JP2744714B2 - Adsorption cooling device - Google Patents

Adsorption cooling device

Info

Publication number
JP2744714B2
JP2744714B2 JP7860191A JP7860191A JP2744714B2 JP 2744714 B2 JP2744714 B2 JP 2744714B2 JP 7860191 A JP7860191 A JP 7860191A JP 7860191 A JP7860191 A JP 7860191A JP 2744714 B2 JP2744714 B2 JP 2744714B2
Authority
JP
Japan
Prior art keywords
adsorbent
cooling
evaporator
heat
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7860191A
Other languages
Japanese (ja)
Other versions
JPH04292752A (en
Inventor
嘉夫 宮入
敏彦 山中
実 花井
春信 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7860191A priority Critical patent/JP2744714B2/en
Publication of JPH04292752A publication Critical patent/JPH04292752A/en
Application granted granted Critical
Publication of JP2744714B2 publication Critical patent/JP2744714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸着式冷却装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption cooling device.

【0002】[0002]

【従来の技術】例えば、自動車,建設機械,マリンボー
ト等内燃機関を動力源とする乗り物の室内及び又は冷蔵
庫冷却用として、図2に示すように、フロンガスを冷媒
とし前記機関を動力源とする蒸気圧縮式冷却装置が従来
より知られている。この種の蒸気圧縮式冷却装置は、走
行乃至作業を目的とする機関の出力の一部を冷却のため
に使用するのであるから、機関の負担が増加するのみな
らず、燃料消費率を低下させる不具合があり、また最近
は専らフレオンを冷媒として使用するのでオゾン層破壊
の問題から総量規制、生産削減等の法規制が取られるに
至っている。
2. Description of the Related Art As shown in FIG. 2, Freon gas is used as a refrigerant and the engine is used as a power source for cooling a room and / or a refrigerator of a vehicle using an internal combustion engine such as an automobile, a construction machine, and a marine boat as a power source. BACKGROUND ART A vapor compression type cooling device has been conventionally known. This kind of vapor compression type cooling device uses a part of the output of the engine for running or working for cooling, so that not only the load on the engine increases but also the fuel consumption rate decreases. There are problems, and recently, since freon is exclusively used as a refrigerant, regulations such as total amount control and production reduction have been taken due to the problem of ozone layer destruction.

【0003】そこで、これに対処する目的で、エンジン
の排熱を加熱部の熱源とする吸着式冷凍機を用い、フロ
ンガスを用いない自動車クーラーが、実開平01−12
6811号により提案されている。この提案は、図3に
示すように、蒸発部2と、蒸発部2から発生する冷媒蒸
気を吸着する吸着部3と、吸着した冷媒蒸気を加熱によ
り蒸発(脱着の意味と解される)させる加熱部4と、加
熱部からの蒸気を凝縮させる凝縮部5とを有する吸着式
冷凍機1を設けるとともに、蒸発部2の熱交換器6を自
動車室内冷房用の冷房回路7に接続し、吸着部3及び凝
縮部5の熱交換器8及び9を密閉型空冷回路10に接続
し、加熱部4の熱交換器11をエンジン熱供給回路12
に接続し、熱源として自動車エンジンの冷却排熱の一部
を利用するのである。
To cope with this, an automobile cooler that uses an adsorption type refrigerator using exhaust heat of an engine as a heat source of a heating unit and does not use Freon gas has been proposed in Japanese Utility Model Laid-Open No. 01-12 / 1999.
6811. In this proposal, as shown in FIG. 3, the evaporating unit 2, an adsorbing unit 3 for adsorbing the refrigerant vapor generated from the evaporating unit 2, and evaporating the adsorbed refrigerant vapor by heating (understood meaning of desorption). An adsorption refrigerator 1 having a heating unit 4 and a condensing unit 5 for condensing vapor from the heating unit is provided, and a heat exchanger 6 of the evaporating unit 2 is connected to a cooling circuit 7 for cooling the interior of the vehicle, thereby adsorbing the adsorbent. The heat exchangers 8 and 9 of the condensing section 5 and the condensing section 5 are connected to a closed air cooling circuit 10, and the heat exchanger 11 of the heating section 4 is connected to an engine heat supply circuit 12.
To use a part of the cooling exhaust heat of the car engine as a heat source.

【0004】この構造を詳説すると、図4に示すよう
に、吸着式冷凍機1はそれぞれ蒸気流路13により接続
された吸着剤槽14と蒸気槽15とを真空状態のもとに
密閉したまま両槽14,15に熱交換器を各別に設けて
なる2個の吸脱ユニットA,Bを設け、吸着剤槽14に
は冷媒例えば水を一定量吸着させたシリカ系の固体吸着
剤Sを充填する。そして吸脱ユニットAの吸着剤槽14
の熱交換器を加熱部4の熱交換器11としてエンジン熱
供給回路12に接続し、吸脱ユニットAの蒸気槽15と
吸脱ユニットBの吸着剤槽14とにおける熱交換器をそ
れぞれ熱交換器9,8として空冷回路10に接続して冷
却水を供給する。更に吸脱ユニットBの蒸気槽15の熱
交換器を蒸発部2の熱交換器6として冷房回路7に接続
する。
[0004] The structure of the adsorbent refrigerator 1 will be described in detail below. As shown in FIG. 4, the adsorbent refrigerating machine 1 keeps an adsorbent tank 14 and a vapor tank 15 connected by a vapor flow path 13 sealed in a vacuum state. The two tanks 14 and 15 are provided with two adsorption / desorption units A and B respectively provided with heat exchangers, and the adsorbent tank 14 contains a silica-based solid adsorbent S in which a certain amount of a refrigerant, such as water, is adsorbed. Fill. And the adsorbent tank 14 of the absorption / desorption unit A
Is connected to the engine heat supply circuit 12 as the heat exchanger 11 of the heating unit 4, and the heat exchangers in the steam tank 15 of the absorption / desorption unit A and the adsorbent tank 14 of the absorption / desorption unit B are respectively exchanged. The cooling water is supplied by connecting to the air cooling circuit 10 as devices 9 and 8. Further, the heat exchanger of the steam tank 15 of the absorption / desorption unit B is connected to the cooling circuit 7 as the heat exchanger 6 of the evaporator 2.

【0005】このようにして、まず吸脱ユニットAの吸
着剤槽14内の固体吸着剤Sをエンジン熱の供給により
加熱し、吸着していた冷媒水分を蒸発させつつ蒸気流路
13を経て熱交換器9で凝縮させ(これを当出願人は脱
着という)、かつ吸脱ユニットBにおいては、吸脱ユニ
ットAの脱着完了の下に、吸着剤槽14の熱交換器8に
30℃程度の冷水を供給し、蒸気槽15の熱交換器6に
は冷房回路7の冷水を通じることにより、冷媒蒸気の吸
着作用を発揮させて、蒸気槽15の熱交換器6に凝縮し
ていた冷媒水を蒸発させ、そのときの潜熱で冷房回路7
の冷水を8℃程度まで冷却する。ここで、熱交換器11
と8,9と6は対交換して運転され、蒸気流路13によ
り接続された吸着剤槽14と蒸気槽15とを真空状態の
もとに密閉したまま両槽14,15に熱交換器を各別に
設け、吸着剤槽14には冷媒例えば水を一定量吸着させ
たシリカ系の固体吸着剤Sを充填し、吸脱ユニットA,
Bの吸着剤槽14は交互に加熱と冷却を受け、対応する
蒸気槽15はそれぞれ凝縮部5(凝縮器)及び蒸発部2
(蒸発器)として交互に作用し、冷房回路は常に蒸発部
に切り替え接続することで、蒸発部の冷媒の蒸発に伴う
潜熱により効果的な冷房作用を行うのである。
As described above, first, the solid adsorbent S in the adsorbent tank 14 of the adsorption / desorption unit A is heated by the supply of engine heat, and the adsorbed refrigerant moisture is evaporated through the vapor passage 13 while being evaporated. Condensed in the exchanger 9 (this is referred to as desorption by the present applicant), and in the adsorption / desorption unit B, when the desorption of the adsorption / desorption unit A is completed, the heat exchanger 8 of the adsorbent tank 14 is heated to about 30 ° C. Cold water is supplied, and the cold water of the cooling circuit 7 is passed through the heat exchanger 6 of the steam tank 15 so as to exert an effect of adsorbing the refrigerant vapor, thereby condensing the refrigerant water condensed in the heat exchanger 6 of the steam tank 15. Is evaporated, and the cooling circuit 7 is heated by the latent heat at that time.
Is cooled to about 8 ° C. Here, the heat exchanger 11
, 8, 9 and 6 are exchanged and operated, and the heat exchanger is connected to both tanks 14 and 15 while keeping the adsorbent tank 14 and the steam tank 15 connected by the steam flow path 13 sealed under vacuum. Are separately provided, and the adsorbent tank 14 is filled with a silica-based solid adsorbent S in which a certain amount of a refrigerant, for example, water, is adsorbed.
The adsorbent tank 14 of B is alternately heated and cooled, and the corresponding steam tanks 15 are respectively provided with the condenser 5 (condenser) and the evaporator 2.
The cooling circuit operates alternately as an evaporator, and the cooling circuit is always switched to the evaporator to perform an effective cooling operation by the latent heat associated with the evaporation of the refrigerant in the evaporator.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな吸着式冷凍機1はそれぞれ吸着剤槽14と蒸気槽1
5を蒸気通路13で一体に連結してなる吸脱ユニット
A,Bを2基必要とするので、現在入手し得る固体吸着
剤Sの吸着量特性では、吸着剤槽14はかなり大きな容
積を必要とし、蒸発の潜熱を取り出すための熱交換器の
所要面積もかなり大きくなる。自動車用のように、小
型,軽量,低燃費(高性能),無公害を商品価値の判断
尺度に持ち、各種機器の装着密度の極めて高い用途に対
しては、低燃費及びフロンガスに対する無公害の点でこ
の提案は優れているが、下記のように、改善すべき点も
ある。 (1) 内燃機関を動力源とする乗り物その他設備等では、
前記機関を冷却するための冷却水から得られる排熱を利
用するだけでは、所要温度レベルと熱量がアイドリング
運転時に不足する。 (2) 吸着剤槽14と蒸気槽15を一体的に構成すること
は、装着の自由度を制約する。 (3) 冷房回路の熱交換器22と吸着式冷凍機1の蒸発部
2(蒸気器)を兼用することが有利である。 (4) 脱着に便利な熱源としては、固体吸着剤の呼吸量を
多くして蒸発に寄与する冷媒量を多くし、冷房能力を大
きくするには、脱着温度は高いのが好ましく、機関の冷
却水に基づく機関排熱だけでは不十分の場合は機関の排
熱が保有する熱も併用するのが望ましい。
However, such an adsorption refrigerator 1 has an adsorbent tank 14 and a steam tank 1 respectively.
5 requires two absorption / desorption units A and B integrally connected by a steam passage 13, so that the adsorbent tank 14 requires a considerably large volume in terms of the amount of solid adsorbent S currently available. Thus, the area required for the heat exchanger for extracting the latent heat of evaporation becomes considerably large. For applications such as automobiles, which have small, lightweight, low fuel consumption (high performance), and no pollution as criteria for evaluating commercial value. For applications with extremely high mounting density of various devices, low fuel consumption and non-polluting Although this proposal is excellent in terms of points, there are some points to be improved as follows. (1) For vehicles and other facilities powered by an internal combustion engine,
If only the exhaust heat obtained from the cooling water for cooling the engine is used, the required temperature level and the amount of heat are insufficient during idling operation. (2) Forming the adsorbent tank 14 and the steam tank 15 integrally limits the degree of freedom of mounting. (3) It is advantageous to use the heat exchanger 22 of the cooling circuit and the evaporator 2 (steam unit) of the adsorption refrigerator 1 together. (4) As a heat source convenient for desorption, in order to increase the amount of refrigerant that contributes to evaporation by increasing the respiratory volume of the solid adsorbent and increase the cooling capacity, it is preferable that the desorption temperature be high, and that the engine be cooled. If water-based engine exhaust heat alone is not sufficient, it is desirable to also use the heat retained by the engine exhaust heat.

【0007】そこで、本出願人はさきに特願平2−32
4856号をもって下記するような吸着式冷凍装置を提
案した。すなわち、図5において、100A,100B
はそれぞれ吸着剤充填槽、101は吸着剤充填槽内の空
所、110は熱交換部材、120は固体吸着材、130
は筒状容器、131A、131Bは熱媒体供給口、20
0は加熱用熱媒体回路、210は機関の冷却水循環回
路、211は機関、212はラジエーター、213は分
流弁、214はポンプ、215はパイピング、220は
排気熱交換器、300は冷却水循環回路、310は空気
冷却器、320はポンプ、400は凝縮器、500は凝
縮液体貯溜容器、600は蒸発器、601はドレン、6
11はダクト、612は送風機、700は4方切替弁、
800は密閉循環系形成手段、810は蒸気通路、81
2は調整バルブ(位置若干変更)、900は加熱用熱媒
体回路200の方向切替弁、1000は冷却水循環回路
300の方向切替弁、1100は水冷媒(吸着質)であ
る。
Therefore, the applicant of the present invention has previously disclosed Japanese Patent Application No. 2-32.
No. 4856 proposed an adsorption refrigeration apparatus as described below. That is, in FIG.
Represents an adsorbent filling tank, 101 represents an empty space in the adsorbent filling tank, 110 represents a heat exchange member, 120 represents a solid adsorbent, and 130 represents a solid adsorbent.
Are cylindrical containers, 131A and 131B are heat medium supply ports, 20
0 is a heating medium circuit for heating, 210 is a cooling water circulation circuit of the engine, 211 is an engine, 212 is a radiator, 213 is a diverter valve, 214 is a pump, 215 is a piping, 220 is an exhaust heat exchanger, 300 is a cooling water circulation circuit, 310 is an air cooler, 320 is a pump, 400 is a condenser, 500 is a condensed liquid storage container, 600 is an evaporator, 601 is a drain, 6
11 is a duct, 612 is a blower, 700 is a four-way switching valve,
800 is a closed circulation system forming means, 810 is a steam passage, 81
2 is an adjustment valve (position is slightly changed), 900 is a direction switching valve of the heating heat medium circuit 200, 1000 is a direction switching valve of the cooling water circulation circuit 300, and 1100 is a water refrigerant (adsorbate).

【0008】この吸着式冷却装置は2基の吸着剤充填槽
100A,100Bのそれぞれ内部と固体吸着剤120
のなす空所101は、4方切替弁900を介して単一の
蒸気通路810で連結され、各吸着剤充填槽100A,
100Bの熱交換部材110は入口及び出口側で夫々加
熱用熱媒体回路200と冷却水循環回路300に、方向
切替弁900及び1000を介して並列接続され、方向
切替弁の選択的切替えにより、一方の吸着剤充填槽を加
熱し他方を冷却することができる。凝縮器400、凝縮
液体貯溜容器500、蒸発器600は一方の吸着剤充填
槽の空所から他方の吸着剤充填槽の空所へ、密閉循環系
形成手段800と4方切替弁700を介して密閉的に連
結され、4方切替弁700の切替え操作により、脱着工
程にある吸着剤充填槽から脱着(又は放出)される吸着
質蒸気を、吸着工程にある吸着剤充填槽に向け一方向的
に蒸気通路810へ蒸気を供給する。蒸気通路810へ
供給された蒸気は凝縮器400で凝縮され、一旦凝縮液
体貯溜容器500に溜められた後、蒸発器600で冷却
負荷610から蒸発熱を奪って蒸発し、吸着工程にある
吸着剤充填槽内の吸着剤に吸着される。加熱用熱媒体回
路200は例えば乗り物の動力源となる内燃機関211
を冷却するための、ラジエーター212,ポンプ21
4,パイピング215よりなり、冷却水循環回路210
に排気熱交換器220を直列又は並列に接続して、分流
弁213を介して、ラジエーター212と吸着剤充填槽
を並列接続する。このようにして、機関211のシリン
ダー部を冷却して得られるより高温の熱源が得られる。
蒸発器600からの蒸気通路810の上流又は下流側に
は、負荷に適合した蒸気供給を行うため適宜バルブ81
2を設ける。蒸発器600の負荷は、例えばダクト61
1を介し送風機612より送られる車室内の空気であ
り、冷却に伴って当然ドレンが発生するので、これを空
気冷却器310及び又は凝縮器400すなわち冷却水循
環回路300の冷却に用いて性能向上を図る。なお、4
方切替弁700、方向切替弁900、1000は2方向
弁を用いて図6変形図に示すようにしても良い。
[0008] This adsorption type cooling device is composed of two adsorbent filling tanks 100A and 100B and a solid adsorbent 120, respectively.
The empty space 101 is connected by a single vapor passage 810 via a four-way switching valve 900, and each adsorbent filling tank 100A,
The heat exchange member 110 of 100B is connected in parallel to the heating heat medium circuit 200 and the cooling water circulation circuit 300 on the inlet and outlet sides, respectively, via directional switching valves 900 and 1000, and one of the directional switching valves is selectively switched. The adsorbent filling tank can be heated and the other can be cooled. The condenser 400, the condensed liquid storage container 500, and the evaporator 600 are moved from the space of one adsorbent filling tank to the space of the other adsorbent filling tank via the closed circulation system forming means 800 and the four-way switching valve 700. The adsorbate vapor desorbed (or released) from the adsorbent filling tank in the desorption step is unidirectionally directed to the adsorbent filling tank in the adsorption step by the switching operation of the four-way switching valve 700 in a hermetically connected manner. Is supplied to the steam passage 810. The vapor supplied to the vapor passage 810 is condensed in the condenser 400, temporarily stored in the condensed liquid storage container 500, and then evaporated by removing heat of evaporation from the cooling load 610 in the evaporator 600, and is adsorbed in the adsorption step. Adsorbed by the adsorbent in the filling tank. The heating heat medium circuit 200 is, for example, an internal combustion engine 211 serving as a power source of a vehicle.
Radiator 212 and pump 21 for cooling
4, the piping 215, the cooling water circulation circuit 210
The exhaust heat exchanger 220 is connected in series or in parallel, and the radiator 212 and the adsorbent filling tank are connected in parallel via the flow dividing valve 213. In this way, a higher temperature heat source obtained by cooling the cylinder portion of the engine 211 is obtained.
A valve 81 is provided upstream or downstream of the steam passage 810 from the evaporator 600 to supply steam suitable for the load.
2 is provided. The load of the evaporator 600 is, for example,
1 is the air in the vehicle cabin sent from the blower 612 via the air blower 1, and the drain naturally occurs with the cooling. Therefore, the air is used for cooling the air cooler 310 and / or the condenser 400, that is, the cooling water circulation circuit 300 to improve the performance. Aim. In addition, 4
The two-way valve may be used as the one-way switching valve 700 and the two-way switching valves 900 and 1000 as shown in the modified view of FIG.

【0009】ここで、冷媒として作用させる水を吸着質
とし、吸着剤を (a) JIS A型シリカゲル (b) モレキュラシブ13X (c) モレキュラシブ 4X としたときの吸着等温線を示すと、それぞれ図7、図
8、図9に示す通りである。例えばJIS A型シリカ
ゲルと水の場合は図7に示すように、 水蒸気分圧42.2mmHg(相当飽和温度35℃) 吸着剤温度85℃の時吸着量qt=85=5% 水蒸気分圧6.5mmHg(相当飽和温度5℃) 吸着剤温度35℃の時吸着量qt=85=9% とそれぞれ異なった吸着量を示す。そしてこの変化は可
逆変化であるから、吸着剤の温度とそれに対応する吸着
質の圧力を適宜選択すれば、所定量の吸着質の出し入れ
が可能となり、上記の例では吸着量の変化量(呼吸量と
も表現できる)Δqは4%、すなわち吸着剤1kg当たり
40gの水分量移動となる。各吸着剤の水分の平衡呼吸
量Δqを図10に示す。この装置では吸着剤と吸着質を
充填した容器の2基を設け、それぞれ容器内の吸着剤と
吸着質の界面の上記2水準の圧力と温度を、一方が高い
水準で脱着工程にあるとき他方が低い水準の吸着工程に
なるように選択的に切り替えることで、脱着工程にある
一方の容器内(又は容器内の吸着剤)から放出される蒸
気は吸着工程にある他方の容器内(又は容器内の吸着
剤)に吸引され、他方の容器(又は容器内の吸着剤)は
一種の吸引ポンプ的作用をする。容器へ又は容器からの
吸着質の移動は気相で進行するから、これが円滑に進よ
うに、つまり吸着質の吸着剤への接触と吸着剤からの分
離の均一化のために、容器内には吸着質蒸気の通路とな
る空所を設けここに連結する流路を介して蒸気移動がな
される。
FIG. 7 shows adsorption isotherms when water acting as a refrigerant is used as an adsorbate and the adsorbent is (a) JIS A type silica gel, (b) molecular 13X, and (c) molecular 4X. 8 and 9. For example, in the case of JIS A type silica gel and water, as shown in FIG. 7, the water vapor partial pressure 42.2 mmHg (equivalent saturation temperature 35 ° C.) The amount of adsorption qt = 85 = 5% at the adsorbent temperature 85 ° C. 0.5 mmHg (equivalent saturation temperature 5 ° C.) When the adsorbent temperature is 35 ° C., the adsorbed amount is different from q t = 85 = 9%. Since this change is a reversible change, by appropriately selecting the temperature of the adsorbent and the corresponding pressure of the adsorbate, a predetermined amount of adsorbate can be taken in and out. Δq is 4%, that is, the amount of water movement of 40 g per kg of the adsorbent. FIG. 10 shows the equilibrium respiratory volume Δq of water of each adsorbent. In this apparatus, two units of a container filled with an adsorbent and an adsorbate are provided, and the two levels of pressure and temperature at the interface between the adsorbent and the adsorbate in the container, respectively, when one is in the desorption process at a high level, the other is Is selectively switched to a low-level adsorption process, so that the vapor released from one container (or the adsorbent in the container) in the desorption process is discharged into the other container (or container) in the adsorption process. The other container (or the adsorbent in the container) acts as a kind of suction pump. Since the transfer of the adsorbate to or from the container proceeds in the gas phase, it should be placed in the container so that it proceeds smoothly, that is, to make the contact of the adsorbate with the adsorbent and the uniform separation from the adsorbent. Is provided with a space serving as a passage for the adsorbate vapor, and the vapor is moved through a flow path connected to the space.

【0010】吸着剤界面への熱量の供給と除去:吸着剤
の温度を上げ下げするためには、加熱のために熱源と冷
却のための冷却源を要し、そのために筒状容器130の
内部に、吸着剤が熱交換部材110の表面を覆うように
熱交換部材110を設け、その内部に熱媒体通路を内蔵
し熱媒体供給口131A,131Bを介して外部と連通
する。この外部をそれぞれ吸着剤充填槽100A,10
0Bの熱媒体供給口131A,131Bの入口と出口を
加熱用熱媒体回路200と冷却水循環回路300に並列
的に選択接続する1対の方向切り替弁900,1000
に接続することで、加熱源である高温液状の加熱用熱媒
体回路200と冷却源である空気冷却器310を有する
冷却水循環回路300に選択的に接続し加熱と冷却を行
う。その結果、一方の吸着剤の界面では脱着、他方の吸
着剤の界面では吸着が進行する。
Supply and removal of heat to the adsorbent interface: In order to raise and lower the temperature of the adsorbent, a heat source for heating and a cooling source for cooling are required. The heat exchange member 110 is provided so that the adsorbent covers the surface of the heat exchange member 110, and a heat medium passage is built therein and communicates with the outside through heat medium supply ports 131A and 131B. This outside is connected to the adsorbent filling tanks 100A and 10A, respectively.
A pair of direction switching valves 900 and 1000 for selectively connecting the inlets and outlets of the heat medium supply ports 131A and 131B in parallel to the heat medium circuit 200 for heating and the cooling water circulation circuit 300 in parallel.
, A heating medium circuit 200 for heating a high-temperature liquid as a heating source and a cooling water circulation circuit 300 having an air cooler 310 as a cooling source are selectively connected to perform heating and cooling. As a result, desorption occurs at the interface of one adsorbent and adsorption proceeds at the interface of the other adsorbent.

【0011】吸着質蒸気の凝縮と蒸発:脱着と吸着に伴
う吸着質蒸気の単なる移動では熱力学的冷却作用は起こ
らないので、吸着質の潜熱を取り出すには脱着により得
られる吸着質蒸気を冷却して一旦凝縮された後、これを
蒸発させる工程が不可欠である。この脱着蒸気の凝縮
を、空気冷却器310を有する冷却水循環回路300で
冷却される凝縮器400を介して行い、凝縮器400で
凝縮した液化吸着質を蒸発器600で蒸発させ、所望の
媒体から熱を奪う、すなわち冷却作用を取り出す。その
際、凝縮器400と蒸発器600の圧力は動作変数とし
て気液平衡の関係から、例えば凝縮温度35℃なら4
2.2mmHg,蒸発温度 5℃なら 6.5mmHg,とな
り、熱の授受を伴うこの条件を満たすように、凝縮器4
00と蒸発器600を設計する。
Condensation and evaporation of adsorbate vapor: Since the thermodynamic cooling effect does not occur simply by the movement of the adsorbate vapor accompanying desorption and adsorption, the adsorbate vapor obtained by desorption is cooled to extract the latent heat of the adsorbate. Then, once condensed, a step of evaporating this is indispensable. The condensation of the desorbed vapor is performed through a condenser 400 cooled by a cooling water circulation circuit 300 having an air cooler 310, and the liquefied adsorbate condensed in the condenser 400 is evaporated in an evaporator 600, and a desired medium is removed. Take away heat, ie take out the cooling action. At this time, the pressure between the condenser 400 and the evaporator 600 is, for example, 4 if the condensing temperature is 35 ° C. from the relation of the gas-liquid equilibrium as an operating variable.
2.2 mmHg, evaporation temperature is 5 mm, 6.5 mmHg, and the condenser 4
00 and the evaporator 600 are designed.

【0012】蒸気流路の切り替え:2基の吸着剤充填槽
の内部は4方切替弁700の2つの流路を介して連通
し、4方切替弁700の流路のうち他の2つの流路は、
一方から他方に向かって、凝縮器400、液体貯溜用容
器500、蒸発器600の順に連結する密閉循環系形成
手段800により密閉的に連結されて単一の蒸気流路を
形成する。そしてこれらは単一の蒸気流路を形成し、2
基の吸着剤充填槽がそれぞれ脱着と吸着を交互に繰り返
すのに対し、常に脱着側の吸着剤充填槽の空所は凝縮器
400の入口側に、吸着側の吸着剤充填槽の空所は蒸発
器600の出口側に連結され、一方向蒸気流を生成す
る。
Switching of steam flow paths: The interiors of the two adsorbent filling tanks communicate with each other through two flow paths of a four-way switching valve 700, and the other two flow paths of the four-way switching valve 700 flow. The road is
From one side to the other, a closed circulation system forming means 800 connected in order of the condenser 400, the liquid storage container 500, and the evaporator 600 forms a single vapor flow path. And they form a single steam channel, 2
While the base adsorbent-filled tank alternately repeats desorption and adsorption respectively, the space of the adsorbent-filled tank on the desorption side is always on the inlet side of the condenser 400, and the space of the adsorbent-filled tank on the adsorption side is always It is connected to the outlet side of the evaporator 600 and produces a one-way vapor flow.

【0013】脱着と吸着作用切替えに伴う蒸気流量変動
の抑制:液体貯溜用容器500は2基の吸着剤充填槽の
脱着と吸着に交互に切替えしたとき、蒸気流路内の蒸気
量変動を抑制するバッファーの作用を行う。
Suppression of vapor flow fluctuation due to switching between desorption and adsorption operation: When liquid storage container 500 alternately switches between desorption and adsorption of two adsorbent filling tanks, it suppresses fluctuation of vapor flow in the vapor flow path. It acts as a buffer.

【0014】冷却作用:凝縮器400で液化された吸着
質は蒸発器600の入口部でその圧力飽和温度まで自己
冷却し、その後、冷却負荷である媒体から熱を奪って蒸
発する。例えば蒸発圧力飽和温度が5℃のとき、水の蒸
発潜熱は1968年日本機械学会蒸気表により594.
6Kcal/kg であるから、単位重量(1kg)の吸着剤当た
り23.8Kcalの冷却効果を得る。
Cooling action: The adsorbate liquefied in the condenser 400 self-cools to the pressure saturation temperature at the inlet of the evaporator 600, and then evaporates by removing heat from the medium as a cooling load. For example, when the evaporation pressure saturation temperature is 5 ° C., the latent heat of evaporation of water is 594.
Since it is 6 Kcal / kg, a cooling effect of 23.8 Kcal is obtained per unit weight (1 kg) of the adsorbent.

【0015】内燃機関の排熱回収:自動車、建設機械、
マリンボート等内燃機関を動力源とする乗り物の、又は
ディーゼル発電機等を装備する設備等に用いられる内燃
機関の冷却は冷却水循環回路210により、機関のシリ
ンダー周りに冷却水を循環的に流してなされる。この冷
却水循環回路210に排気熱交換機220を直列又は並
列接続して、機関の排熱を回収し従来の冷却水循環回路
210で回収されるより高温かつ所定量の熱回収を行
い、吸着剤の脱着温度を高め、吸着質の呼吸量を増加
し、以て吸着剤単位重量当たりの蒸気発生量を増加さ
せ、冷却効果を高める。更に付言すれば、同じ冷却効果
を得るのに対し少ない吸着剤量で吸着剤充填槽の小型
化、軽量化をもたらす。また、車両の冷房負荷は、車
種、運転条件、気象条件により異なるが、一例を挙げる
と次の如くなる。すなわち、排気量2000ccクラスの
乗用車の場合、 外気温度35℃ 車室内温度25℃とすると、 車速40Km/h走行時約3500Kcal/h アイドリング運転時約2500Kcal/hとなる。 一方、特にアイドリング運転時に着目すると、既設の冷
却水系におけるラジエーターの放熱量は約2600Kcal
/hと見積もられる。加熱に用いられる熱量に対し冷却
に寄与する熱量は、この種の冷却装置の成績係数が0.
5〜0.7であることを考慮すれば、不足することが解
る。ここで、排気の保有する熱量を、200℃程度まで
回収すれば、内燃機関から全体として回収される熱量は
約4500Kcal/hと見積られ、冷房負荷を十分賄い得
る熱量である。走行条件に付いても同様に熱勘定でき、
排気熱回収が必要である。
Waste heat recovery of internal combustion engine: automobile, construction machine,
Cooling of the internal combustion engine used for a vehicle powered by an internal combustion engine such as a marine boat, or equipment equipped with a diesel generator or the like is performed by cooling water circulating around a cylinder of the engine by a cooling water circulation circuit 210. Done. An exhaust heat exchanger 220 is connected in series or parallel to the cooling water circulation circuit 210 to recover the exhaust heat of the engine and to recover a predetermined amount of heat at a higher temperature than that recovered by the conventional cooling water circulation circuit 210, and to desorb the adsorbent. Increase the temperature, increase the respiration rate of the adsorbate, thereby increasing the amount of steam generated per unit weight of the adsorbent, and enhance the cooling effect. In addition, while obtaining the same cooling effect, the adsorbent filling tank can be reduced in size and weight with a small amount of adsorbent. The cooling load of the vehicle varies depending on the type of vehicle, driving conditions, and weather conditions. For example, the cooling load is as follows. That is, in the case of a passenger car having a displacement of 2000 cc class, when the outside air temperature is 35 ° C. and the vehicle interior temperature is 25 ° C., the vehicle speed is approximately 3500 Kcal / h at a speed of 40 km / h and approximately 2500 Kcal / h during idling operation. On the other hand, paying attention to idling operation, the heat radiation of the radiator in the existing cooling water system is about 2600 Kcal
/ H. The amount of heat that contributes to cooling with respect to the amount of heat used for heating is such that the coefficient of performance of this type of cooling device is 0.
Considering that it is 5 to 0.7, it turns out to be insufficient. Here, if the amount of heat held by the exhaust gas is recovered up to about 200 ° C., the amount of heat recovered from the internal combustion engine as a whole is estimated to be about 4500 Kcal / h, which is a heat amount that can sufficiently cover the cooling load. You can count on driving conditions as well,
Exhaust heat recovery is required.

【0016】空気冷却器及び又は凝縮能力増加蒸発器6
00には冷却負荷として水蒸気を含んだ空気が作用する
ので、蒸発器で冷却された空気中の水蒸気の飽和分圧は
下がり、余分の水蒸気はドレン601として分離され
る。この冷えたドレン601を冷却水循環回路300の
空気冷却器310及び又は冷却水循環回路300で冷却
される凝縮器400の冷却に使えば、冷熱の損失防止と
空気冷却器及び又は凝縮の能力増加に役立つ。
Air cooler and / or evaporator 6 for increasing the condensation capacity
Since air containing water vapor acts as a cooling load at 00, the saturation partial pressure of water vapor in the air cooled by the evaporator decreases, and excess water vapor is separated as a drain 601. If this cooled drain 601 is used to cool the air cooler 310 of the cooling water circulation circuit 300 and / or the condenser 400 cooled by the cooling water circulation circuit 300, it helps to prevent loss of cold heat and increase the capacity of the air cooler and / or condensation. .

【0017】吸着剤の選定:吸着質が決まり、吸着温
度、脱着温度、蒸発圧力、凝縮圧力が決まると、吸着剤
の選定いかんは吸着式冷却器の単位重量当たりの冷却能
力を支配する要因となる。吸着質を水とし、吸着温度/
脱着温度=35/85℃、蒸発温度飽和圧力/凝縮温度
飽和圧力=6.5/42.2mmHgに対する吸着剤の呼吸
量は下記の通りであり、 (1) 4.0% (2) 3.2% (3) 2.5% (4) 1.
5% ただし、 (1) JIS A型シリカゲル (2) 活性アルミナ (3) ゼオライト4A (4) ゼオライト13X であり、オングストロームオーダーの粒状多孔のJIS
A型シリカゲル〜活性アルミナが吸着剤として好適で
ある。
Selection of the adsorbent: Once the adsorbate is determined and the adsorption temperature, desorption temperature, evaporation pressure and condensation pressure are determined, the selection of the adsorbent depends on the factors governing the cooling capacity per unit weight of the adsorption cooler. Become. Adsorbate is water, adsorption temperature /
Desorption temperature = 35/85 ° C, evaporation temperature saturation pressure / condensation temperature saturation pressure = 6.5 / 42.2 mmHg The respiratory volume of the adsorbent is as follows: (1) 4.0% (2) 3. 2% (3) 2.5% (4) 1.
5% However, (1) JIS A type silica gel (2) Activated alumina (3) Zeolite 4A (4) Zeolite 13X, JIS of granular porosity of angstrom order
Type A silica gel to activated alumina are preferred as adsorbents.

【0018】しかしながら、その後の研究によりこのよ
うな冷却装置では、被冷却媒体つまり空気の温度制御は
図5の要約図である図11に示すように、主として蒸発
器への冷却媒体の供給流量をバルブを介して調節するこ
とによって行っている関係上、流量が少ないためその液
面が必然的に変動し、精度よく流量調節をすることがで
きず、従って空気温度の制御も困難になることが判明し
た。本発明はこのような事情に鑑みて提案されたもの
で、吸着剤槽を小型化して装置の配置の自由度大きくし
冷房能力の増加を図ると共に、蒸発器の液面制御により
空気温度の制御を容易にする省エネルギかつ無公害の吸
着式冷却装置を提供することを目的とする。
However, according to a subsequent study, in such a cooling apparatus, the temperature control of the medium to be cooled, that is, the air, is mainly performed by controlling the supply flow rate of the cooling medium to the evaporator as shown in FIG. Due to the adjustment performed through the valve, the flow rate is small and the liquid level is inevitably fluctuated, making it impossible to adjust the flow rate with high accuracy, making it difficult to control the air temperature. found. The present invention has been proposed in view of such circumstances. In addition to reducing the size of the adsorbent tank and increasing the degree of freedom of arrangement of the device to increase the cooling capacity, the air temperature is controlled by controlling the liquid level of the evaporator. It is an object of the present invention to provide an energy-saving and pollution-free adsorption type cooling device which facilitates the above.

【0019】[0019]

【課題を解決するための手段】そのために本発明は、固
体吸着剤及び伝熱管を内蔵してなる吸着剤充填槽を少な
くも2槽設け、上記各充填槽を冷媒が一方向蒸気流を生
成して循環するように凝縮器及び蒸発器を接続すると共
に、上記充填槽の一方が吸着工程を行うときは他方が脱
着工程を行うように加熱媒体、冷却媒体を切換える吸着
式冷却装置において、上記凝縮器の出口側に冷媒液貯溜
容器を設け、同冷媒液貯溜容器を上記蒸発器の入口ヘッ
ダーより若干下方に設置すると共に、同蒸発器の入口側
に冷却負荷に応じて開閉される開閉弁を設けたことを特
徴とする。
For this purpose, the present invention provides at least two adsorbent filling tanks each containing a solid adsorbent and a heat transfer tube, and a refrigerant generates a unidirectional vapor flow in each of the filling tanks. A condenser and an evaporator are connected so as to circulate, and when one of the filling tanks performs an adsorption step, a heating medium and a cooling medium are switched so that the other performs a desorption step. A refrigerant liquid storage container is provided on the outlet side of the condenser, the refrigerant liquid storage container is set slightly below the inlet header of the evaporator, and an on-off valve that opens and closes on the inlet side of the evaporator according to a cooling load. Is provided.

【0020】[0020]

【作用】このような構成によれば、吸着剤充填槽100
A,100Bの熱媒体供給口131A,131Bの入
口,出口をそれぞれ加熱用熱媒体回路200,冷却水循
環回路300に各1対の方向切替弁900,1000に
より並列接続的に切替えることで、吸着剤槽を小型化し
て配置及び装置の自由度を大きくするとともに冷房能力
を増加して省エネルギかつ無公害の吸着式冷凍装置が得
られる。また、流量調整バルブの全開全閉の単純なオン
オフ的操作のみで被冷却媒体の高精度の温度制御が可能
となり、従って被冷却媒体つまり空気の流量調整は不要
となる。
According to such a configuration, the adsorbent filling tank 100
The adsorbent is switched by connecting the inlet and outlet of the heat medium supply ports 131A and 131B of the heat transfer mediums A and 100B to the heating heat medium circuit 200 and the cooling water circulation circuit 300 in parallel connection by a pair of direction switching valves 900 and 1000, respectively. It is possible to obtain an energy-saving and pollution-free adsorption type refrigeration apparatus by reducing the size of the tank, increasing the degree of freedom of arrangement and the apparatus, and increasing the cooling capacity. Further, the temperature of the medium to be cooled can be controlled with high accuracy only by a simple ON / OFF operation of fully opening and closing the flow control valve, and therefore, the flow rate of the medium to be cooled, that is, the air is not required.

【0021】[0021]

【実施例】本発明の一実施例を図面について説明する
と、図1はその全体要約系統図で図5と同一の符号はそ
れぞれ同図と同一の部材を示し、本発明が同図の装置と
異なるところは、冷凝縮器の出口側に設けられた冷媒液
貯溜容器と蒸発器との上下関係位置及び蒸発器の入口側
に設けられた開閉弁にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall schematic diagram of the same, in which the same reference numerals as in FIG. 5 denote the same members as in FIG. The different points are the vertical relationship between the refrigerant liquid storage container and the evaporator provided on the outlet side of the cold condenser and the on-off valve provided on the inlet side of the evaporator.

【0022】上図において、被冷却媒体つまり空気の温
度制御を蒸発器への冷却媒体つまり水の供給流量の調節
により行うことは従前通りであるが、本発明では凝縮液
体貯溜容器500内の液面を蒸発器600内の液面に対
し約25cm以内の比較的低いレベルになるように貯溜容
器500を設置し、両者を連結する配管の蒸発器に近い
個所に流量調整バルブ813を設ける。また、流量調整
バルブ813の全開時の流量変化を緩和するために貯溜
容器500と蒸発器600との間に流量調整バルブに加
えて、オリフイス等の絞り弁を設けることもできる。こ
のような構造によれば、その際、流れを引起こす圧力ヘ
ッドが減少するように貯溜容器500と蒸発器600の
両液面を設定しているので、流動抵抗を無視すると、流
量調整バルブ812の前後の圧力差ΔPは ΔP=P3 (PE −γ・Δh1 ) P3 =PC −γ・(Δh−Δh1 ) の関係から ΔP=PC −PE −γ・Δh となり、γ・Δhだけ圧力ヘッドは減少し制御し易くな
る。更に絞り弁を設けることにより、流れによる圧損が
流体の移動能力を低下させる。このような構造によれ
ば、流量調整バルブで全開時でも流量を小さく抑えるこ
とができるので、バルブ開度の微妙な調節を行わなくと
も全閉全開の単純なオンオフ的操作のみで精度の高い流
量調整が可能となり、ひいては被冷却媒体の温度制御が
可能になる。本発明は図6に示した吸着式冷却装置の蒸
発器にも通用できることはいうまでもない。
In the above figure, the temperature of the medium to be cooled, that is, the air is controlled by adjusting the supply flow rate of the cooling medium, that is, water, to the evaporator. The storage container 500 is installed so that the surface is at a relatively low level within about 25 cm with respect to the liquid level in the evaporator 600, and a flow control valve 813 is provided at a location near the evaporator in a pipe connecting the two. In addition, a throttle valve such as an orifice may be provided between the storage container 500 and the evaporator 600 in addition to the flow control valve in order to reduce a change in the flow when the flow control valve 813 is fully opened. According to such a structure, the liquid level of both the storage container 500 and the evaporator 600 is set so that the pressure head causing the flow is reduced. the pressure difference [Delta] P before and after the [Delta] P = P 3 of (P E -γ · Δh 1) P 3 = P C -γ · ΔP from (Δh-Δh 1) of the relationship = P C -P E -γ · Δh becomes, The pressure head is reduced by γ · Δh and control becomes easier. Further, by providing a throttle valve, pressure loss due to the flow reduces the fluid moving ability. According to such a structure, the flow rate can be kept small even when the valve is fully opened by the flow control valve, so that the flow can be accurately controlled only by a simple ON / OFF operation of the fully closed and fully opened without fine adjustment of the valve opening. Adjustment is possible, and thus, the temperature of the medium to be cooled can be controlled. Needless to say, the present invention can be applied to the evaporator of the adsorption type cooling device shown in FIG.

【0023】このように、蒸発器より低位液面の凝縮器
及び蒸発器に付設された開閉弁を有する吸着式冷却装置
によれば、下記の効果が奏せられる。 (1) 吸着剤槽14(図4)と蒸気槽15(図4)は互い
に分離構成されているので、その設置はかなり自由にな
る。 (2) 冷却回路の熱交換器22(図4)と吸着式冷凍機1
の蒸発部2(蒸発器)(図4)を兼用することにより構
造が簡単になる。 (3) 脱着のための熱源としては、固有吸着剤の呼吸量を
多くして蒸発に寄与する冷媒量を多くし、冷房能力を大
きくするには、脱着温度は高いのが好ましく機関の冷却
水に基づく機関排熱だけでは不十分の場合には機関の排
気が保有する熱も利用して吸着質の呼吸量増加に寄与
し、冷却装置の単位重量当の冷却能力は向上する。 (4) 蒸気流路は唯一であり、この種の冷却装置としては
極めて簡素な構成であり小型化及び軽量化に寄与すると
ころ大であると共に、極めて簡素な構成による信頼性増
加も期待できる。 (5) 軽量化とエンジン動力を要しないことに伴い乗り物
の運搬動力は低減され燃費向上になる。 (6) フロン系冷媒を使わずに冷却能力を取り出すことが
できるので、オゾン層破壊の防止に寄与するところ大で
ある。 (7) 流量調整バルブの全開全閉の単純なオンオフ的操作
のみで被冷却媒体の高精度の温度制御が可能となり、従
って被冷却媒体つまり空気の流量調整は不要となる。
As described above, according to the adsorption type cooling device having the condenser whose liquid level is lower than the evaporator and the on-off valve attached to the evaporator, the following effects can be obtained. (1) Since the adsorbent tank 14 (FIG. 4) and the steam tank 15 (FIG. 4) are separated from each other, their installation is considerably free. (2) Heat exchanger 22 (FIG. 4) in the cooling circuit and adsorption refrigerator 1
The structure is simplified by also using the evaporator 2 (evaporator) (FIG. 4). (3) As a heat source for desorption, in order to increase the amount of refrigerant that contributes to evaporation by increasing the respiratory volume of the specific adsorbent and increase the cooling capacity, the desorption temperature is preferably high, and the cooling water for the engine is preferably used. If the exhaust heat of the engine alone is not sufficient, the heat retained by the exhaust gas of the engine is also used to contribute to the increase in the respiratory volume of the adsorbate, and the cooling capacity of the cooling device per unit weight is improved. (4) The steam flow path is only one, and this type of cooling device has an extremely simple configuration, which greatly contributes to miniaturization and weight reduction, and can also be expected to increase reliability due to the extremely simple configuration. (5) As the weight is reduced and the engine power is not required, the transport power of the vehicle is reduced and the fuel efficiency is improved. (6) Since the cooling capacity can be obtained without using a chlorofluorocarbon-based refrigerant, it greatly contributes to prevention of ozone layer depletion. (7) Highly accurate temperature control of the medium to be cooled can be performed only by a simple on / off operation of fully opening and closing the flow control valve, so that it is not necessary to adjust the flow rate of the medium to be cooled, that is, air.

【0024】[0024]

【発明の効果】要するに本発明によれば、固体吸着剤及
び伝熱管を内蔵してなる吸着剤充填槽を少なくも2槽設
け、上記各充填槽を冷媒が一方向蒸気流を生成して循環
するように凝縮器及び蒸発器を接続すると共に、上記充
填槽の一方が吸着工程を行うときは他方が脱着工程を行
うように加熱媒体、冷却媒体を切換える吸着式冷却装置
において、上記凝縮器の出口側に冷媒液貯溜容器を設
け、同冷媒液貯溜容器を上記蒸発器の入口ヘッダーより
若干下方に設置すると共に、同蒸発器の入口側に冷却負
荷に応じて開閉される開閉弁を設けたことにより、吸着
剤槽を小型化して装置の配置の自由度大きくし冷房能力
の増加を図ると共に、蒸発器の液面制御により空気温度
の制御を容易にする省エネルギかつ無公害の吸着式冷却
装置を得るから、本発明は産業上極めて有益なものであ
る。
In summary, according to the present invention, at least two adsorbent filling tanks each containing a solid adsorbent and a heat transfer tube are provided, and a refrigerant generates a one-way vapor flow and circulates through each of the filling tanks. A condenser and an evaporator are connected so that when one of the filling tanks performs an adsorption step, the other is a heating medium and a cooling medium that switches a cooling medium so as to perform a desorption step. A refrigerant liquid storage container was provided on the outlet side, the refrigerant liquid storage container was installed slightly below the inlet header of the evaporator, and an on-off valve that was opened and closed according to a cooling load was provided on the inlet side of the evaporator. This makes it possible to reduce the size of the adsorbent tank and increase the degree of freedom in arranging the equipment to increase the cooling capacity, and also to control the air temperature by controlling the liquid level of the evaporator. Book Akira is extremely useful on the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す全体要約系統図であ
る。
FIG. 1 is an overall summary system diagram showing one embodiment of the present invention.

【図2】公知のフロンガスを使用したカークーラーシス
テムを示す系統図である。
FIG. 2 is a system diagram showing a car cooler system using a known Freon gas.

【図3】公知の吸着式カークーラーを示す系統図であ
る。
FIG. 3 is a system diagram showing a known adsorption type car cooler.

【図4】図3の詳細図である。FIG. 4 is a detailed view of FIG. 3;

【図5】本出願人がさきに提案した特願平2−3248
56号に係る吸着式冷凍装置を示す全体系統図である。
FIG. 5: Japanese Patent Application No. Hei 2-3248 proposed earlier by the present applicant.
It is the whole system diagram which shows the adsorption-type refrigeration apparatus which concerns on No. 56.

【図6】図5の変形例を示す同じく全体系統図である。FIG. 6 is an overall system diagram showing a modification of FIG. 5;

【図7】代表的な吸着剤の吸着等温線を示す線図であ
る。
FIG. 7 is a diagram showing adsorption isotherms of typical adsorbents.

【図8】代表的な吸着剤の吸着等温線を示す線図であ
る。
FIG. 8 is a diagram showing adsorption isotherms of typical adsorbents.

【図9】代表的な吸着剤の吸着等温線を示す線図であ
る。
FIG. 9 is a diagram showing an adsorption isotherm of a typical adsorbent.

【図10】吸着質の呼吸量の比較例を示す線図である。FIG. 10 is a diagram showing a comparative example of a respiratory volume of an adsorbate.

【図11】図5の要約図である。FIG. 11 is a summary diagram of FIG. 5;

【符号の説明】[Explanation of symbols]

100A,100B 吸着剤充填槽 101 吸着剤充填槽内の空所 110 熱交換部材 120 固体吸着剤 130 筒状容器 131A,131B 熱媒体供給口 200 加熱用熱媒体回路 210 機関の冷却水循環回路 211 機関 212 ラジエーター 213 分流弁 214 ポンプ 215 パイピング 220 排気熱交換器 300 冷却水循環回路 310 空気冷却器 320 ポンプ 400 凝縮部 500 凝縮液体貯溜容器 600 蒸発器 601 ドレン 610 冷却負荷 611 ダクト 612 送風機 700 4方切替弁 800 密閉循環系形成手段 810 蒸気通路 813 流量調整バルブ 900 方向切替弁 1000 方向切替弁 1100 水冷媒(吸着質) 100A, 100B Adsorbent filling tank 101 Vacancy in adsorbent filling tank 110 Heat exchange member 120 Solid adsorbent 130 Cylindrical container 131A, 131B Heat medium supply port 200 Heating medium circuit for heating 210 Cooling water circuit of engine 211 Engine 212 Radiator 213 Dividing valve 214 Pump 215 Piping 220 Exhaust heat exchanger 300 Cooling water circulation circuit 310 Air cooler 320 Pump 400 Condensing unit 500 Condensed liquid storage container 600 Evaporator 601 Drain 610 Cooling load 611 Duct 612 Blower 700 Four-way switching valve 800 Hermetic Circulation system forming means 810 Steam passage 813 Flow control valve 900 Direction switching valve 1000 Direction switching valve 1100 Water refrigerant (adsorbate)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水上 春信 名古屋市中村区岩塚町字高道1番地 三 菱重工業株式会社 名古屋研究所内 (56)参考文献 特開 平4−194561(JP,A) 特開 昭58−190669(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Harunobu Mizukami 1 Nagoya City, Nakamura-ku, Iwatsuka-cho, Takamichi 1 Mitsuhishi Heavy Industries, Ltd. Nagoya Research Laboratories (56) References JP-A-4-194561 (JP, A) 1983-190669 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体吸着剤及び伝熱管を内蔵してなる吸
着剤充填槽を少なくも2槽設け、上記各充填槽を冷媒が
一方向蒸気流を生成して循環するように凝縮器及び蒸発
器を接続すると共に、上記充填槽の一方が吸着工程を行
うときは他方が脱着工程を行うように加熱媒体、冷却媒
体を切換える吸着式冷却装置において、上記凝縮器の出
口側に冷媒液貯溜容器を設け、同冷媒液貯溜容器を上記
蒸発器の入口ヘッダーより若干下方に設置すると共に、
同蒸発器の入口側に冷却負荷に応じて開閉される開閉弁
を設けたことを特徴とする吸着式冷却装置。
At least two adsorbent filling tanks each containing a solid adsorbent and a heat transfer tube are provided, and a condenser and an evaporator are provided in each of the filling tanks so that a refrigerant generates and circulates a unidirectional vapor flow. And an adsorption type cooling device that switches a heating medium and a cooling medium so that one of the filling tanks performs an adsorption step while the other performs a desorption step, and a refrigerant liquid storage container is provided at an outlet side of the condenser. And the refrigerant liquid storage container is installed slightly below the inlet header of the evaporator,
An adsorption type cooling device comprising an opening / closing valve which is opened and closed according to a cooling load at an inlet side of the evaporator.
JP7860191A 1991-03-18 1991-03-18 Adsorption cooling device Expired - Lifetime JP2744714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7860191A JP2744714B2 (en) 1991-03-18 1991-03-18 Adsorption cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7860191A JP2744714B2 (en) 1991-03-18 1991-03-18 Adsorption cooling device

Publications (2)

Publication Number Publication Date
JPH04292752A JPH04292752A (en) 1992-10-16
JP2744714B2 true JP2744714B2 (en) 1998-04-28

Family

ID=13666423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7860191A Expired - Lifetime JP2744714B2 (en) 1991-03-18 1991-03-18 Adsorption cooling device

Country Status (1)

Country Link
JP (1) JP2744714B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372331A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Absorption heat pump apparatus
JP5494041B2 (en) * 2010-03-12 2014-05-14 株式会社デンソー Chemical heat pump equipment
IT201900003829A1 (en) 2019-03-15 2020-09-15 Marelli Europe Spa ADSORPTION REFRIGERATOR SYSTEM FOR THE PRODUCTION OF DEMINERALIZED WATER ON BOARD A MOTOR VEHICLE, MOTOR VEHICLE AND METHOD OF PRODUCTION OF DEMINERALIZED WATER ON BOARD A MOTOR VEHICLE

Also Published As

Publication number Publication date
JPH04292752A (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JP5132314B2 (en) Automotive air conditioner with absorption heat pump
US5491979A (en) Apparatus for cooling food stuffs, especially in an aircraft
US5333471A (en) Adsorption cooling system
US5359864A (en) Cooling apparatus
EP0795725A2 (en) Adsorptive-type refrigeration apparatus
JP2808488B2 (en) Adsorption cooling device
WO2012085605A1 (en) Adsorption thermal compressor technology and apparatuses
JP2744714B2 (en) Adsorption cooling device
JP2003075015A (en) Absorption refrigerating machine
JP3870432B2 (en) Adsorption cooling system
JP2744713B2 (en) Adsorption cooling device
JP2744712B2 (en) Adsorption cooling device
CN202229464U (en) Compact car waste heat adsorption air conditioner
JP2846134B2 (en) Adsorption cooling device
JP2796446B2 (en) Adsorption cooling device
CN1035260A (en) Adsorption-type continuous-freezing vehicular air conditioner
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JPH09196494A (en) Adsorption refrigerating machine
JPH04292753A (en) Adsorption type cooling device
JPH05113271A (en) Absorption cooling device
JPH05113268A (en) Absorption type cooling device
JPH05126430A (en) Adsorption type cooler
JPH05113274A (en) Absorption cooling apparatus
JPH05113270A (en) Absorption cooling device
JPH05272833A (en) Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106