JPH05112856A - Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment - Google Patents

Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment

Info

Publication number
JPH05112856A
JPH05112856A JP14606991A JP14606991A JPH05112856A JP H05112856 A JPH05112856 A JP H05112856A JP 14606991 A JP14606991 A JP 14606991A JP 14606991 A JP14606991 A JP 14606991A JP H05112856 A JPH05112856 A JP H05112856A
Authority
JP
Japan
Prior art keywords
titanium alloy
beta
subjected
present
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14606991A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Tatsuo Yamazaki
達夫 山崎
Takao Horitani
貴雄 堀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14606991A priority Critical patent/JPH05112856A/en
Publication of JPH05112856A publication Critical patent/JPH05112856A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To provide the method for improving the fatigue properties of an alpha+ beta type titanium alloy subjected to beta treatment without deteriorating its ductility. CONSTITUTION:An alpha + beta type titanium alloy subjected to beta treatment is subjected to shot peening and is subjected to heat treatment of holding it under heating to the temp. range from the beta transformation point -150 deg.C to the betatransformation point -20 deg.C for 5min to 8hr. Or, cooling after the above heat treatment is executed at a cooling rate of that of air cooling or above and is furthermore subjected to stabilizing annealing of holding it under heating to 450 to 820 deg.C for 30min to 24hr. Or after the above-mentioned heat treatment or stabilizing annealing, shot peening is moreover executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、α+β型チタン合金の
製造方法に関するものであり、さらに詳しくは、β処理
を施したα+β型チタン合金の疲労特性を改善する方法
に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an α + β type titanium alloy, and more particularly to a method for improving the fatigue characteristics of an α + β type titanium alloy which has been subjected to β treatment.

【0002】[0002]

【従来の技術】α+β型チタン合金はチタン合金の中で
は最も汎用であり、軽量で高強度の特性を生かすべく、
航空機、自動車、蒸気タービンなどへ適用されてきた。
これらの多くは強度、延性および疲労特性に優れた等軸
α相組織が用いられているが、最近ではβ変態点以上の
温度域への加熱冷却、すなわちβ処理を行ったり、β処
理の後さらに安定化焼鈍を行うことにより針状α相組織
を生成させ、特にクリープ特性や破壊靭性が要求される
用途に使用されている。ところが、これら針状組織は等
軸組織に比べると延性や疲労亀裂発生特性が劣ってお
り、特に疲労特性が要求される用途には使用が制限され
ていた。
2. Description of the Related Art α + β type titanium alloy is the most general purpose among titanium alloys, and in order to take advantage of the characteristics of lightweight and high strength,
It has been applied to aircraft, automobiles, steam turbines, etc.
Many of them use equiaxed α-phase microstructures that are excellent in strength, ductility and fatigue properties, but recently, they have been heated and cooled to a temperature range above the β transformation point, that is, β-treated, or after β-treated. Further, it is subjected to stabilizing annealing to generate an acicular α-phase structure, which is particularly used for applications requiring creep characteristics and fracture toughness. However, these needle-like structures are inferior in ductility and fatigue crack initiation properties to equiaxed structures, and their use is limited especially for applications requiring fatigue properties.

【0003】疲労特性を向上させる方法としては、例え
ば、特開昭50−105515号公開特許公報記載のシ
ョットピーニングがある。これは疲労亀裂が発生しやす
い表層部分をショットピーニングにより硬化させたり残
留応力を付与することにより、疲労亀裂発生を抑制する
ことをねらった方法である。しかし、β処理を行ったα
+β型チタン合金に特徴的な針状組織は、等軸組織に比
べると延性に乏しく、ショットピーニングを行うとさら
に延性が低下するため、延性の観点から使用上きわめて
重大な制限をうけるという問題点があった。
As a method for improving fatigue characteristics, there is, for example, shot peening described in Japanese Patent Laid-Open No. 50-105515. This is a method aimed at suppressing the occurrence of fatigue cracks by hardening the surface layer portion where fatigue cracks are likely to occur by shot peening or applying residual stress. However, α that has been β-processed
The needle-like structure characteristic of + β type titanium alloy is less ductile than the equiaxed structure, and the ductility is further deteriorated when shot peening is performed. was there.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記した問
題点を解消しようとするものであって、β処理を施した
α+β型チタン合金において、クリープ特性など針状組
織のもつ優れた特性を損なわず、また延性を損なうこと
なく、疲労特性を向上させるための方法を提供すること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and in an α + β type titanium alloy which has been subjected to β treatment, it has excellent properties such as creep properties that the acicular structure has. It is an object of the present invention to provide a method for improving fatigue properties without impairing the ductility or damaging the ductility.

【0005】[0005]

【課題を解決するための手段】本発明者らは、β処理を
施したα+β型チタン合金の疲労特性改善のために研究
努力を重ねた結果、ショットピーニングを行った後、適
切な熱処理を行うと、疲労特性や延性に優れた等軸組織
が表層部に生成することを見い出した。すなわち、本発
明は、 (1)β処理を行ったα+β型チタン合金にショットピ
ーニングを施し、次いでβ変態点−150℃以上でβ変
態点−20℃以下の温度に5分以上8時間以下加熱保持
することを特徴とする。 (2)上記本発明(1)の熱処理を行った後、空冷以上
の冷却速度で冷却し、次いで450℃〜820℃で30
分以上24時間以下加熱保持し、安定化焼鈍することを
特徴とする。 (3)前記本発明(1)または(2)の工程を実施後、
さらにショットピーニングを行うことを特徴とする。 なお本発明において、β処理とは、β変態点以上の温度
域への加熱、保持、冷却からなる工程であり、β変態点
とは、平衡状態において、その温度以上ではβ相単相と
なる温度であり、α+β型チタン合金では一般に850
℃〜1050℃である。また、α+β型チタン合金と
は、β変態点以上から焼入れた時、β相のすべてあるい
は一部がα相やマルテンサイトに変態し、かつ室温にお
ける平衡状態にてα相とβ相の両者が存在する種類のチ
タン合金で、例えばTi−6Al−4Vなどである。
Means for Solving the Problems As a result of repeated research efforts for improving the fatigue characteristics of α + β type titanium alloys subjected to β treatment, the present inventors carry out appropriate heat treatment after performing shot peening. Then, it was found that an equiaxed structure excellent in fatigue characteristics and ductility is generated in the surface layer portion. That is, the present invention includes (1) shot-peening an α + β type titanium alloy that has been subjected to β treatment, and then heating it to a temperature of β transformation point −150 ° C. or higher and β transformation point −20 ° C. or lower for 5 minutes or more and 8 hours or less. It is characterized by holding. (2) After performing the heat treatment of the present invention (1), it is cooled at a cooling rate of air cooling or more, and then at 450 ° C to 820 ° C for 30 minutes.
It is characterized in that the material is heated and held for at least a minute and no more than 24 hours and then subjected to stabilization annealing. (3) After carrying out the step of the present invention (1) or (2),
Further, it is characterized by performing shot peening. In the present invention, the β treatment is a process consisting of heating, holding, and cooling to a temperature range above the β transformation point, and the β transformation point is a β phase single phase at the temperature above the equilibrium state. Temperature, generally 850 for α + β titanium alloys
C to 1050C. Also, α + β type titanium alloy means that when quenched from the β transformation point or higher, all or part of the β phase transforms to α phase or martensite, and both α and β phases are in equilibrium at room temperature. A type of titanium alloy that exists, such as Ti-6Al-4V.

【0006】[0006]

【作用】以下本発明について詳細に説明する。本発明
(1)では、まず、β処理を行ったα+β型チタン合金
にショットピーニングを施す。これは、表層部分に塑性
歪を付与することを目的としている。ここで、β処理を
大気中で行った場合、表層部には酸素濃化層やスケール
が生成しており、ショットピーニングによる塑性歪を母
材の十分な深さまで付与できないので、ショットピーニ
ングに先だってショットブラスト、酸洗、研削などによ
りスケールや酸素濃化層を除去しておくことが望まし
い。
The present invention will be described in detail below. In the present invention (1), first, shot peening is performed on the α + β type titanium alloy that has been subjected to β treatment. This is intended to give plastic strain to the surface layer portion. Here, when the β treatment is performed in the atmosphere, an oxygen-enriched layer and scale are generated in the surface layer portion, and plastic strain due to shot peening cannot be applied to a sufficient depth of the base material, so prior to shot peening. It is desirable to remove the scale and the oxygen-enriched layer by shot blasting, pickling, grinding or the like.

【0007】次に、この素材をβ変態点−150℃以上
でβ変態点−20℃以下の温度に5分以上8時間以下加
熱保持する。これは、塑性歪が付与された表層部分を再
結晶させることにより針状α相組織を微細化し、さらに
微細化したα相の境界にβ相を生成させα相を分断し、
疲労特性にすぐれた等軸組織にすることを目的としてい
る。このとき、素材内部には、先の工程であるショット
ピーニングによる塑性歪は付与されていないので、針状
組織がそのまま保持される。ここで、加熱保持温度をβ
変態点−150℃以上としたのは、この温度未満の温度
では再結晶およびβ相の生成量が不十分であり、本発明
の効果が十分に達成されない理由による。また加熱保持
温度をβ変態点−20℃以下としたのは、これを越える
温度ではβ相の割合が極端に大きくなり、疲労特性や延
性に優れた等軸α相の数が減るため、疲労特性が十分に
は改善できない理由による。また、保持時間を5分以上
としたのは、5分未満の保持時間では、再結晶およびβ
相の生成量が不十分であり、本発明の効果が十分に達成
されない理由による。また保持時間を8時間以下とした
のは、これを越える時間ではα相の粗大化が激しく疲労
特性が低下するためである。また、大気中で本熱処理を
行った場合、8時間を越えると酸素の影響が等軸化した
表層部の深さ以上にまで達するため、本発明の効果が失
われる。
Next, this material is heated and held at a temperature of β transformation point of −150 ° C. or higher and β transformation point of −20 ° C. or lower for 5 minutes or more and 8 hours or less. This is because the acicular α-phase structure is refined by recrystallizing the surface layer portion to which plastic strain is applied, and the β phase is generated at the boundary of the refined α phase to divide the α phase,
The purpose is to create an equiaxed structure with excellent fatigue properties. At this time, since the plastic strain due to the shot peening which is the previous step is not applied inside the material, the needle-like structure is retained as it is. Where the heating and holding temperature is β
The reason why the transformation point is set to −150 ° C. or higher is that the recrystallization and the amount of β phase are insufficient at a temperature lower than this temperature, and the effect of the present invention is not sufficiently achieved. Further, the heating and holding temperature is set to the β transformation point of −20 ° C. or lower because the ratio of β phase becomes extremely large at a temperature exceeding this temperature, and the number of equiaxed α phases excellent in fatigue characteristics and ductility is reduced. This is because the characteristics cannot be improved sufficiently. Further, the holding time of 5 minutes or more is because the holding time of less than 5 minutes causes recrystallization and β
The reason is that the amount of phases produced is insufficient and the effects of the present invention are not sufficiently achieved. Further, the holding time is set to 8 hours or less because the α phase is coarsened excessively and the fatigue characteristics are deteriorated if the holding time is exceeded. Further, when the main heat treatment is performed in the atmosphere, the effect of oxygen reaches the depth of the equiaxed surface layer portion or more after 8 hours, so that the effect of the present invention is lost.

【0008】本発明(2)は、本発明(1)の効果と強
化熱処理を組み合わせることにより、さらに疲労特性の
向上を図るための方法である。まず、本発明(1)の熱
処理を行った後、空冷以上の冷却速度で冷却する。これ
は等軸化したα相の間に存在するβ相をマルテンサイト
などの微細針状的組織に変態させるためである。ここで
空冷以上の冷却速度で冷却することとしたのは、空冷よ
りも遅い冷却速度では微細針状組織は生成しないからで
ある。
The present invention (2) is a method for further improving fatigue characteristics by combining the effect of the present invention (1) with a strengthening heat treatment. First, after performing the heat treatment of the present invention (1), it is cooled at a cooling rate higher than air cooling. This is because the β phase existing between the equiaxed α phases is transformed into a fine acicular structure such as martensite. The reason why cooling is performed at a cooling rate higher than that of air cooling is that fine needle-like structures are not generated at a cooling rate slower than that of air cooling.

【0009】次いで450℃〜820℃で30分以上2
4時間以下加熱保持することにより安定化焼鈍を行う。
この工程により、微細針状組織は焼き戻され、安定な等
軸+微細針状の混合組織となるとともに強度も上昇す
る。ここで、加熱保持温度を450℃以上としたのは、
これ未満の温度では、元素の拡散が不十分で安定な組織
が生成しにくい理由による。また、820℃以下とした
のは、これを越える温度では冷却中に生成した微細針状
組織の大部分が再びβ相に逆変態し、強化の目的が達成
されない理由による。また、加熱保持時間を30分以上
としたのは、これ未満の時間では元素拡散が不十分で安
定な組織および材質特性が得られない理由による。ま
た、加熱保持時間を24時間以下としたのは24時間以
内に安定な微細組織は得られており、これを越える時間
熱処理を行うことはエネルギー的に無駄である理由によ
る。
Next, at 450 to 820 ° C. for 30 minutes or more 2
Stabilization annealing is performed by heating and holding for 4 hours or less.
By this step, the fine needle-like structure is tempered to form a stable equiaxed + fine needle-like mixed structure and the strength is increased. Here, the heating and holding temperature is set to 450 ° C. or higher because
This is because if the temperature is lower than this, diffusion of the element is insufficient and a stable structure is difficult to be generated. The reason why the temperature is set to 820 ° C. or lower is that at a temperature exceeding this temperature, most of the fine needle-like structure generated during cooling is again transformed into the β phase and the purpose of strengthening cannot be achieved. The heating and holding time is set to 30 minutes or more because the element diffusion is insufficient and a stable structure and material properties cannot be obtained in a time less than 30 minutes. The reason why the heating and holding time is set to 24 hours or less is that a stable microstructure is obtained within 24 hours, and performing heat treatment for a time longer than this is wasteful in terms of energy.

【0010】本発明(3)では、本発明(1)あるいは
(2)を行った後、再びショットピーニングを行う。こ
れは、本発明(1)あるいは(2)を行うことにより、
表層部のみが疲労特性に優れた等軸組織となった素材の
疲労特性を、さらに向上させることを目的としている。
ここで、針状組織にショットピーニングを行うと、低い
延性値をさらに低下させることになるが、本発明(1)
および(2)を実施した試料では、表層部は延性に富む
等軸組織または等軸+微細針状混合組織となっているの
で、ショットピーニングにより延性が低下しても、なお
十分な延性は確保できる。
In the present invention (3), shot peening is carried out again after carrying out the present invention (1) or (2). This is achieved by carrying out the present invention (1) or (2).
The purpose is to further improve the fatigue properties of a material having an equiaxed structure in which only the surface layer has excellent fatigue properties.
Here, when shot peening is performed on the needle-shaped structure, the low ductility value is further reduced.
In the samples subjected to (2) and (2), the surface layer has an equiaxed structure rich in ductility or an equiaxed + fine needle-shaped mixed structure, so sufficient ductility is still secured even if ductility decreases due to shot peening. it can.

【0011】[0011]

【実施例】Ti−6Al−4V(β変態点:1000
℃)について本発明を適用した場合を例に、本発明につ
いてさらに詳しく説明する。真空アーク溶解により溶製
したTi−6Al−4V鋳塊を1100℃加熱鍛造、9
30℃加熱圧延により12mmの板を製造した。この板か
ら35mm長さ8.05mm径の平行部を持つ丸棒試験片を
切り出し、1050℃、15分、炉冷のβ処理を施し、
さらに表1〜表4に示す処理を行った。各処理を終えた
試験片は、ショットピーニングによって生じた凹凸を除
去するため、表層約0.025mmを研磨除去し、室温で
60Hzの条件で回転曲げ疲労試験を行い、疲労限を求め
た。また、一部の試料は引張試験を行い引張強度と伸び
を求めた。その結果を表5〜表8に示す。なお、熱処理
はすべてAr雰囲気で行い、ショットピーニングは、1
mm径のガラスビーズを約40m/sで約150%のカバ
ーレッジで行った後、100μm径のガラスビーズを約
30m/sで約150%のカバーレッジで行った。
EXAMPLE Ti-6Al-4V (β transformation point: 1000
The present invention will be described in more detail by taking the case of applying the present invention to (° C.) As an example. Ti-6Al-4V ingot melted by vacuum arc melting is forged at 1100 ° C., 9
A 12 mm plate was manufactured by hot rolling at 30 ° C. A round bar test piece having a parallel portion of 35 mm length and 8.05 mm diameter was cut out from this plate and subjected to furnace cooling β treatment at 1050 ° C for 15 minutes,
Further, the treatments shown in Tables 1 to 4 were performed. In order to remove the unevenness caused by shot peening, the test piece after each treatment was polished to remove about 0.025 mm of the surface layer and subjected to a rotary bending fatigue test at room temperature under the condition of 60 Hz to obtain the fatigue limit. In addition, some samples were subjected to a tensile test to determine tensile strength and elongation. The results are shown in Tables 5 to 8. All heat treatments are performed in Ar atmosphere, and shot peening is 1
mm diameter glass beads were applied at about 40 m / s with about 150% coverage, followed by 100 μm diameter glass beads at about 30 m / s with about 150% coverage.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【表5】 [Table 5]

【0017】[0017]

【表6】 [Table 6]

【0018】[0018]

【表7】 [Table 7]

【0019】[0019]

【表8】 [Table 8]

【0020】表1および表5に示すように、β処理まま
材(試験番号1)は疲労限は400MPa 以下である。β
処理後ショットピーニングを施すと(試験番号2)疲労
限は460MPa まで上昇するが、伸びが4.4%と5%
以下にまで低下する。
As shown in Tables 1 and 5, the as-treated β material (test number 1) has a fatigue limit of 400 MPa or less. β
When shot peening is applied after the treatment (Test No. 2), the fatigue limit rises to 460 MPa, but the elongation is 4.4% and 5%.
It drops to below.

【0021】表2において試験番号3〜5および7,1
0は本発明(1)の実施例である。表6に示すように、
本発明(1)を適用することにより、いずれも疲労限は
430MPa 以上になっている。また、試験番号3〜5で
は、いずれも伸びは7%以上で、試験番号2のように5
%以下となるような著しい延性低下はみられない。これ
は、ショットピーニングによって塑性歪が導入された表
層部が、熱処理を行うことにより再結晶し、さらにβ相
がα相を分断することにより、疲労特性および延性に優
れた等軸組織に変化したためである。
In Table 2, test numbers 3-5 and 7,1
Reference numeral 0 is an embodiment of the present invention (1). As shown in Table 6,
By applying the present invention (1), the fatigue limit is 430 MPa or more in all cases. In addition, in Test Nos. 3 to 5, the elongation is 7% or more, which is 5 as in Test No. 2.
%, No remarkable decrease in ductility is observed. This is because the surface layer portion in which plastic strain was introduced by shot peening was recrystallized by heat treatment, and the β phase was divided into α phase, so that the equiaxed structure was excellent in fatigue characteristics and ductility. Is.

【0022】一方、本発明(1)の比較例である試験番
号6,8,9,11では、表6に示すように、いずれも
疲労限は430MPa を大幅に下回った。この理由は以下
のとおりである。試験番号6では、ショットピーニング
後の熱処理温度が990℃で本発明(1)の上限値であ
る980℃よりも高かったため、β相の割合が極端に大
きくなり、疲労特性に優れたα相の数が少なくなり、疲
労特性が十分には改善されなかった。試験番号8では、
ショットピーニング後の熱処理時間が本発明(1)の下
限値である5分未満であったため、再結晶およびβ相の
生成量が不十分であり、本発明の効果が十分に達成され
なかった。試験番号9では、ショットピーニング後の熱
処理温度が本発明(1)の下限値である850℃未満で
あったため、再結晶およびβ相の生成量が不十分であ
り、本発明の効果が十分に達成されなかった。また、試
験番号11ではショットピーニング後の熱処理時間が本
発明(1)の上限値である8時間を越えたため、α相の
粗大化が激しく疲労特性の改善は十分でなかった。
On the other hand, in Test Nos. 6, 8, 9, and 11, which are comparative examples of the present invention (1), as shown in Table 6, the fatigue limit was significantly less than 430 MPa. The reason for this is as follows. In Test No. 6, the heat treatment temperature after shot peening was 990 ° C., which was higher than the upper limit value of 980 ° C. of the present invention (1), so that the proportion of β phase was extremely large, and α phase excellent in fatigue characteristics was used. The number was small and the fatigue properties were not sufficiently improved. In test number 8,
Since the heat treatment time after shot peening was less than the lower limit of 5 minutes of the present invention (1), the amount of recrystallization and β phase produced was insufficient, and the effects of the present invention were not sufficiently achieved. In Test No. 9, the heat treatment temperature after shot peening was less than 850 ° C., which is the lower limit of the present invention (1), the recrystallization and β phase production was insufficient, and the effect of the present invention was sufficiently exerted. Not achieved. Further, in Test No. 11, the heat treatment time after shot peening exceeded the upper limit value of 8 hours of the present invention (1), so that the α phase was significantly coarsened and the fatigue characteristics were not sufficiently improved.

【0023】表3において、試験番号12,13,1
5,18は本発明(2)の実施例である。表7に示すよ
うに、いずれも疲労限は450MPa を上回っており、本
発明(1)を適用した場合よりもさらに疲労限が上昇し
ている。また、試験番号12,13では伸びは6%以上
で、著しい延性低下もみられない。これは、ショットピ
ーニング後の熱処理を行った後の冷却中に、β相が微細
針状組織に変態し、さらに安定化焼鈍を行うことにより
疲労特性や延性に優れた安定な等軸+微細針状の混合組
織が表層部に生成するためである。
In Table 3, test numbers 12, 13, 1
Reference numerals 5 and 18 are examples of the present invention (2). As shown in Table 7, the fatigue limit exceeded 450 MPa in all cases, and the fatigue limit was further increased as compared with the case where the present invention (1) was applied. In addition, in Test Nos. 12 and 13, the elongation was 6% or more, and no remarkable decrease in ductility was observed. This is because the β phase transforms into a fine needle-like structure during cooling after heat treatment after shot peening, and further stable annealing provides stable equiaxed + fine needles with excellent fatigue properties and ductility. This is because a mixed tissue having a shape is generated in the surface layer portion.

【0024】これに対し、本発明(2)の比較例である
試験番号14,17,19,20では表7に示すよう
に、いずれも疲労限は450MPa 以下で、本発明(1)
を施した試験番号3と同等もしくはそれ以下の値で、本
発明(2)の十分な効果は得られなかった。その理由は
以下のとおりである。試験番号14では、ショットピー
ニング後の熱処理を行った後の冷却速度が、本発明
(2)における冷却速度の下限である空冷よりも遅いた
め、β相が微細針状組織に変態しなかったためである。
試験番号17は、安定化焼鈍温度が本発明(2)におけ
る下限値である450℃未満であったため、元素の拡散
が不十分で安定な組織が生成せず、疲労限の向上が達成
されなかった。試験番号19では、安定化焼鈍温度が本
発明(2)における上限値である820℃を越えたた
め、微細針状組織の大部分が再びβ相に逆変態し、疲労
限の向上は達成されなかった。試験番号20では、安定
化焼鈍時間が本発明(2)における下限値である30分
未満であったため、元素拡散が不十分で安定な組織およ
び材質特性が得られなかった。また、試験番号16で
は、450MPa 以上の良好な特性が得られているが、安
定化焼鈍時間の短い試験番号15においてすでに十分な
値に到達しており、安定化焼鈍時間が不必要に長くエネ
ルギー的に無駄である。
On the other hand, in Test Nos. 14, 17, 19 and 20 which are comparative examples of the present invention (2), as shown in Table 7, the fatigue limit was 450 MPa or less, and the present invention (1)
With a value equal to or less than that of Test No. 3 in which the test No. 2 was performed, the sufficient effect of the present invention (2) was not obtained. The reason is as follows. In Test No. 14, the cooling rate after the heat treatment after shot peening was slower than the air cooling, which is the lower limit of the cooling rate in the present invention (2), and therefore the β phase was not transformed into a fine acicular structure. is there.
In Test No. 17, the stabilization annealing temperature was less than 450 ° C., which is the lower limit value of the present invention (2), so that the diffusion of elements was insufficient and a stable structure was not generated, and the fatigue limit was not improved. It was In Test No. 19, since the stabilizing annealing temperature exceeded the upper limit of 820 ° C. in the present invention (2), most of the fine needle-like structure was reverse-transformed into β-phase again, and the improvement of fatigue limit was not achieved. It was In Test No. 20, the stabilization annealing time was less than the lower limit of 30 minutes in the present invention (2), so element diffusion was insufficient and stable microstructure and material properties could not be obtained. Further, in Test No. 16, good characteristics of 450 MPa or more were obtained, but in Test No. 15 with a short stabilization annealing time, a sufficient value had already been reached, and the stabilization annealing time was unnecessarily long Is useless.

【0025】表4において、試験番号21は本発明
(1)を行った試験番号3にさらにショットピーニング
を行った本発明(3)の実施例である。また試験番号2
2は本発明(2)を行った試験番号12にさらにショッ
トピーニングを行った本発明(3)の実施例である。
In Table 4, test No. 21 is an example of the present invention (3) in which shot peening was further performed on test No. 3 which carried out the present invention (1). Test number 2
No. 2 is an example of the present invention (3) in which shot peening was further performed on the test number 12 for which the present invention (2) was performed.

【0026】表8に示すように、試験番号3または試験
番号12よりもさらに疲労限は上昇しており、伸びも5
%以上が確保されている。これは、表層部が疲労特性だ
けでなく延性にも優れた等軸組織であったためである。
As shown in Table 8, the fatigue limit was further increased and the elongation was 5 as compared with Test No. 3 or Test No. 12.
% Or more is secured. This is because the surface layer had an equiaxed structure that was excellent not only in fatigue characteristics but also in ductility.

【0027】[0027]

【発明の効果】以上説明したように、β処理を施したα
+β型チタン合金に、本発明を適用することにより、β
処理材の疲労特性を改善すると共に十分な延性を確保す
ることができる。
As described above, α subjected to β processing
By applying the present invention to a + β type titanium alloy, β
It is possible to improve the fatigue characteristics of the treated material and ensure sufficient ductility.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 β処理を行ったα+β型チタン合金にシ
ョットピーニングを施し、次いでβ変態点−150℃以
上でβ変態点−20℃以下の温度に5分以上8時間以下
加熱保持することを特徴とする、β処理を施したα+β
型チタン合金の疲労特性改善方法。
1. An α + β type titanium alloy that has been subjected to β treatment is subjected to shot peening, and then heated and held at a temperature of β transformation point −150 ° C. or higher and β transformation point −20 ° C. or lower for 5 minutes or more and 8 hours or less. Characteristic, β + processed α + β
Method for improving fatigue characteristics of type titanium alloy.
【請求項2】 前記請求項1記載の熱処理を行った後、
空冷以上の冷却速度で冷却し、次いで450℃〜820
℃で30分以上24時間以下加熱保持することを特徴と
する、β処理を施したα+β型チタン合金の疲労特性改
善方法。
2. After performing the heat treatment according to claim 1,
Cool at a cooling rate of air cooling or higher, and then 450 ° C to 820
A method for improving fatigue characteristics of a β-treated α + β titanium alloy, which comprises heating and holding at 30 ° C. for 30 minutes or more and 24 hours or less.
【請求項3】 前記請求項1または2の工程を実施後、
さらにショットピーニングを行うことを特徴とする、β
処理を施したα+β型チタン合金の疲労特性改善方法。
3. After carrying out the process of claim 1 or 2,
Furthermore, β is characterized by performing shot peening.
A method for improving fatigue properties of treated α + β type titanium alloy.
JP14606991A 1991-06-18 1991-06-18 Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment Withdrawn JPH05112856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14606991A JPH05112856A (en) 1991-06-18 1991-06-18 Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14606991A JPH05112856A (en) 1991-06-18 1991-06-18 Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment

Publications (1)

Publication Number Publication Date
JPH05112856A true JPH05112856A (en) 1993-05-07

Family

ID=15399387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14606991A Withdrawn JPH05112856A (en) 1991-06-18 1991-06-18 Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment

Country Status (1)

Country Link
JP (1) JPH05112856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089812A (en) * 2004-09-24 2006-04-06 Aisan Ind Co Ltd Method for surface-treating metallic material of titanium or titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089812A (en) * 2004-09-24 2006-04-06 Aisan Ind Co Ltd Method for surface-treating metallic material of titanium or titanium alloy

Similar Documents

Publication Publication Date Title
US3686041A (en) Method of producing titanium alloys having an ultrafine grain size and product produced thereby
CN102159742B (en) Solution heat treatment and overage heat treatment for titanium components
JP2005527699A (en) Method for treating beta-type titanium alloy
JPS63277745A (en) Production of titanium alloy member and member produced thereby
US10822682B2 (en) Method to prevent abnormal grain growth for beta annealed Ti—6AL—4V forgings
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
EP2157196A1 (en) Method of processing maraging steel
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JPH05112856A (en) Method for improving fatigue property of alpha + beta type titanium alloy subjected to beta treatment
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JPH11199995A (en) Method for improving creep characteristic of titanium alloy and titanium alloy
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
CN103938136B (en) A kind of titanium alloy quasi recrystallization annealing process
JP2713346B2 (en) Stainless steel wire excellent in high strength properties and its manufacturing method
JPH05112857A (en) Method for improving fatigue property of alpha + beta titanium alloy subjected to beta range heating
JP5382518B2 (en) Titanium material
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JP2642739B2 (en) High toughness spheroidal graphite casting and method for producing the same
Cai et al. Effect of Different Cold Rolling Reduction on the Microstructure and Mechanical Properties of Ti-3573 Titanium Alloy
US5223053A (en) Warm work processing for iron base alloy
JPH05112855A (en) Manufacture of alpha+beta titanium alloy excellent in fatigue property
JP4046368B2 (en) Thermomechanical processing method for β-type titanium alloy
CN115786832B (en) Method for improving high Jiang Yawen beta titanium alloy strong plasticity matching and titanium alloy
JP3841290B2 (en) Manufacturing method of β-type titanium alloy and β-type titanium alloy manufactured by the manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903