected by a plurality of vertical evaporation pipes. Cage, water 4-7 mm
In order to evaporate with Hg, the evaporation ability greatly changes with respect to the height H of the evaporation tube according to the height h of the water level, as shown in FIG. This is because the evaporation temperature rises by the amount of water head, and the submerged part becomes difficult to evaporate, so when only the water surface boils and bubbles rise in the evaporation tube, a liquid film is formed on the heat transfer surface, and this liquid film By evaporating. The present invention has been proposed in view of such circumstances, and the adsorbent tank is miniaturized to increase the degree of freedom of arrangement of the device to increase the cooling capacity, and at the same time, to achieve the maximum capacity with low pressure loss. It is an object of the present invention to provide an energy- and pollution-free adsorption cooling device.

【0019】[0019]

【課題を解決するための手段】そのために本発明は、固
体吸着剤及び伝熱管を内蔵してなる吸着剤充填槽を少な
くも2槽設け、上記各充填槽を冷媒が一方向蒸気流を生
成して循環するように凝縮器及び蒸発器を接続すると共
に、上記充填槽の一方が吸着工程を行うときは他方が脱
着工程を行うように交互に工程を切換える吸着式冷却装
置において、上記蒸発器を伝熱管が鉛直方向に配設され
たフィンチューブ型蒸発器となすと共に、同伝熱管内面
に吸水性樹脂を施工したことを特徴とする。
To this end, according to the present invention, at least two adsorbent filling tanks containing a solid adsorbent and heat transfer tubes are provided, and each of the filling tanks produces a unidirectional vapor flow. In the adsorption-type cooling device, the condenser and the evaporator are connected so as to circulate, and the process is alternately switched so that when one of the filling tanks performs the adsorption process, the other performs the desorption process. Is a fin tube type evaporator in which the heat transfer tubes are arranged in the vertical direction, and a water absorbent resin is applied to the inner surface of the heat transfer tubes.

【0020】[0020]

【作用】このような構成によれば、吸着剤充填槽100
A,100Bの熱媒体供給口131A,131Bの入
口,出口をそれぞれ加熱用熱媒体回路200,冷却水循
環回路300に各1対の方向切替弁900,1000に
より並列接続的に切替えることで、吸着剤槽を小型化し
て配置及び装置の自由度を大きくするとともに冷房能力
を増加して省エネルギかつ無公害の吸着式冷凍装置が得
られる。また、蒸発管の水没部分を最小とし、ウイック
によりその伝熱面への液膜を形成させ、所要量の水を保
水させることにより、伝熱面全体に均等に安定的に給液
し、低圧力損失で最大の冷却能力を発揮する。
According to such a configuration, the adsorbent filling tank 100
The inlet and outlet of the heat medium supply ports 131A and 131B of A and 100B are switched in parallel to the heating heat medium circuit 200 and the cooling water circulation circuit 300 by a pair of directional control valves 900 and 1000, respectively, to thereby form an adsorbent. It is possible to obtain an energy-saving and pollution-free adsorption type refrigeration system by downsizing the tank and increasing the degree of freedom of arrangement and equipment and increasing the cooling capacity. In addition, by minimizing the submerged portion of the evaporation tube, the wick forms a liquid film on the heat transfer surface, and a required amount of water is retained, so that the heat transfer surface is uniformly and stably supplied with a low temperature. Maximum cooling capacity with pressure loss.

【0021】[0021]

【実施例】本発明の一実施例を図面について説明する
と、図1はその蒸発器の部分縦断面図で、図11と同一
の符号はそれぞれ同図と同一の部材を示し、本発明が同
図の構造と異なるところは、その蒸発管の内面にウイッ
クを施工したことにある。すなわち、図1において、5
60は蒸発管562の内面下部に施工された吸水性樹脂
ポリマーで、その表面には吸水性ウイック565が密着
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described. FIG. 1 is a partial longitudinal sectional view of the evaporator, in which the same reference numerals as those in FIG. The difference from the structure in the figure is that a wick is applied to the inner surface of the evaporation tube. That is, in FIG.
Reference numeral 60 is a water-absorbent resin polymer that is applied to the lower portion of the inner surface of the evaporation pipe 562, and a water-absorbent wick 565 is closely attached to the surface thereof.

【0022】このような蒸発器によれば、吸水性ポリマ
ー560及びその内面に形成されたウイック565によ
り水が毛細管現象で適宜高さに吸上げられる。これによ
り蒸発管562の水没部分は最小となり、ウイック56
5により伝熱面に液膜が形成され、所要量の保水が行わ
れる結果、伝熱面全体に均等かつ安定的に液が供給さ
れ、さらにウイックの内部空間は蒸気通路となって水蒸
気の排出がよくなり、低圧力損失で最大の伝熱量が得ら
れる。本発明は図6に示した吸着式冷却装置の蒸発器に
も通用できることはいうまでもない。
According to such an evaporator, water is sucked up to an appropriate height by the capillary phenomenon by the water absorbing polymer 560 and the wick 565 formed on the inner surface thereof. This minimizes the submerged portion of the evaporation pipe 562, and the wick 56
As a result, a liquid film is formed on the heat transfer surface by 5 and the required amount of water is retained, so that the liquid is uniformly and stably supplied to the entire heat transfer surface, and the inner space of the wick serves as a steam passage to discharge water vapor. The maximum heat transfer is obtained with low pressure loss. It goes without saying that the present invention can also be applied to the evaporator of the adsorption cooling device shown in FIG.

【0023】このような蒸発器を有する吸着式冷却装置
によれば、下記の効果が奏せられる。 (1) 吸着剤槽14(図4)と蒸気槽15(図4)は互い
に分離構成されているので、その設置はかなり自由にな
る。 (2) 冷却回路の熱交換器22(図4)と吸着式冷凍機1
の蒸発部2(蒸発器)(図4)を兼用することにより構
造が簡単になる。 (3) 脱着のための熱源としては、固有吸着剤の呼吸量を
多くして蒸発に寄与する冷媒量を多くし、冷房能力を大
きくするには、脱着温度は高いのが好ましく機関の冷却
水に基づく機関排熱だけでは不十分の場合には機関の排
気が保有する熱も利用して吸着質の呼吸量増加に寄与
し、冷却装置の単位重量当の冷却能力は向上する。 (4) 蒸気流路は唯一であり、この種の冷却装置としては
極めて簡素な構成であり小型化及び軽量化に寄与すると
ころ大であると共に、極めて簡素な構成による信頼性増
加も期待できる。 (5) 軽量化とエンジン動力を要しないことに伴い乗り物
の運搬動力は低減され燃費向上になる。 (6) フロン系冷媒を使わずに冷却能力を取り出すことが
できるので、オゾン層破壊の防止に寄与するところ大で
ある。
According to the adsorption cooling device having such an evaporator, the following effects can be obtained. (1) Since the adsorbent tank 14 (Fig. 4) and the steam tank 15 (Fig. 4) are configured separately from each other, their installation is quite free. (2) Heat exchanger 22 of cooling circuit (Fig. 4) and adsorption refrigerator 1
The structure is simplified by also using the evaporation unit 2 (evaporator) of FIG. 4 (FIG. 4). (3) As a heat source for desorption, it is preferable that the desorption temperature is high in order to increase the respiration rate of the specific adsorbent to increase the amount of refrigerant that contributes to evaporation and to increase the cooling capacity. When the exhaust heat of the engine based on the above is insufficient, the heat retained by the exhaust of the engine is also used to contribute to the increase of the respiration rate of the adsorbate, and the cooling capacity per unit weight of the cooling device is improved. (4) Since there is only one steam flow path, this type of cooling device has an extremely simple structure, which greatly contributes to downsizing and weight reduction. At the same time, an extremely simple structure can be expected to increase reliability. (5) Since the vehicle is lighter in weight and does not require engine power, vehicle transportation power is reduced and fuel efficiency is improved. (6) Since the cooling capacity can be taken out without using a CFC-based refrigerant, it greatly contributes to the prevention of ozone layer depletion.

【0024】[0024]

【発明の効果】要するに本発明によれば、固体吸着剤及
び伝熱管を内蔵してなる吸着剤充填槽を少なくも2槽設
け、上記各充填槽を冷媒が一方向蒸気流を生成して循環
するように凝縮器及び蒸発器を接続すると共に、上記充
填槽の一方が吸着工程を行うときは他方が脱着工程を行
うように交互に工程を切換える吸着式冷却装置におい
て、上記蒸発器を伝熱管が鉛直方向に配設されたフィン
チューブ型蒸発器となすと共に、同伝熱管内面に吸水性
樹脂を施工したことにより、吸着剤槽を小型化して装置
の配置の自由度を大きくし冷房能力の増加を図ると共
に、低圧力損失で最大能力を発揮する省エネルギかつ無
公害の吸着式冷却装置を得るから、本発明は産業上極め
て有益なものである。
In summary, according to the present invention, at least two adsorbent filling tanks containing a solid adsorbent and a heat transfer tube are provided, and the refrigerant circulates in each of the filling tanks by generating a unidirectional vapor flow. In the adsorption type cooling device, in which the condenser and the evaporator are connected to each other so that one of the filling tanks performs the adsorption process and the other performs the desorption process alternately, the evaporator is connected to the heat transfer tube. Is a fin-tube type evaporator arranged vertically, and a water-absorbent resin is applied to the inner surface of the heat transfer tube, which reduces the size of the adsorbent tank and increases the degree of freedom in arranging the equipment, thus improving the cooling capacity. The present invention is extremely useful industrially because an energy-saving and pollution-free adsorption cooling device that achieves maximum capacity with low pressure loss can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の蒸発器の部分縦断面図であ
る。
FIG. 1 is a partial vertical sectional view of an evaporator according to an embodiment of the present invention.

【図2】公知のフロンガスを使用したカークーラーシス
テムを示す系統図である。
FIG. 2 is a system diagram showing a car cooler system using known freon gas.

【図3】公知の吸着式カークーラーを示す系統図であ
る。
FIG. 3 is a system diagram showing a known adsorption type car cooler.

【図4】図3の詳細図である。FIG. 4 is a detailed view of FIG.

【図5】本出願人がさきに提案した特願平2−3248
56号に係る吸着式冷凍装置を示す全体系統図である。
FIG. 5: Japanese Patent Application No. 2-3248 proposed by the present applicant
It is the whole system diagram showing the adsorption type refrigeration equipment concerning No. 56.

【図6】図5の変形例を示す同じく全体系統図である。FIG. 6 is an overall system diagram of the modification of FIG.

【図7】,[Fig. 7]

【図8】,[FIG. 8]

【図9】はそれぞれ代表的な吸着剤の吸着等温線を示す
線図である。
FIG. 9 is a diagram showing adsorption isotherms of typical adsorbents.

【図10】吸着質の呼吸量の比較例を示す線図である。FIG. 10 is a diagram showing a comparative example of respiration rate of adsorbate.

【図11】図5に使用される慣用の蒸発器を示す縦断面
図及びその矢視拡大断面図である。
FIG. 11 is a vertical sectional view showing the conventional evaporator used in FIG. 5 and an enlarged sectional view taken along the arrow thereof.

【図12】図11の蒸発器の蒸発量とh/Hとの関係を
示す線図である。
12 is a diagram showing the relationship between the evaporation amount of the evaporator of FIG. 11 and h / H.

【0025】[0025]

【符号の説明】[Explanation of symbols]

100A,100B 吸着剤充填槽 101 吸着剤充填槽内の空所 110 熱交換部材 120 固体吸着剤 130 筒状容器 131A,131B 熱媒体供給口 200 加熱用熱媒体回路 210 機関の冷却水循環回路 211 機関 212 ラジエーター 213 分流弁 214 ポンプ 215 パイピング 220 排気熱交換器 300 冷却水循環回路 310 空気冷却器 320 ポンプ 400 凝縮器 500 凝縮液体貯溜容器 550 気液分離器 560 上部ガスヘッダー 561 下部液ヘッダー 562 蒸発管 563 フィン 564 吸水性樹脂 565 ウイック 600 蒸発器 601 ドレン 610 冷却負荷 611 ダクト 612 送風機 700 4方切替弁 800 密閉循環系形成手段 810 蒸気通路 811 絞り弁 900 方向切替弁 1000 方向切替弁 1100 水冷媒(吸着質) 100A, 100B Adsorbent filling tank 101 Vacant in adsorbent filling tank 110 Heat exchange member 120 Solid adsorbent 130 Cylindrical vessel 131A, 131B Heat medium supply port 200 Heating heat medium circuit 210 Engine cooling water circulation circuit 211 Engine 212 Radiator 213 Dividing valve 214 Pump 215 Piping 220 Exhaust heat exchanger 300 Cooling water circulation circuit 310 Air cooler 320 Pump 400 Condenser 500 Condensed liquid storage container 550 Gas-liquid separator 560 Upper gas header 561 Lower liquid header 562 Evaporation pipe 563 Fin 564 Water-absorbent resin 565 Wick 600 Evaporator 601 Drain 610 Cooling load 611 Duct 612 Blower 700 4-way switching valve 800 Closed circulation system forming means 810 Steam passage 811 Throttle valve 900 Direction switching valve 1000 Direction switching Replacement valve 1100 Water refrigerant (adsorbate)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花井 実 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業 株式会社名古屋研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Hanai 1 Takamichi, Iwazuka-cho, Nakamura-ku, Nagoya, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Nagoya Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体吸着剤及び伝熱管を内蔵してなる吸
着剤充填槽を少なくも2槽設け、上記各充填槽を冷媒が
一方向蒸気流を生成して循環するように凝縮器及び蒸発
器を接続すると共に、上記充填槽の一方が吸着工程を行
うときは他方が脱着工程を行うように交互に工程を切換
える吸着式冷却装置において、上記蒸発器を伝熱管が鉛
直方向に配設されたフィンチューブ型蒸発器となすと共
に、同伝熱管内面に吸水性樹脂を施工したことを特徴と
する吸着式冷却装置。
1. An adsorbent filling tank containing a solid adsorbent and a heat transfer tube is provided at least two tanks, and a condenser and an evaporator are provided so that the refrigerant circulates in each of the filling tanks by generating a unidirectional vapor flow. In the adsorption type cooling device, in which the heat exchanger tubes are connected to each other, and when one of the filling tanks performs the adsorption process, the other alternately performs the desorption process, the heat transfer tube is arranged in the vertical direction in the evaporator. The adsorption cooling device is characterized in that a fin-tube type evaporator is used and a water absorbent resin is applied to the inner surface of the heat transfer tube.
JP3078599A 1991-03-18 1991-03-18 Absorption cooling device Withdrawn JPH05113271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078599A JPH05113271A (en) 1991-03-18 1991-03-18 Absorption cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078599A JPH05113271A (en) 1991-03-18 1991-03-18 Absorption cooling device

Publications (1)

Publication Number Publication Date
JPH05113271A true JPH05113271A (en) 1993-05-07

Family

ID=13666368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078599A Withdrawn JPH05113271A (en) 1991-03-18 1991-03-18 Absorption cooling device

Country Status (1)

Country Link
JP (1) JPH05113271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036580A (en) * 2004-07-27 2006-02-09 Uchiya Thermostat Kk Hydrogen producing apparatus
JP2013194939A (en) * 2012-03-16 2013-09-30 Aisin Seiki Co Ltd Evaporator, evaporator heat exchanging unit, and absorption heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036580A (en) * 2004-07-27 2006-02-09 Uchiya Thermostat Kk Hydrogen producing apparatus
JP4740563B2 (en) * 2004-07-27 2011-08-03 ウチヤ・サーモスタット株式会社 Hydrogen generator
JP2013194939A (en) * 2012-03-16 2013-09-30 Aisin Seiki Co Ltd Evaporator, evaporator heat exchanging unit, and absorption heat pump

Similar Documents

Publication Publication Date Title
KR930008821B1 (en) Refrigerating system
KR920001097B1 (en) Adsorption refrigeration system
US5359864A (en) Cooling apparatus
US4594856A (en) Method and device for pumping heat
US20100043462A1 (en) Air Conditioning System
JP3102955B2 (en) Sorption method and sorption device
JP5761205B2 (en) Adsorber and adsorption heat pump
JPH08240357A (en) Adsorption frezeer
JP2808488B2 (en) Adsorption cooling device
JP4363336B2 (en) Air conditioning
JPH05113271A (en) Absorption cooling device
CN1232785C (en) Separation heat-pipe type absorbing ice machine used for ship
JP2744712B2 (en) Adsorption cooling device
JP2744714B2 (en) Adsorption cooling device
JPH05118695A (en) Adsorptive cooling device
JP2846134B2 (en) Adsorption cooling device
JPH05113270A (en) Absorption cooling device
JP2744713B2 (en) Adsorption cooling device
JPH05113268A (en) Absorption type cooling device
JPH05126430A (en) Adsorption type cooler
CN202442430U (en) Automobile air conditioning system with solar cooling tubes
CN2186704Y (en) Exhaust wast heat adsorption refrigerator for marine diesel
JPH05113274A (en) Absorption cooling apparatus
CN1232783C (en) Composite alternating heat pipe adsorbing bed
JPH04292753A (en) Adsorption type cooling device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514